
ReSP: A Non-Intrusive Transaction-Level Reflective MPSoC
Simulation Platform for Design Space Exploration

Giovanni Beltrame Cristiana Bolchini Luca Fossati Antonio Miele Donatella Sciuto

Dipartimento di Elettronica e Informazione

Europeran Space Agency Politecnico di Milano

Noordwijk, NL 2200 AG Milan, IT 20133

Giovanni.Beltrame@esa.int {bolchini,fossati,miele,sciuto}@elet.polimi.it

Abstract—This paper presents ReSP (Reflective Simulation
Platform), a Transaction-Level multi-processor simulation plat-
form based on SystemC and Python; SystemC is a standard lan-
guage for system modeling and verification, and Python provides
the platform with reflective capabilities. These are employed to
give the designer an easy way to specify the architecture of a
system, simulate the given configuration and perform automatic
analysis on it. ReSP enables SystemC and Python interoperability
through automatic Python wrapper generation. We show that the
overhead associated with the Python intermediate layer is around
1%, therefore execution speed is not compromised. The advan-
tages of our approach are: (a) easy integration of external IPs
(b) fine grain control of the simulation (c) effortless integration
of tools for system analysis and design space exploration. A case
study shows how the platform can be extended to support system
reliability assessment.

I. INTRODUCTION

Nowadays the design of embedded systems and System-On-

Chip devices (SoC) is increasingly based on multiple proces-

sors leading to a new approach, called MultiProcessor System

on Chip (MPSoC). What has been dubbed “MPSoC” is becom-

ing the prevalent design style to achieve tight time-to-market

design goals, to maximize design reuse, to simplify the verifi-

cation process and to provide flexibility and programmability

for post-fabrication reuse of complex platforms.

MPSoCs are composed of off-the-shelf processing cores,

memories and application specific coprocessors. These Multi-

Processor architectures introduce new difficulties in the devel-

opment and design flow:

• The architecture may include more than one application

specific master processor;

• Inter-processor communication may require more sophis-

ticated networks than a simple shared bus;

• Processing elements cannot be independently designed

and optimized: this causes an exponential growth of the

design space.

These new challenges for system architects, software and hard-

ware designers, verification specialists and system integrators

may best be met by revisions to old tools, by using methods to

deal with MPSoC complexities, by introducing new tools and

methods working at the same abstraction levels and by moving

up in abstraction to take advantage of new design approaches.

Moreover, in order to obey to tight market constraints, the SoC

design process must rely on pre-designed or third party compo-

nents. Components obtained from different providers, and even

those designed by different teams of the same company, may be

heterogeneous on several aspects: design domains, interfaces,

abstraction levels, granularities, etc. Therefore, component in-

tegration is required at system level.

In this paper we present ReSP (Reflective Simulation

Platform), an MPSoC simulation platform working at a high

abstraction level. Our simulation platform uses a component

based design methodology [6]: it provides primitives to build

complex architectures from basic components. This bottom-up

approach allows design-architects to explore efficient custom

solutions with best performance. Components used by ReSP

are built on top of SystemC and TLM hardware and communi-

cation description libraries [2]. SystemC is a C++ library that

provides hardware modeling concepts (e.g. time, concurrency,

events, bit, types, etc.) for simulation of hardware/software

systems at different levels of abstraction. Transaction Level

Modeling (TLM) has been introduced in recent years as a mod-

eling style to describe communication channels at a higher ab-

straction level with respect to Register Transfer Level.

The simulation platform is built using Python programming

language; its reflective capabilities (see Sec. III for a definition

of reflection) augment the platform with the observability of

the internal structure of the SystemC components. This feature

enables run-time composition and dynamic management of the

architecture under analysis. The full potentialities offered by

the integration among Python and SystemC are exploited, dur-

ing simulation, to query, examine and, possibly, modify the in-

ternal status of the hardware models. These capabilities sim-

plify the debugging and testing processes for both the modeled

hardware architecture and the software running on it.

In conclusion, the advantages of coupling standard SystemC

based simulation techniques together with the reflective capa-

bilities of Python are multiple: (a) introspection inside the com-

ponents, which simplifies the integration of external IPs, (b)

fine grain control of the simulation, allowing an easy monitor-

ing and modification of the status of the components, and (c)

effortless integration of new tools for the analysis and the de-

sign space exploration; for instance, the application scenario

8B-1

673978-1-4244-1922-7/08/$25.00 ©2008 IEEE

presented in the paper shows how the simulator has been ex-

tended with features for system reliability assessment.

This paper is organized as follows: Section II presents the

state of the art of hardware simulators describing advantages

and limitations of the most common works found in literature;

Section III describes the ReSP architecture in detail. Section IV

discusses how ReSP can be used to evaluate the reliability level

of a simple architecture. Conclusions are drawn in Section V.

II. RELATED WORK

Simulation is the most commonly adopted technique for

the analysis of functional and non-functional requirements of

Multi-Processor platforms. A wide number of simulators have

been proposed in literature; we now provide a brief overview

of the ones that are relevant to this paper.

StepNP [12] is a platform for the exploration of Network

Processor Units; the platform presents several limitations: it

features a reduced set of Instruction Set Simulators (ISS) and,

in order to integrate new ones, ad-hoc wrappers in SystemC

have to be created. Moreover TLM standard library is not used

for communication. In our platform the need for ad-hoc wrap-

pers has been eliminated thanks to the integration among C++

and Python and, consequently, the introduction of reflective

properties.

Beltrame et al. [5] extended StepNP introducing the con-

cept of introspection to support dynamic switching of simu-

lation accuracy; to augment SystemC with reflective capabili-

ties they created SIDL, a CORBA like interface definition lan-

guage: each component has to be modified manually to extend

a specific class that provides functionalities to let external pro-

cesses read or modify part of the component status. Even if

the approach is innovative, it is considerably intrusive and does

not allow complete control over the component model and its

internal state.

Another simulator proposed in literature is Platform De-

signer [3], a framework of SystemC tools that provides sup-

port for modeling, simulation and analysis of multi-processor

systems; they are modeled as an extension of processor con-

structs. This work lacks support for custom buses (only OCP

and AMBA are currently supported) and it does not allow mod-

eling of architectures different from the ones based on a shared

bus; processors must also have a private memory region. Fi-

nally, communication through TLM interfaces is not supported.

In addition this system is completely based on C++: as conse-

quence it has no support for reflection and a limited flexibility.

CoWare Platform Architect [8] uses SystemC to model and

simulate the platform; it also integrates a Processor Designer

for the specification of ISSs. While CoWare Platform Architect

contains a wide library of components, integration of custom

models requires a considerable effort.

Integration among Python and SystemC has been explored

in [16] to test an RF CMOS transreceiver; a standard HDL

simulator was not satisfactory in that it worked at a too low

abstraction level and it did not offer enough flexibility. The in-

tegration was achieved through Inter Process Communication

(IPC). In this work we do not focus on using Python as a driver

for the simulator, but we try to embed Python inside the simu-

lator itself.

The work presented in [17] proposes another way of inte-

grating Python and SystemC: Python is used to embed scripting

into SystemC modules. This approach, however, requires the

modification of the OSCI SystemC kernel, and it cannot pro-

vide direct access to private and protected methods in Python.

Embedding Python proves to be effective in reducing the num-

ber of lines of code used to express a given functionality, at

the expense of an order of magnitude of simulation speed re-

duction. In this work, we do not focus on the embedding of

scripts in SystemC, but on the use of Python features and on

the automatic wrapper generation for SystemC modules, and

we overcome the issues of [17] by using a different wrapping

approach.

At the best of the authors’ knowledge, ReSP provides the

most complete Python wrapping mechanism for SystemC and

TLM designs.

III. SIMULATOR INFRASTRUCTURE

This work presents ReSP, a Reflective Simulation Platform.

The idea is to give the designer an easy way to specify the archi-

tecture of a system, simulate the given configuration and per-

form automatic analysis (such as design space exploration or

reliability assessment) on it. To achieve this goal, ReSP starts

from SystemC and the OSCI Transaction Level Modeling li-

brary [18] and provides a non-intrusive framework to manipu-

late SystemC and TLM objects. This work is particularly suit-

able for platform-based design: the use of a well-defined set of

architectural elements and the design space exploration on the

interconnection, number and parameters of those elements, are

keys for the effectiveness of the design methodology. In the

following, the terms platform and framework will be used to

indicate the overall ReSP architecture.

ReSP uses a formalism to describe the components and the

interconnections between components of a system, as many Ar-

chitecture Description Languages (ADLs) do. Components are

chosen from a database of SystemC modules. In the following,

we will refer to the term component to describe any top-level

SystemC module included into the framework’s database. The

proposed framework is based on the concept of reflection [9],

that allows ReSP to view and modify every C++ or SystemC

�������
	�
���

��������
����
����

�������������

����
����������

�������
��

�������
��

�������
��

��������

��	���
��	

������
�
����

������
�
����

������
�
����

����
��
��	

�
��
���
������������

������
��	��	��

���	����	
���

�����	��

�������
�����

�������
�����	���

�	����������

�������	�

�������������

����
����������

�����
�� ���������

Fig. 1. The architecture of the ReSP system simulation platform

8B-1

674

element (variable, method, etc.) specified in any component.

In [15] we read that “reflective computational systems allow

computations to observe and modify properties of their own

behavior, especially properties that are typically observed only

from some external, meta-level viewpoint”; this means that the

program itself is aware of its structure thus, for example, the

simulator can inspect a component and get all its communica-

tion ports without the need to have any a-priori knowledge on

the component’s methods and variables. This concept was in-

troduced in [5], but required the use of an interface description

language (IDL) to describe IP capabilities and therefore some

extra effort to include the IP in the framework database.

ReSP removes the need for special Interface Definition Lan-

guages (IDL) for specifying interfaces; SystemC code is di-

rectly parsed and the interface files (here called wrappers) are

automatically generated. This means that standard SystemC

TLM IPs can be integrated in the system with minimum effort.

As Fig. 1 shows, ReSP is composed of three main parts:

ReSP Core, IPs and Tools.

A. ReSP Core

The core of the ReSP architecture is the OSCI standard Sys-

temC kernel, as directly released by OSCI. This is an advantage

when compared to other works [17], as they require modifica-

tions to the SystemC kernel. ReSP provides a wrapper for the

Python scripting language around the SystemC kernel. Python

inherently supports reflection, and allows access to SystemC

variables and arbitrary function calls to SystemC. The Simu-
lation Controller is a set of Python classes that translate com-

mands coming from the user into SystemC function calls, con-

trolling the simulation behavior. As an example, it is possible

to run, step, pause, or stop the simulation at runtime, something

not present natively in SystemC. This concept was introduced

in [12] and it is now widely used.

The User Interface (or Human Computer Interface, HCI) is

also written in Python and it represents an interface between

the simulation controller and the user. This architecture allows

multiple interfaces (such as command line or graphical ones)

to be built.

The novelty introduced by ReSP lies in the Python wrap-

per generation for SystemC and TLM components. In previous

works [12, 17, 5, 3, 8], the developer had to write a special in-

terface file or use some specific classes in order to add a com-

ponent to the framework’s database; moreover only the com-

ponents’ characteristics described in those interface files could

be used by the simulator. ReSP deals with this step automati-

cally, by generating the Python wrapper right after parsing the

component C++ header file. The generation flow is shown in

Fig. 2.

Each header file is parsed using GCCXML, a tool that pro-

vides an XML description of the GCC abstract syntax tree.

The resulting XML description is manipulated to select all the

parts that need to be exported, and then the opensource tool

py++ is used to generate Python wrapping code that uses the

Boost.Python library [1]. The advantage of Boost.Python and

py++ over alternative tools like SWIG (used by most other

works) is that it guarantees access to all C++ declarations, even

private or protected ones, through the generation of appropriate

class wrappers. The Python interpreter can load the extensions

generated by the ReSP flow, and have full access to the C++,

and therefore SystemC, classes contained in the exported mod-

ule. Another feature of the ReSP flow is that IP documentation

is automatically extracted from the SystemC source code, and

inserted in the Python wrapper. Python self-documentation fea-

tures are then used to display such documentation through the

User Interface.

The SystemC kernel and the Simulation Controller are run in

one execution thread with the rest of the Python wrappers. HCI

and tool access are executed in a separate thread, and synchro-

nized with the SystemC kernel. In this way, the user has full

asynchronous control of the simulation (the status of the com-

ponents can be queried and/or modified even while simulation

is running), without consistency loss.

B. ReSP IPs

One of the peculiarities of ReSP is the capability of integrat-

ing any valid SystemC component in an easy way; in fact, as

described in the previous section, it is not necessary to modify

components’ descriptions due to the fact that ReSP automat-

ically generates the Python wrapper. This favors external IP

reusability and the description of new hardware architectures

by composition of already existing components. Currently, the

simulation platform includes the following component models:

• processors cores written using the ArchC [14] Architec-

tural Description Language; we possess both the func-

tional and cycle accurate versions of the PowerPC, Leon2

and ARM7 RISC processors;
• interconnections in terms of bus and Networks-On-Chip;
• memory systems including simple memories and caches;
• miscellaneous components, such as UARTs and interrupt

controllers.

Additional components can be easily added by putting their

SystemC source code in the ReSP build tree. No additional

interface or glue code needs to be written, as ReSP automati-

cally generates the appropriate component wrappers.

C. ReSP Tools

The introduction of reflection paves the way for the devel-

opment of a set of tools to perform system-level analysis. Any

operation that requires observability, can be performed through

the Python wrappers. For example, it is possible to include ad-

vanced network traffic analysis (latency, throughput. etc.) by

�������
������

�����	

��������	
�����
������	���������	�������

���

���
���
���

���������	�

���

�������
���	����

���	���� ���	�������

���

Fig. 2. ReSP wrapper generation flow

8B-1

675

����
����

���

��	����	��
�����

��	���
��	���
�����

�
�
�
��

�
��

�
�

��������
�	���
�	���
�	���
�	���
�	���
�������

���	��

����
����

���

�����

��	���
��	���
�����

��������

��	����	��

�������	��
������		�	
������	���	��		���	

������ ���!���� �� ���

"��##��
"��##��

"��##��
"��##��

"��##��
"��##��

�
	
�
�	
	
��

�
��

��
��
	
�

�
�
�
�

�
��
��

�
�
�
�
�
�

�
��
��

Fig. 3. Components of the ReSP platform: the architecture is composed of

SystemC components together with the corresponding automatically created

Python wrappers; the ReSP core is used to manage the SystemC kernel and

the conponent models.

observing the network traffic, or add power modeling to the

system by extracting switching activities from the system at

runtime. The biggest advantage given by the use of Python lies

in the decoupling among the simulator itself and the SytemC

models; the simulator does not need to have any a-priori knowl-

edge about the components’ structure: there is not need to

change the simulator’s code even if some components are mod-

ified.

Two execution modes are available: interactive and auto-

matic. The first one allows step-by-step execution of the ar-

chitecture under analysis. The architecture can be built using

the commands exported by the User Interface: components are

seen as normal Python classes which are instantiated and con-

nected together executing standard Python commands. Auto-

matic instantiation, by means of an XML file, is also possi-

ble. Interactive execution mode helps the designer in having

a deeper insight on the modeled architecture; this mode is es-

pecially useful during debug activity which, if the reflective

capabilities of the platform are also used, can be performed in

a very efficient way.

Automatic execution mode is used to run in batch mode a

sequence of n simulations. When using automatic mode, the

architecture description is provided in an XML file. The use-

fulness of this mode emerges when many runs of the same ar-

chitecture have to be performed; this is, for example, the case

with design space exploration algorithms (only component pa-

rameters, such as the number of processors, the cache size etc.

change over different runs) or with fault injection campaigns

(different faults are injected over different runs). Section IV

shows how ReSP can be used to perform reliability analysis

using its tool interface.

Example Let us suppose that we need to load the architecture

described in Fig. 3 in order to debug it and the software running

on it (Listing 1 shows commands for loading the architecture).

We detect a problem in the architecture after the execution of n
clock cycles: simulation can be paused (by simply issuing the

Python command controller.pause_simulation())

and, through the User Interface, the internal status of the com-

ponent models (i.e. the value of all their variables) can be ex-

amined and, if necessary, modified:

proc1 . PSR . r e a d ()
p roc1 . PSR . w r i t e (1 5)

p roc2 . PSR . r e a d ()
p roc2 . PSR . w r i t e (4 5)

This greatly helps in identifying, for example, which proces-

sor register contains an erroneous value. Normally such a de-

bug activity would require consistent changes in the ISS in or-

der, at least, to integrate it with a software debugger, such as

GNU/GDB, while in ReSP, thanks to the reflective facilities

offered by Python, no effort is required by the components’ de-

veloper. ReSP debugging capabilities are also enhanced by the

presence of callbacks: actions can be associated with specified

conditions; for example, when the program counter assumes a

specified value we can automatically pause simulation.

Listing 1 : Python commands used to load the architecture of Fig. 3

proc1 = l e o n 2 . l e o n 2 (’ p roc1 ’)
p roc2 = l e o n 2 . l e o n 2 (’ p roc2 ’)

mem = SimpleMemory32 . SimpleMemory32 (’mem ’)
mem. s e t S i z e (1024∗1024∗8)

bus = p v r o u t e r 3 2 . p v r o u t e r 3 2 (’ SimpleBus ’)

manager . c o n n e c t P o r t s F o r c e (proc1 , ’ p roc1 ’ , p roc1 .
DATA MEM port . memory port , bus , ’ SimpleBus ’ , bus .
t a r g e t p o r t [0])

manager . c o n n e c t P o r t s F o r c e (proc1 , ’ p roc1 ’ , p roc1 .
PROG MEM port . memory port , bus , ’ SimpleBus ’ , bus .
t a r g e t p o r t [0])

manager . c o n n e c t P o r t s F o r c e (proc2 , ’ p roc2 ’ , p roc2 .
DATA MEM port . memory port , bus , ’ SimpleBus ’ , bus .
t a r g e t p o r t [1])

manager . c o n n e c t P o r t s F o r c e (proc2 , ’ p roc2 ’ , p roc2 .
PROG MEM port . memory port , bus , ’ SimpleBus ’ , bus .
t a r g e t p o r t [1])

manager . c o n n e c t P o r t s F o r c e (bus , ’ SimpleBus ’ , bus .
i n i t i a t o r p o r t , mem, ’mem ’ , mem. memPort)

D. ReSP Performance

Fig. 4 shows the speed-up obtained by native SystemC ex-

ecution with respect to the execution of the same component

models inside ReSP. The first experiment (Fig. 5 on the left)

was set-up to measure the transactional speed of the system;

it consisted in the connection of basic master and slave com-

ponents: the former sends characters to the latter component.

On the right there are the results of the execution of a full ar-

chitecture; this was created by connecting a functional Leon2

processor model (created using the ArchC [14] architectural

description language) and the TLM Programmer’s View (PV)

memory and bus. The number of instructions per second, ob-

tained both using native execution and execution inside ReSP,

are shown.

8B-1

676

From Fig. 4 it is clear that the small performance penalty

due to the additional software layer introduced by Python is

negligible, especially if the advantages coming with to the in-

troduction of Python are considered.

All the experiments were hosted on a 2 GHz Intel Core 2

Duo System with 2 GB of RAM running Gentoo Linux.

IV. APPLICATION SCENARIO: FAULT INJECTION

The reflective capabilities provided in ReSP can be used also

for other purposes besides architecture composition and its dy-

namic management; in particular, we have exploited these fea-

tures to implement a fault injection environment. We have

followed the SoftWare-Implemented Hardware Fault Injection

(SWIFI) [4] approach, based on the modification of the com-

ponents’ internal state and on the simulation of the system be-

havior in presence of a hardware failure.

Works proposed in literature pursue fault injection by means

of code instrumentation for accessing the internal state of the

architecture [10]. By exploiting reflection instrumentation is

not necessary and, therefore, it is possible to perform fault

analysis (a) in a transparent way and (b) significantly reduc-

ing the set-up time necessary to be able to carry out the exper-

iments. Only a few works have exploited reflective program-

ming [11], devising, however, solutions strictly related to reli-

ability assessment. In our case, the adoption of SystemC and

TLM allows us to propose a flexible framework which is quite

innovative also w.r.t. fault injection scenarios.

The possibility of modifying the internal state of the compo-

nents allows the adoption of a generic functional fault model

as well as a radiation induced fault model, such as Single/Mul-

tiple Event Upsets. In this work the considered fault model is

the soft error or Single Event Effect that represents a transient

misbehavior mainly caused by radiations; this behavior affects

the devices causing a bit-flip of a value stored in a memory

cell. The classes of faults that can be simulated strictly depend

on the abstraction level adopted by the component description.

At present the components available in ReSP are described at a

functional level, hence, the injected faults can only be modeled

at behavioral level, rather than structural one; a common ap-

proach when considering the complexity of the described cores.

At the same time, if a structural description of a component

were available, a low abstraction level fault (such as a stuck-at)

might be modeled and dealt with.

Transactions Processors
0.95

0.97

0.99

1.01

S
pe

ed
up

 [S
ys

te
m

C
/R

eS
P

]

1.007030 1.010020

Fig. 4. Speedup of native execution with respect to execution inside ReSP.

Transactions Instructions
1500

1700

1900

2100

2300

K
T

ra
ns

ac
tio

ns
/s

SystemC SystemC+ReSP

1500

1850

2200

2550

2900

K
In

st
ru

ct
io

ns
/s

Fig. 5. Execution Speed of a both of generic hardware architecture (on the

left) and a processor/bus/memory architecture (on the right) measured first

using plain SystemC and then using ReSP.

Moreover, ReSP provides the possibility to automatically in-

stantiate the golden model, i. e., a copy of the system under test

used for comparing the faulty system behavior with a fault-free

one.

Our fault injection environment can use both the execution

modes described in Sec. C; during the interactive experimen-

tal session, simulation is executed step-by-step; the user can

run the simulation and manually suspend it in order to inject

faults in the desired storage location. Then, she/he can resume

the simulation to monitor the internal state of the architecture

under test and to compare it with the golden model (i.e., a fault-

free copy of the system under test) in order to analyze the fail-

ure evolution. On the other hand, automatic execution can be

employed to realize automated fault injection campaigns. The

list of faults to be injected is specified through an XML file:

each fault is identified in terms of the component and the vari-

able to be changed, the mask to be applied for changing the

variable value and the clock cycle at which injection has to be

performed. When the experimental session is launched, sim-

ulations, one for each element in the list, are performed. The

final report, stored in a file, shows for each simulation if the

fault has been activated and if it has been detected by fault tol-

erance features of the circuit under test.

We have used ReSP for reproducing the experimental ses-

sion proposed in [13]. The purpose of that case study is to

evaluate the capabilities of software redundant techniques in

detecting faults affecting microprocessors: the system under

test is a Leon2 processor running three different applications

hardened with software redundant techniques; the initial fault

injection environment [7] consisted of an FPGA board emulat-

ing the instrumented model of the processor. The same fault

injection campaign was repeated by using ReSP: we specified

a simple architecture composed of a Leon2 functional model

connected to a memory through a bus and we ran the same

software applications used in the previous experiment. Sev-

eral processor registers (e.g.: the Program Counter register, the

register bank, the Y register and the PSR register) were indi-

cated as possible fault locations. Table I presents the results

of our experimental session (“HW Detected” column reports

cases where an interrupt has been asserted because of an error

detection or because of a pre-defined time out expiration).

Our approach shows several advantages with respect to the

one adopted in [13]: the capability of performing fault injec-

8B-1

677

TABLE I

RELIABILITY ANALYSIS: EXPERIMENTAL RESULTS

Error

Application Register Faults No Error HW Detected SW Detected Not detected

Reg. Bank 2000 1787 51 152 10

ELPF PC Reg. 1000 775 12 207 6

Other Regs 600 591 0 9 0

Reg. Bank 2000 1742 85 154 19

FIR PC Reg. 1000 663 93 235 9

Other Regs 600 571 0 27 2

Reg. Bank 2000 1540 185 271 4

Kalman PC Reg. 1000 591 62 346 1

Other Regs 600 593 0 7 0

TOTAL 10800 8853 488 1408 51

tion by means of introspection allows to carry out experiments

in a faster and transparent way (i.e. no modifications to the

processor code are needed). It is worth noting that setting up

the experimental environment and executing the whole fault in-

jection campaign took only one hour, while instrumenting the

processor description for the experiment proposed in [13] took

several days. Moreover, our approach does not require complex

devices such as FPGAs. Finally, we can perform fault injection

experiments at several abstraction levels simply by changing

the abstraction level of the components plugged into ReSP.

V. SUMMARY AND CONCLUSIONS

In this paper we presented ReSP, a hardware simulation plat-

form targeted to Multi-Processor Systems-On-Chip; the plat-

form is based on the integration of Python and SystemC allow-

ing effortless integration of external IPs and custom compo-

nents. Python augments ReSP with reflective capabilities en-

abling a fine grained control over simulation and over the in-

ternal status of the component modules; this offers advantages,

with respect to traditional simulators, in the tasks of reliability

analysis (as shown in Sec. IV), design space exploration and

debug and test of the hardware/software system under analysis.

Results show that integration among Python and SystemC does

not introduce significant overhead over plain SystemC and C++

execution. The effectiveness of our approach was presented

through a case study on the software reliability in presence of

hardware failures.

REFERENCES

[1] C++/python interfacing: pyplusplus. http://www.
language-binding.net.

[2] Open SystemC Initiative: http://www.systemc.org.

[3] C. Araujo, M. Gomes, E. Barros, S. Rigo, R. Azevedo, and G. Araujo.

Platform designer: An approach for modeling multiprocessor platforms

based on SystemC. Design Automation for Embedded Systems, Vol.

10:253–283, 2007.

[4] Jean Arlat, Yves Crouzet, Johan Karlsson, Peter Folkesson, Em-

merich Fuchs, and Günther H. Leber. Comparison of physical and

software-implemented fault injection techniques. IEEE Trans. Comput.,
52(9):1115–1133, 2003.

[5] G. Beltrame, D. Sciuto, C. Silvano, D. Lyonnard, and C. Pilkington. Ex-

ploiting TLM and object introspection for system-level simulation. In

DATE ’06: Proc. of the conference on Design, Automation and Test in
Europe, pages 100–105, 2006.

[6] W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu,

Y. Paviot, S. Yoo, A. A. Jerraya, and M. Diaz-Nava. Component-based

design approach for multicore SoCs. In DAC ’02: Proc. of the 39th con-
ference on Design automation, pages 789–794, 2002.

[7] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, and M. Vi-

olante. An FPGA-Based approach for speeding-up fault injection cam-

paigns on safety-critical circuits. Journal of Electronic Testing: Theory
and Applications, 18(3):261–271, 2002.

[8] CoWare. CoWare Platformm Architect. http://www.coware.
com/.

[9] B. Foote and R. E. Johnson. Reflective facilities in smalltalk-80. In

Proc. of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), volume 24, pages 327–336, 1989.

[10] M. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and tools.

IEEE Computer, 30(4):75–82, 1997.

[11] E. Martins, C. M. F. Rubira, and N. G. M. Leme. Jaca: A reflective fault

injection tool based on patterns. In Proc. on Dependable Systems and
Networks, pages 483–482, 2002.

[12] P.G. Paulin, C. Pilkington, and E. Bensoudane. StepNP: A System–Level

Exploration Platform for Network Processors. IEEE Design and Test of
Computers, pages 2–11, November–December 2002.

[13] M. Rebaudengo, L. Sterpone, M. Violante, C. Bolchini, A. Miele, and

D. Sciuto. Combined software and hardware techniques for the design

of reliable ip processors. In Proc. IEEE Int. Symp. on Defect and Fault
Tolerance in VLSI Systems, DFT, pages 265–273, 2006.

[14] S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo. ArchC: A

SystemC-Based Architecture Description Language. sbac-pad, 00:66–

73, 2004.

[15] J. Sobel and D. Friedman. An introduction to reflection-oriented pro-

gramming, 1996.

[16] N. Tribie, O. Fargant, and S. Antipolis. A Python Based SoC Validation

and Test Environment. Design & Reuse Industry Articles.

[17] J. Vennin, S. Penain, L. Charest, S. Meftali, and J. Dekeyser. Embed

scripting inside SystemC. In Forum on Specification and Design Lan-
guages, FDL’05, 2005.

[18] L. Yu, S. Abdi, and D. Gajski. Transaction Level Platform Modeling

in SystemC for Multi-Processor Designs. Technical report, Center for

Embedded Computer Systems, University of California, Irvine, 2007.

8B-1

678

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

