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Abstract— A major trend in a modern system-on-chip design is
a growing system complexity, which results in a sharp increase of
communication traffic on the on-chip communication bus architectures.
In a real-time embedded system, task arrival rate, inter-task arrival
time, and data size to be transferred are not uniform over time. This is
due to the partial re-configuration of an embedded system to cope with
dynamic workload. In this context, the traditional application specific
bus architectures may fail to meet the real-time constraints. Thus, to
incorporate the random behavior of on-chip communication, this work
proposes an approach to synthesize an on-chip bus architecture, which
is robust for a given distributions of random tasks. The randomness of
communication tasks is characterized by three main parameters which
are the average task arrival rate, the average inter-task arrival time,
and the data size. For synthesis, an on-chip bus requirement is guided
by the worst-case performance need, while the dynamic voltage scaling
technique is used to save energy when the workload is low or timing slack
is high. This, in turn, results in an effective utilization of communication
resources under variable workload.

I. INTRODUCTION

After partitioning of a complex system into hardware and software,
and mapping it onto the appropriate modules of an SoC, parts of
a system’s functions are implemented in software that runs on a
standard processor while the rest of system functions are implemented
in (synthesized) hardware. These hardware and software components
communicate with each other by exchanging data through commu-
nication resources to accomplish a certain task. At this point of the
design flow, a big challenge left to the designer is the synthesis of
an efficient on-chip communication architecture.

The early works on communication synthesis mainly focused on
minimizing the bus width for a single global bus [8]. In [18] an
automatic bus generation for an MPSoC was proposed. The approach
considers three different types of buses, which can be generalized
to a shared bus, point-to-point, and FIFO based architecture. The
bus architecture is generated for a given bus width considering real-
time constraints. In [17] a method of communication synthesis based
on the library elements and constraints graph was presented, where
the library elements are a collection of communication links and
communication nodes. The approach mainly focuses on synthesizing
a communication bus topology for a point-to-point communication
architecture. In [21] a bus model for communication in embedded
systems with arbitrary topologies was proposed, where a point-to-
point communication is a special case for the real-time application.
The algorithm selects the number of buses, the type of each bus, the
message transferred on each bus, and schedules the communication
bus. In [9] a template based communication synthesis technique was
presented that supports shared buses and point-to-point connection.
In [16] a floorplan aware automated bus based communication
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synthesis algorithm was proposed, which is, however mainly based
on the bus templates of AMBA [1] with standard bus widths.

All the above techniques synthesize an application specific bus
architecture, which may fail to meet the real-time constraints, if the
communication behavior of tasks is random. Recently, a technique for
dynamic re-configuration of a synthesized bus topology was studied
in [19] to cope with variable workload. The approach optimizes a post
synthesis bus architecture for the re-configuration of bus protocols.
A bus scheduling approach for aperiodic tasks was proposed in [6],
which models random tasks and schedules them for a synthesized
bus architecture. This approach also deals with the bus optimization
technique rather than synthesizing a bus architecture. However, the
random tasks modeling technique proposed in our work is similar to
their approach.

The idea of scaling voltage of a task by exploiting its timing slack
for energy reduction is not new. The technique presented in [10]
proposes dynamic voltage scaling of a microprocessor under variable
workloads, while the work of [7] used a voltage scaling technique
for both processor and communication bus for energy reduction of
IPs and bus architecture. However, the approach is only used for the
power optimization of a post synthesis bus architecture. Recently,
a simultaneous bus synthesis and voltage scaling technique was pre-
sented in [14], [15], which finds the optimal bus width and the number
of buses. Furthermore, it explores a trade-off between communication
resources and power consumption during bus synthesis. The bus
synthesis technique in our work is similar to [14], [15], however,
the proposed approach in [14], [15] was limited to a task with a
deterministic arrival time. Thus, the synthesized bus architecture may
fail to meet the real-time constraint if the arrival time and rate of tasks
is random due to the partial re-configuration of a system.

The main contribution of this work is to synthesize a bus architec-
ture in the presence of random tasks arrival. As a result of this,
the synthesized bus architecture is robust for a given probability
distribution of random tasks. The randomness of tasks is modeled
with three parameters, i.e., task arrival rate, inter-task arrival time,
and data size with their probability distribution functions. The bus
synthesis is guided by the worst-case performance need, while the
dynamic voltage scaling technique is used to reduce the energy when
the timing slack is high or the workload is low. The dynamic voltage
scaling technique presented in this work is similar to [7], [14],
[15]. In this paper, the bus synthesis problem is formulated as an
optimization problem and solved using a convex optimization tool.
The experiments carried out on automatically generated tasks and
real-life multimedia applications validate the proposed bus synthesis
technique under random task arrival and show that the synthesized
bus architecture is robust for a given distribution of random tasks.

The reminder of this paper is organized as follows. In Section II,
we give preliminaries on the target architecture model and com-
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munication tasks. Section III introduces a motivational example for
bus synthesis under random task arrival rate, inter-task arrival time,
and random data size. Section IV derives a model for random task
arrival rate, inter-task arrival time, and data size to synthesize a bus
architecture. Section V gives a mathematical formulation and opti-
mization techniques for bus synthesis and voltage scaling problems.
The continuously scaled voltages of each task are transformed into
discrete voltages in Section VI using an voltage selection algorithm.
In Section VII, we present case studies and results to validate our bus
architecture synthesis method under random task arrival and finally,
in Section VIII, we give the conclusion of this work.

II. PRELIMINARIES

We consider an embedded system which is realized as a mul-
tiprocessor system-on-a-chip (MPSoC). Such a system consists of
several on-chip processing modules like general-purpose processors,
application specific integrated processors (ASIPs), application spe-
cific integrated circuits (ASICs) or field-programmable gate arrays
(FPGAs). These on-chip modules communicate with each other by
transferring data through a shared bus. We assume that a system
has been partitioned into HW/SW and mapped efficiently onto the
appropriate modules of an SoC as shown in Fig. 1(a). In the figure,
a set of tasks τ ∈ T , which is mapped onto a module, is called data
processing tasks. These tasks are for processing data such as fast
Fourier transformation (FFT) or discrete cosine transformation (DCT)
or any computation within a module. After processing data, a driver of
a module, establishes communication between modules and transfers
data for further processing. All communications c ∈ C that take
place among the on-chip modules using on-chip buses are captured
by communication tasks ci as indicated by black boxes as shown in
Fig. 1(b). Since a complex system runs a diversity of applications
on a single SoC, the workload offered to an embedded system is not
uniform over time. This introduces randomness on size of data to
be transferred, communication task arrival rate, and inter-task arrival
time. These parameters are extracted by profiling a HW/SW system
for different scenarios at system level using the following formulae

X
ci : ti ≤ t ≤ tj , (1)

|C|X
(i=1,j=i+1)

ASAP (cj) − ASAP (ci). (2)

Eq. (1) and (2) give the task arrival rate and the inter-task arrival
time for a given window ti and tj , respectively. Based on the
profiling of a system, communication tasks and their dependencies
are modeled as shown in Fig. 1(a), where communication tasks c1,
c2, and c3 with solid lines are the tasks for one scenario. While
additional tasks c4 and c5 with dotted lines are for another scenario.
Each communication task in the figure takes certain time duration to
transfer data. This duration is called a communication lifetime interval
(CLTI), which is a function of data size, bus width, and voltage. From
the extended task graph GE(T, E) a directed acyclic communication
task graph GC(C, Π) is obtained to schedule communication tasks
for different bus widths and voltages. In Fig. 1(c), a node c ∈ C is a
communication task, while an edge π ∈ Π gives the dependency
between the communication tasks. Further, an edge between two
nodes ci and cj weighted with w is the data processing time of
a task τi, which gives an early start time constraint for a successor
cj to transfer data using a bus. The data processing time of each task
τ can be evaluated as
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Fig. 1. Architecture model with random tasks. (a) Target architecture with
mapped tasks. (b) Extended task graph GE(T, E). (c) Communication task
graph GC(C, Π).

w =
X
τ∈T

NCτ · Td, (3)

where NCτ is the number of cycles to execute a task τ and Td is a
gate delay, which is a function of voltage and technology dependent
parameters [20] as shown in Eq. (4). Similarly, the CLTI of each
communication task c is modeled as

Td =
κ3 · Vdd

[κ1 · Vdd + κ2 · Vbs − Vth]α
, (4)

CLTIc,r,Vdd,Vbs =

‰
NBc(ζ)

br

ı
· Td, (5)

where NBc(ζ) (number of bits) is a random size of data to be
transferred by a task c with bus width br , and supply voltage Vdd.
In Eq. (4) notations κ1, κ2, κ3, and α are the technology dependent
parameters. The dynamic energy consumption of communication task
c is modeled as

Ec = Ceff · V 2
i · Td(ζ), (6)

where Ceff is the effective switched capacitance of the communica-
tion bus. The energy overhead for switching from voltage Vi to Vj

is
ε
ΔV
i,j = Cr(Vi − Vj)

2 · δΔV
i,j , (7)

where Cr is the capacitance of the power rail. The time overhead for
switching from Vi to Vj is given by

δ
ΔV
i,j = ρ|Vi − Vj |, (8)

where ρ is a constant.

III. MOTIVATIONAL EXAMPLE

In this section we present a motivation for bus synthesis under a
random task arrival rate with a random inter-task arrival time and
illustrate that the synthesized bus is robust for a given probability
distribution of the task arrival rate, the inter-task arrival time, and
the data size. The voltage scaling technique is used to reduce the
bus energy consumption when the data traffic is low or the timing
slack of the communication tasks is high. This, in turn, results in
an optimum utilization of the buses under random data traffic. We
consider the partitioned and mapped system as shown in Fig. 1(a)
and schedule the tasks to synthesize a bus architecture. Fig. 2
depicts task scheduling and bus synthesis for three different scenarios,
where each scenario is characterized by average task arrival rate λn,
average inter-task arrival time λτ , and random data size NB(ζ).
In the figure a black rectangle denotes the data transfer delay at
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the nominal voltage and a white rectangle denotes a slack of a
communication task. Fig. 2(a) depicts three communication tasks
with inter-task arrival time 1/3·[{ASAP(c2)-ASAP(c1)}+{ASAP(c3)-
ASAP(c2)}+{ASAP(c3)-ASAP(c1)}] = 2.66ms. After scheduling the
tasks the synthesized bus architecture with interconnection of mod-
ules is shown in Fig. 2(d). As the tasks in Fig. 2(a) do not overlap
with each other, a single shared bus meets the real-time constraints.
Fig. 2(b) shows the schedule of five communication tasks with
average inter-task arrival time 2.9ms. In this scenario the synthesized
single shared bus shown in Fig. 2(d) does not meet the real-time
constraints, as the tasks overlap with each other. Thus, two shared
buses are needed to meet the time constraints as shown in Fig. 2(e).
Similarly, in Fig. 2(c) five communication tasks with average inter-
task arrival time 2.8ms are depicted. After scheduling of the tasks, two
shared buses with interconnection of modules are shown in Fig. 2(e).

Among the three different scenarios shown in Fig. 2 the worst-
case performance needed is λn = 5 and λτ = 2.8ms. Thus, the bus
is synthesized considering the worst-case scenario and the voltage
of communication tasks is scaled to reduce the energy consumption
when the average number of task arrivals λn is low and the average
inter-task arrival time λτ is high or the timing slack is high. This
effectively utilizes the bus resources even when there is a variation
in data traffic. In Fig. 2(c), the slack of the communication tasks c1,
c2, and c5 can be used to scale the voltage, while the voltage of
other tasks should be kept to the nominal voltage. Similarly, for the
scenario with λn = 3 and λτ = 2.66ms, the slack of communication
tasks c1, c2, and c3 can be exploited for energy reduction. Intuitively,
the more the slack of communication task is, the less is the energy
consumption due to voltage scaling.

IV. MODELING OF RANDOM TASKS

We assume that the communication tasks c ∈ C and their arrival
rate and inter-task arrival time have a Poisson distribution. Eqs. (9)
and (10) give probability density functions of the task arrival rate and
inter-task arrival time, respectively.

f(c, λn) =
e−λn · λc

n

c!
, (9)

where
c = number of communication tasks
λn = average arrival rate of communication tasks in a given time
interval [ti, tj]

f(t, λτ ) =
e−λτ · λt

τ

t!
, (10)

where
t = arrival time of a communication task
λτ = average inter-task arrival time of communication tasks

The probabilistic constraint of random task arrival rate can be
expressed as

P (Cn ≤ cl) ≥ βc, (11)

where βc is a confidence level such that in Eq. (11) the number of
task arrivals in a time interval [ti, tj] is less than or equal to cl with
a probability βc. After an algebraic manipulation of Eqs. (11) and
(9), Eq. (11) can be expressed as

λn ≤ −ln(1 − Kc · βc). (12)

Similarly, the probabilistic constraint of random inter-task arrival time
can also be modeled as Eqs. (11) and (12) with confidence level βτ .
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Fig. 2. Random number of tasks with their random arrival time. (a) Task
scheduling with average tasks arrival rate (λn) = 3 and average inter-task
arrival time (λτ ) = 2.66ms. (b) Task scheduling with average task arrival rate
(λn) = 5 and average inter-task arrival time (λτ ) = 2.9ms. (c) Task scheduling
with average task arrival rate (λn) = 5 and average inter-task arrival time (λτ )
= 2.8ms. (d) and (e) Synthesized bus for different scenarios (a), (b), and (c)
respectively.

In Eq. (12) the notation Kc is a constant term. Further, data size to
be transferred by each communication task c ∈ C is modeled as a
random variable with a known probability distribution function. Let
dl be the deadline of task c ∈ C then the relation between the CLTI
and deadline dl can be written as [14], [15]

∀c ∈ C, P (dlc − CLTIc,r,Vdd,Vbs − δ
ΔV
i,j ≥ 0) ≥ η. (13)

Eq. (13) gives a probabilistic delay constraint for each task c ∈ C

such that the data transfer delay of each task should be less than
or equal to the deadline. The notation η can be considered to
be a confidence level. This constraint can be transferred into the
deterministic constraint as follow [14], [15]

dlc − μCLTI(NBc, Td) − δ
ΔV
i,j

− φ
−1(1 − η) · σCLTI(NBc, Td) ≥ 0,

(14)

where μCLTI(NBc, Td) and σCLTI(NBc, Td) are mean and stan-
dard deviation of the CLTI, respectively. The term φ−1(·) is an
inverse of the error function. Intuitively in Eq. (14) the notation η

controls the scaling of voltage during bus synthesis. For different
arrival rate, arrival time, and data size of tasks, the confidence level
η sets the voltage to a certain level1 so that the standard deviation
of delay σCLTI(NBc, Td) is changed in order to meet the real-time
constraint and to utilize the bus resources effectively.

1The voltage should be in between Vmax and Vmin.
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V. SIMULTANEOUS BUS SYNTHESIS AND VOLTAGE SCALING

For the simultaneous bus synthesis and voltage scaling problem,
the data processing tasks τ and communication tasks c are scheduled
together, where voltage is scaled to reduce the energy consumption
when the workload of a system is low or the timing slack is high.
The formulation of an optimization problem is given as follows:
Minimize: X

r∈R

Cr · ri (15)

subject to,

sτ + wτ,V
dd

,V
bs

+ δ
ΔV
i,j ≤ dlτ : ∀τ ∈ T (16)

sτ ≥ s
c
′ + CLTI

c
′
,r,Vdd,Vbs

· Xc,t,r + δ
ΔV
i,j : ∀(c, c

′

) ∈ Π (17)

X
r∈R

ALAPX
t=ASAP

Xc,t,r = 1 : ∀c ∈ C (18)

t · Xc,t,r ≥ (s
τ
′ +w

τ
′
,V
dd

,V
bs

+ δ
ΔV
i,j )·

Xc,t,r : ∀ (c
′

, c) ∈ Π
(19)

X
c∈C

X
(t

′
∈{t,··· ,t+dr−1}

∩{ASAPc,··· ,ψ})

X
c,t

′
,r

≤ br : ∀t ∈ Ω, r ∈ R
(20)

P ((dlc − sc−CLTIc,r,Vdd,Vbs − δ
ΔV
i,j )·

Xc,t,r ≥ 0) ≥ η
(21)

P (Cn ≤ cl) · Xc,t,r ≥ βc ∀c ∈ C (22)

P (Cτ ≤ ct) · Xc,t,r ≥ βτ ∀c ∈ C (23)

Vddmin ≤ Vdd ≤ Vddmax ∧ Vbsmin ≤ Vbs ≤ Vbsmax (24)

The objective is to minimize the communication bus cost (bus width
and number of buses) as shown in Eq. (15), where ri ∈ R is a
library of on-chip buses with different bus widths. The Cr of each
bus ri is expressed in terms of the bus width, e.g., the cost of a
32-bit wide bus is twice the cost of a 16-bit wide bus and is stored
in a lookup table. In Eq. (16), summation of start time sτ , execution
time wτ,V

dd
,V
bs

and switching overhead δΔV
i,j of each task τ should

be less than or equal to its deadline dlτ . Further, a task τ can
start its execution only after its predecessor (communication task c)
completes transferring data as shown in Eq. (17). A binary decision
variable Xc,t,r ∈ {0, 1}, indicates scheduling of a communication
task c at time t ∈ {0, · · · , λ}, with a bus width r as shown in
Eq. (18). The term λ is the maximum possible time to schedule a task
c. Eq. (19) gives a dependency between successor (communication
task c) and predecessor (data processing task τ

′

) such that a task
c is scheduled at time t to maximize sharing of buses and to scale
voltage for energy reduction. Let Ω = ∪c∈C{ASAP

′

c , · · · , ALAPc}
be a time window such that the tasks that are scheduled within this
interval could overlap. If the timing of a task overlaps with another
task then the task is assigned to a separate bus with index b and
width r as shown in Eq. (20) [14], [15]. Since, the delay interval
CLTIc,r,Vdd,Vbs of a task c is a function of the two random variables
data size NBc and gate delay Td (see Eq. (5)), Eq. (21) gives a
probabilistic constraint such that the overall delay of each task c

must be less than or equal to the deadline dlc with a confidence
level η. Its equivalent deterministic constraint is given in Eq. (14).
Similarly, the probabilistic constraints for random task arrival rate

HEURISTIC-DBS-DVS(bopt
r , V

opt
dd

, V
opt
bs

)
1 Vddz ← GETDISCRETEVDD();
2 Vbsz ← GETDISCRETEVBS();
3 /*Linear relaxation method*/
4 V

′

dd
←

l
V

opt
dd

m
if V

opt
dd
∈ [V LB

ddz
, V UB

ddz
];

5 V
′

bs
←

l
V

opt
bs

m
if V

opt
bs
∈ [V LB

bsz
, V UB

bsz
];

6 /*Check condition*/
7 while Eq. (16) ≤ dlτ and Eq. (21) ≤ dlc
8 do
9 for τ ∈ T and c ∈ C

10 do
11 V

′

dd
← GETNEXTGREATERVDD() ∈ Vddz ;

12 }
13 }

14 return (V
′

dd
, V

′

bs
);

Algorithm 1: Discrete supply and body bias voltages selection.

and inter-task arrival time are given in Eqs. (22) and (23) with their
confidence level βc and βτ respectively. The supply voltage Vdd and
body bias voltage Vbs of both tasks τ and c are scaled continuously
and their constraints are given in Eq. (24). In the above formulation,
the objective function is linear to the optimization variable ri and the
probabilistic constraints (Eq. (21), (12), (22), and (23)) are non-linear
to voltage and optimization variable ri. Thus, the above described
simultaneous bus synthesis and voltage scaling problem belongs to
the convex quadratic optimization problem [15], which finds a global
optimal solution in a polynomial time complexity [12].

VI. DISCRETE VOLTAGE SELECTION

As the continuous voltage scaling technique gives an ideal energy
reduction characteristics, it cannot be applied for digital design due
to the limitations of a voltage regulator. Thus, a heuristic is proposed
to transform continuously selected optimal supply voltage V

opt
dd and

body bias voltage V
opt

bs from Section V into discrete voltages V
′

dd

and V
′

bs as shown in Algorithm 1. At line 1-2, it reads a discrete
set of supply Vddz and body bias Vbsz voltages. At line 4-5, the
algorithm quantises continuous voltages V

opt
dd and V

opt
bs to their

upper bounds of V
′

dd and V
′

bs, respectively. We could choose the
lower bounds of supply and body bias voltages to get the minimum
energy consumption, however, this may violate the given real-time
constraints. At line 7 of the algorithm, delay constraints of each task
τ and c are checked with their deadlines dlτ and dlc, respectively for
near-optimal V

′

dd and V
′

bs. If the condition is met then the heuristic
returns those near-optimal voltages at line 14. Otherwise, at each time
next supply voltage, which is greater than the V

′

dd is selected from
the set of discrete supply voltages Vddz at line 11.

VII. CASE STUDIES

We validate the effectiveness of the proposed technique using a
generated benchmark as well as a real-life multimedia applications,
i.e. an audio decoder [2] and a speech recognition system [3]. The au-
tomatically generated benchmark consists of 119 [15] communication
tasks and the data size to be transferred by each task is a normally
distributed random variable with mean data size (μNB) 16, 32, 64,
128, 256, and 512-bit and standard deviation 3σNB = 40% of μNB .
Each data processing task τ and communication task c can scale
their supply voltage from 1.4V to 0.8V and the body bias voltage
from 0V to -0.8V. The on-chip communication buses are given as a
library of buses with different bus widths, which range from 16 to
128-bit wide. For the experimental purpose, we consider a bus with
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λτ Average task arrival rate Run time
λn = 19 λn = 23

Synthesized Bus Bus Cost μV
dd

(V) μV
bs

(V) Synthesized Bus Bus Cost μV
dd

(V) μV
bs

(V) (sec)
0.3 1 ∗ 48-bit 1 ∗ 64-bit

1 ∗ 32-bit 7 1.10 -0.39 1 ∗ 32-bit 8 0.97 -0.41 ∼ 41
2 ∗ 16-bit 2 ∗ 16-bit

0.5 1 ∗ 48-bit 1 ∗ 48-bit
1 ∗ 32-bit 6 1.03 -0.38 1 ∗ 32-bit 6 1.09 -0.37 ∼ 39
1 ∗ 16-bit 1 ∗ 16-bit

0.7 1 ∗ 48-bit 5 1.05 -0.33 1 ∗ 48-bit 5 1.07 -0.39 ∼ 38
2 ∗ 16-bit 1 ∗ 32-bit

0.9 1 ∗ 48-bit 4 1.02 -0.32 2 ∗ 32-bit 5 1.05 -0.33 ∼ 35
1 ∗ 16-bit 1 ∗ 16-bit

1.0 [15] 1 ∗ 48-bit 3 0.99 -0.29 - - - - ∼ 32

TABLE I
THE SYNTHESIZED OPTIMAL BUS WIDTH AND NUMBER OF BUSES FOR DIFFERENT INTER-TASK ARRIVAL TIMES AND TASK ARRIVAL RATES

4mm in length and its corresponding single line capacitance for 70nm
technology is 609fF [10]. Other technology dependent parameters
for 70nm node were adopted from [4]. The bus synthesis algorithm
was implemented in C as a pre-processing model to interface with a
convex solver MOSEK [5].

The first set of experiment was carried out on the automatically
generated tasks with an aim to synthesize a robust bus architecture in
the presence of random communication tasks with a random arrival
time. The average number of task arrivals (λn) is 4 for a time interval
of 6 sec. The confidence levels for the task arrival rate βc and task
arrival time βτ are set to 99%. While the confidence level η of
tasks are set to 81%. We performed simultaneous voltage scaling,
scheduling, allocation, and binding of communication tasks using
the proposed optimization technique presented in Section V. Table I
presents the synthesized bus widths and the number of buses for
different inter-task arrival times λτ and task arrival rates λn. The
results are compared to the results of [15] with the deterministic task
arrival (i.e., λτ = 1.0, λn = 19, 3σNB = 15%, and η = 89% in
the last row). The results show that the synthesized bus architecture
considering a deterministic task arrival does not meet the real-time
constraints for tasks with random task arrival. (Note, in [15] only
the supply voltage of tasks is scaled, thus the mean supply voltage
in the table for λτ = 1.0 and λn = 19 is high, it is because of Vdd

and Vbs scaling.) In the column entitled λτ , the average inter-task
arrival time of tasks is normalized to the maximum inter-task arrival
time λτ (max). In the columns entitled Synthesized Bus (2 and 6),
the synthesized bus widths and the number of buses are presented for
different λn and λτ . The results show that the bus widths and number
of buses increase with decreasing inter-task arrival time as shown in
columns Synthesized Bus (2 and 6). Intuitively, the smaller the inter-
task arrival time is, the larger is the number of overlaps among the
tasks. This in turn results in an increment of communication bus cost.
In the columns entitled Bus Cost, the cost was evaluated in terms of
bus area so that the cost of 16, 32, 48, and 64-bit wide buses are 1, 2,
3, and 4, respectively. Similarly, column Synthesized Bus (6) shows
the synthesized bus widths and the number of buses for average task
arrival rate 23. In the columns entitled μVdd

and μVbs
(4, 5, 8, and

9) mean supply and body bias voltages were evaluated for different
task arrival rates and inter-task arrival times.

The second experiment was conducted on real-life multimedia
applications, which include an Ogg Vorbis decoder [2] and a speech
recognition system [3]. The audio decoder includes four main decod-
ing steps, which are inverse quantization, channel decoupling, recon-

struct curve, and IMDCT. After manually partitioning and mapping
of the decoder, the IMDCT was mapped to a single hardware and the
rest of the functionality was mapped to a processor. Furthermore, raw
audio data was mapped to a compact flash (CF) memory with an CF-
interface. The extracted audio data was mapped to an audio buffer for
streaming. Similarly, the second speech recognition system consists
of three main components: front end, decoder, and linguist. The front
end includes series of data processing tasks such as pre-emphasis,
hamming window, FFT (fast Fourier transformation), mel frequency
filter, IFFT, cepstral mean normalization, and feature extraction to
generate the features from the speech. The speech system takes
as input a large number of speech along with their transcriptions
into phonemes to provide the speech models for the phonemes. The
recognition is based on the HMM (hidden Markov model) to decode
the speech. The American English lexicon consisting of 32 phonemes
and a database of 17 different words has been used (spelling out the
names of the months, numbers and digits) [11]. After partitioning
of the speech system, the front end was mapped to a dedicated
hardware including FFT and filters. The task training and recognition
were mapped to a PowerPC processor. Based on the partitioned
and mapped system communication tasks graph, their arrival rate
and time were extracted by profiling the HW/SW system. Fig. 3
and 4 show the synthesized bus widths and number of buses for
a multimedia application. For an average task arrival rate 13 and
inter-task arrival time 0.73, three buses with bus widths 24, 32, and
48 are required to meet the real-time constraints. The mean supply
voltage μVdd and body bias voltage μVbs are 1.31V and -0.33V
respectively. However, for another scenario with task arrival rate
17 and inter-task arrival time 0.59 the synthesized buses of Fig. 3
is not robust due to the overlaps among the communication tasks.
Thus, an additional bus of 32-bit wide is required as shown Fig. 4,
which is robust for a given distribution of task arrival rates, inter-task
arrival times, and the variation in data size. For the synthesized bus
architecture of Fig. 4, the mean supply voltage μVdd and body bias
voltage μVbs are 1.28V and -0.38V, respectively. In order to utilize
the bus architecture effectively over time, a dynamic voltage scaling
technique is used when the workload is low or the timing slack is
high. Further, the memory architecture is synthesized based on the
algorithm presented in [13]. The memory synthesis algorithm is based
on clique partitioning of a data dependency graph.

Summarizing the experiments, we synthesized bus architectures for
automatically generated tasks and real-life multimedia applications
incorporating both random tasks arrival time and task arrival rate. The
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Fig. 3. Bus widths and number of buses for the real-life multimedia
application with an average task arrival rate λn = 13 and inter-task arrival
time λτ = 0.73
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Fig. 4. Bus widths and number of buses for the real-life multimedia
application with an average task arrival rate λn = 16 and inter-task arrival
time λτ = 0.59

synthesis results in compare to the tasks with a deterministic arrival
rate and arrival time (i.e., λn = 19 and λτ = 1.0 in the last row) show
that the bus width and the number of buses change for different arrival
rates and arrival times. Thus, the bus synthesis technique without
considering those parameters fails to meet the real-time constraints.

VIII. CONCLUSION

In this paper, we proposed a robust on-chip bus architecture
synthesis technique in presence of random on-chip tasks. The term
robust means that the synthesized bus architecture meets the real-time
constraints for different scenarios. The task arrival rate, the inter-
task arrival time, and the data size are modeled as random variables
with known probability distribution function. The bus architecture
synthesis technique is formulated as scheduling, allocation, and
binding problems. Once correctly formulated these problems are
solved with the help of an optimization tool, which finds the optimal
bus widths and the number of buses for a robust on-chip communi-

cation. The dynamic voltage scaling technique is used to reduce the
energy consumption and to utilize the bus resources effectively. The
experiments conducted on the automatic generated tasks and the real-
life multimedia applications validate the effectiveness of the proposed
technique under random on-chip tasks.

As part of future work, we intend to apply dynamic re-
configuration of the communication bus topology so that the bus
resources utilization factor can be improved effectively.
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