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ABSTRACT
Complex design, targeting System-on-Chip based on recon-
figurable architectures, still lacks a generalized methodol-
ogy allowing both the automatic derivation of a complete
system solution able to fit into the final device, and mixed
hardware-software solutions, exploiting partial reconfigura-
tion capabilities. The Shining methodology organizes the
input specification of a complex System-on-Chip design into
three different components: hardware, reconfigurable hard-
ware and software, each handled by dedicated sub-flows. A
communication model guarantees reliable and seamless in-
terfacing of the various components. The developed system,
stand-alone or OS-based, is architecture-independent. The
Shining flow reduces the time for system development, eas-
ing the design of complex hardware/software reconfigurable
applications.

1. INTRODUCTION
Wayne Wolf in [1] states that the primary task of HW/SW

codesign is to increase the predictability of embedded system
design, providing both analysis and synthesis methods. This
requires new methodologies to support the designer in the
definition of architectures which typically foresee a general-
purpose microprocessor to be used in conjunction with Intel-
lectual Property Cores (IP cores), typically implemented as
custom hardware components. Functionalities implemented
in hardware, generally, yield better performance but with
higher costs in terms of chip area usage, while those that
run as software have, in general, worse performance but do
not require additional hardware resources. Moreover, recon-
figurable devices, such as Field Programmable Gate Arrays
(FPGAs), introduce another degree of freedom in the de-
sign workflow: the designer can exploit the fact that the
system can now autonomously and dynamically modify the
functionality performed by the IP-Core. We will refer to dy-
namically reconfigurable IP-Cores as RPEs (Reconfigurable
Processing Elements). The fast introduction of new stan-
dards and protocols, in particular in the multimedia field, is
another relevant driver towards reconfigurable solutions. In
a dynamically reconfiguration scenario, the Reconfigurable
Processing Elements (RPEs) functionality identification, its
generation and run-time hot-plug mechanisms are issues of
primary concern. Another relevant issue during the develop-
ment of the system is to enable fast validation of new RPEs
in the actual system. The proposed methodology speeds-up
the RPE generation by reducing the impact of interfacing
and plugging of these elements into the system. In this way
the attention of the designer is focused entirely on the de-
velopment of the desired functionality implementation with

almost no burden for communication infrastructure issues.
The methodology proposed is an extension of a reconfig-
urable design flow [2]. This guarantees the new method-
ology to be actually exploited on FPGA-based embedded
systems to exploit both the potentiality of a mixed HW-
SW and reconfigurable HW solution. The overall tool-chain
has been tested on the Xilinx VirtexIIPro FPGAs: VIIP7
and VIIP20. The paper is organized as follows: Section 3
presents the proposed methodology, the experimental results
are described in Section 4 while Section 5 draws the conclu-
sions and briefly discuss future developments.

2. RELATED WORKS
The PipeRench architecture, proposed in [3], introduces

the concept of hardware virtualization to provide the possi-
bility of implementing a design of any size on a given con-
figurable pipeline architecture of arbitrary capacity. The
PipeRench system provides both the extremely high-speed
reconfiguration necessary for hardware virtualization and
the compilation tools for this architecture. However the re-
configurable pipeline structure introduces some relevant con-
straints that limit the freedom of the design and it is not
portable to generic architectures. In [4], [5] the hardware
subsystem of the reconfiguration control infrastructure sits
on the on–chip peripheral bus (opb). The microprocessor,
Powerpc or Microblaze, communicates with this peripheral
over the opb bus. The hardware peripheral is designed to
provide a lightweight solution to reconfiguration. It employs
a read/modify/write strategy where only one frame of data
is used at one time. In this way external memory is not
needed to store a complete copy of the configuration mem-
ory. The program installed on the processor requests a spe-
cific frame, then the control logic of the peripheral uses the
icap, the internal configuration access port, to do a read-
back and loads the configuration data into a dual–port block
ram. One block ram can hold an xc2v8000 data frame
easily. When the read–back is complete, the processor pro-
gram directly modifies the configuration data stored in the
bram. Finally, the icap is used to write the modified con-
figuration data back to the device. The software subsys-
tem is implemented using a layered approach. There are
functions for downloading partial bitstreams stored in the
external memory, for copying regions of configuration mem-
ory, and parsing it to a new location [4]. This solution is
very interesting but it does not support external memory
to store the bitstreams therefore it can be used just to sup-
port small configurations. In [6] the authors proposed an
architecture (based on a 1D self reconfiguration approach)
which is logically divided in two parts: a static side and
a reconfigurable one. The static side contains a standard
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IBM CoreConnect technology [7] and two different buses:
the OnChip Peripheral Bus (OPB) and the Processor Local
Bus (PLB). The communication between the static and the
reconfigurable sides is obtained by exporting from the static
side the necessary OPB signals used to define the correct
binding of each reconfigurable module to it. The Caronte
architecture has two main weaknesses in the communica-
tion and the portability over different FPGA Families. The
communication infrastructure between the static side and
the reconfigurable one implies that, while a reconfiguration
process takes place, inter-modules communications are dis-
rupted. The proposed infrastructure also limits the number
of reconfigurable modules. The second problem is caused by
the instantiation of a Power-PC processor inside the static
side. This limits the portability of the architecture to only
FPGAs containing this processor inside their die.

3. THE SHINING METHODOLOGY
The proposed methodology aims at defining a specification-

to-bistream design flow based, as far as possible, on standard
tools. Throughout this paper we will refer, where needed, to
a reference reconfigurable architecture, internally designed
and developed. However the methodology itself is fully gen-
eral and it has been successfully applied to different architec-
tural and SoC solutions such as Raptor2000 [8], Caronte [6]
and Lightweight [5]. The reference architecture is based on
the 1D reconfiguration approach used into the VirtexII and
VirtexIIPro Xilinx FPGA families. The architecture fore-
sees a static and a reconfigurable portion; the static one is
typically designed using standard tools, such as EDK [9],
or manually fully described in VHDL. It is composed of a
processor (that can be hardcore, i.e., a PowerPC, or soft-
core, i.e.,a Xilinx MicroBLAZE, from now one we will refer
to the PowerPC solution, just for simplicity) and a set of
cores used to implement an appropriate bridge to the recon-
figurable portion. The IBM CoreConnect [7] has been cho-
sen as main communication infrastructure. The processor
will be used to execute the software side of the application
and to correctly manage the necessary calls to the hardware
components (with the corresponding reconfiguration, if nec-
essary) designed to speedup the overall computation. The
reconfigurable part of the proposed architecture is a portion
of the FPGA area on which different functionalities can be
mapped, with only the requirement to implement an appro-
priate bus interface. The reference reconfigurable architec-
ture is physically implemented in three different layers. The
first layer contains the communication infrastructure layer
between the static and the reconfigurable side, while the
second one contains CLBs and Switch Matrices and conse-
quently all user logic, but also the CoreConnect components
are implemented at this level. Finally, the last layer is the
clock level that is routed at a different level with respect to
the other signals [10, 11]. Such an architecture is perfectly
suited to support the two main issues of our methodology:
mixed HW-SW execution and dynamic reconfigurable sys-
tem design. Figure 1 shows the flow of the proposed method-
ology. Different solutions can be obtained by tuning the
parameters (i.e. the communication infrastructure) used to
define the proposed methodology. The flow generates differ-
ent feasible implementations for each required functionality,
HW or SW, with different bus solutions. These solutions will
be defined using the proposed architecture, implementing a
dynamic self reconfigurable architecture, deeply described in

Figure 1: Shining back-end flow

Section 3.2 (Phase B in Figure 1) or a standard embedded
system, characterized by a general purpose processor and
a set of HW cores, described in 3.1, Phase A in Figure 1.
The SW side of the desired application, extended with the
reconfiguration manager, as described in Section 3.3, can
be implemented either as stand-alone software application
or to run on an Operating System (OS) that provides re-
configuration mechanisms. On one hand, the first choice is
oriented toward the creation of a specific solution that is
deeply optimized for a specific problem, even if it requires
a large investment in terms of design and implementation
efforts, and considerably increases the time to market, since
it is necessary to rewrite the whole application each time the
context changes. The second choice, on the other hand, can
be followed to increase both the level of abstraction and the
flexibility of the whole system, since it exploits the classical
services that an OS can provide, such as processes scheduling
techniques or inter-process communication systems, apply-
ing them to improve the reconfiguration management.

3.1 The IP-Core generation phase
Aim of this phase is to build a complete IP-Core from its

core logic. This task is automatically performed through
three steps by a tool named IPGen: registers mapping, ad-
dress spaces assignment and signals interfacing. The Reg-
isters mapping step is needed because each core may have
different (number, type, size) set of signals. In this scenario
the most suitable solution is the use of a standard set of
signals for the communication with the rest of the system.
To avoid undesired interferences with the core logic during
the set-up, to map standard to core-specific signals, each
signal must be stored temporally. This decoupling is done
by means of a set of registers interposed between the core
signals and the standard system one. The second step that
has to be performed is the address space assignment where
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each register is now assigned to a specific address. The last
step consists in the signals interfacing phase. Target bus
signals are mapped to registers. After the execution of this
sequence of steps, the IP-Core is ready to be bound to the
target bus and has a proper interface. The set of results
presented in table 1 concerns several types of components,
starting from some small IP-Cores such as an IrDA interface
to more complex examples, e.g a Siemens Mobile Commu-
nication description of a complex ALU, a video editing core
that changes the image coloring plane from RGB to YCbCr.
Table 1 presents some relevant results, considering both the
input core (the first row for each core), that represents the
core logic, and the obtained component (the second row),
that is the final IP-Core produced by the IPGen tool. For
each one of them, the size in terms of 4-input LUTs and
the number of occupied slices are illustrated, both as abso-
lute values and as the percentage with respect to the total
size of the FPGA. Columns labeled with ari and di, present
the number of available resources (ari) given the minimum
area constraints to implement the core as reconfigurable el-
ements, and the density (di) computed as the ratio between
the number of slices used to implement the core and the
number of available resources, ari. The last column shows
the time needed by IPGen to create the IP-Core. On one

Table 1: IPGen benchmarks
IP-Core # Columns Ratio Slices Ratio ari di Time (s)

IrDA 1 11 136 0.081
1 9.73 103 9.36 136 0.758 0.045

FIR 2 153 272 0.562
2 1.13 173 1.13 272 0.636 0.058

RGB2YCbCr 7 913 952 0.959
7 1.21 940 1.03 952 0.987 0.063

Complex ALU 7 950 952 0.997
8 1.19 1079 1.14 1088 0.991 0.071

hand the relative overhead due to the interface of the core
logic with the bus infrastructure is acceptable, both for the
4-input LUTs and for the occupied slices, especially when
the core size is relevant. This allows the use of the generated
IP-Cores in the final reconfigurable system without wasting
too much space on the reconfigurable devices. In order to
create the IP-Core, starting from input Core, IPGen needs
an execution time which is almost constant and on average
of 0.065 seconds.

3.2 INCA Design Flow
Phase A, in Figure 1, produces as output all the necessary

files used to describe the desired system, both in its static
and reconfigurable side. This section presents the Physi-
cal Implementation phase, named INCA (Phase B in Figure
1). Between the highest part of the flow, used to generate
the VHDL descriptions, and the INCA one (the physical
implementation), there is a classical synthesis phase (imple-
mented using standard synthesis tool i.e., XST) used to cre-
ate all the necessary inputs (i.e., macro hardware, netlists,
constraints file) for the INCA flow from the generated in-
put files. INCA can be used to support both the Xilinx
Early Access Partial Reconfiguration-based, [12], and the
Module-based, [11], reconfigurable architecture design flow.
This phase has been organized into three different stages:
static part implementation, reconfigurable modules imple-
mentation and hardware merging. The former one accepts
as input the input description files generated as described
in Sections 3.1. Aim of this stage is the physical implemen-
tation of the static side of the final architecture. A second
output, working with the EAPR flow, is represented by the

information, arcs exclude, of the static side components that
are placed into the reconfigurable modules region i.e., rout-
ing, CLBs usage. The reconfigurable modules imple-
mentation stage needs for each module the corresponding
description files and the arcs exclude (produced in the pre-
vious stage) information. This stage defines the physical
implementation of each reconfigurable component that has
to be passed as input to the hardware merging phase. It
needs also to be repeated a number of times, equal to the
number of reconfigurable components, to define the final ar-
chitecture. Finally, the hardware merging stage produces
as result the merging of the outputs produced by the two
previous stages. Based on these considerations we can say
that the adopted solution consists in the generation of both
a complete bitstream, based on the top that configures the
system and a set of empty modules. Then for each module
two partial bitstreams have to be created: one is used to
configure it over an empty module and another one to re-
store the empty configuration. In such a situation we do not
need, at compile time, to compute and to know all the pos-
sible reconfiguration combinations between all the modules
we have and we can also support modules relocation [13]1

saving memory to store useless and redundant reconfigura-
tion files. Table 2 reports the average execution time for

Table 2: INCA execution times
Phase B S200 VP7 FX12

(#) (s) % (s) % (s) %

1 133.86 18.8% 224.91 18% 1060.28 39.0%
2 110.72 14.1% 165.69 13.3% 249.72 9.1%
3 466.19 65.5% 852.13 68.5% 1407.36 51.8%

Total 710.77 100.00% 1242.73 100.00% 2717.36 100.00%

each phase composing the INCA flow. We report the results
for all the devices used in our tests: Xilinx Spartan3, Virtex
II Pro and Virtex 4.

3.3 The Software Architecture
This phase has been introduced to merge the software,

that has to be executed on the processor to manage the
reconfiguration. Output of this last phase is the complete
start-up configuration bitstream and all the information that
has to be provided as input to the Bitstream Creation Phase
to compute all the partial reconfiguration bitstreams neces-
sary to implement the desired self reconfigurable system.
The actual version of the reference reconfigurable architec-
ture is based on gnu/Linux operating system, which is a
complete multitasking operating system. The operating sys-
tem considers the reconfiguration process as an autonomous
thread of computation. For this reason, the software recon-
figuration support and the functions which deal and manage
the hardware are separated. In this case, the application
code runs as a user process in the system; this means that it
does not have direct low level access to the hardware, but it
has to pass all the requests through operating system calls
(read, write, etc...). Therefore, as far as reconfiguration in
concerned, the os itself must take care of the communication
with the icap, by exporting an interface to user processes.
The basic idea is to hide the reconfiguration process also to
the application. Parts of the initial specification have been
moved into RPEs therefore the corresponding code has been
substituted with a set of OS calls used to interface the code,

1we are not going to describe in detail this scenario, since it
is out of the scope of this paper
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executed on the processor, with the hardware. Whenever
a request for an RPE which has not been yet configured,
the OS will take care of the reconfiguration process of the
correct RPE and it will correctly manage the new hardware
as soon as it will be available. Since the gnu/Linux kernel
does not have any kind of support for icap, we developed a
driver for the icap peripheral. Linux allows userspace pro-
grams to access devices via special files, located under the
/dev directory. Each device is assigned a couple of numbers
as id, indicating the driver managing the device (the major
number) and the id of the specific device (the minor num-
ber); further, they are also divided in character and block
devices, based on the kind of access they support. When a
kernel driver registers a major number, all access requests
to the corresponding devices are directed to it, and hence
it must implement handlers for various system calls: open,
close, read, write, and so on. The icap module, on startup,
registers a character device major number (by default 120)
and reserves the memory–mapped address space correspond-
ing to the icap device; the base address can be specified as
a parameter when loading the module. At this point it is
possible to create a device file with major number 120 and
minor 0, for example /dev/icap, that processes can access
to execute reconfiguration.

4. EXPERIMENTAL RESULTS
To validate the discussed flow we applied it to several real-

life applications. The result has been successful and we have
been able to automatically derive a collection of working bit-
streams, each describing a different implementation of the
original application. The bitstreams have been downloaded
onto a Xilinx fpga, a Virtex II Pro (xc2vp7). The clock
frequency of the board has been set to the default value of
100MHz. Although the PLB and the OPB can run at dif-
ferent frequencies, the results shown in Tables 3, 4 and 5,
have been obtained by using the same frequency for all the
buses. This to enables a performance comparison not being
affected by different running frequencies but depending on
the bus type only. Table 3 shows a solution in which the

Table 3: Canny algorithm
Modules Bus N◦ of cycles Speed Up
Software 18170678 1

4 pixels at a time 32 bits OPB 18757069 0,97
Pipelined Core 32 bits OPB 9124777 1,99
Pipelined Core 32 bits PLB 8729977 2,08
Pipelined Core 64 bits PLB 7532874 2,41

processor sends one pixel at a time to the IP-Core obtaining
better performance with respect to the one using a 4-pixel-
wide communication. The problem of the 4-pixels solution
is the time spent by the application in data preparation: a
task composed of few, but expensive, operations. These two
variants of the same application use non-pipelined IP-Cores,
as a consequence the performance improvement (if any) is
minimum; the last three variants presented, on the contrary,
exploit pipelined cores. Here the processor operates sending
rows of pixels in a pipelined fashion. The overall result is
a reduction of the communication overhead of about 85%.
The results are really positive also on the OPB bus. The
improvement that can be obtained by exploiting the PLB
bus is a minimum part the total time, since it can be de-
creased only of the time used through both the OPB bus
and the bridge. All the presented variants share a fixed bus

width of 32 bits. This, since the pixels matrix is 56 bits per
row (7 by 8 bits per pixel), requires the processor to invest
2 communication cycles for each row. Such a problem can
be solved by increasing the bus width to 64 bits; the per-
formance improvement is shown in the last line of Table 3.
The limitations of non-pipelined solutions are evident also in

Table 4: Sobel Convolution
Modules Bus N◦ of cycle Speed Up
Software 2576102 1

4 pixels per time 32 bits OPB 3268152 0,79
Pipelined Core 32 bits OPB 1492154 1,73
Pipelined Core 32 bits PLB 1476992 1,74
Pipelined Core 64 bits PLB 1531765 1,68

some test on Sobel convolution shown in Table 4. Further-
more, the Sobel convolution is very simple and the commu-
nication overhead has a heavy impact. The three variants
using pipelined IP-Cores, coherently with the results of the
test on the Canny algorithm, have a bigger performance im-
provement. The PLB-based solution again performs just a
little better than the OPB one. However, since Sobel convo-
lution is based on 3x3 pixels matrix, a 32 bits bus solution is
enough, and the overhead of 64 bits variables impacts neg-
atively on the performance. Finally, Table 5 presents the

Table 5: Laplace Convolution
Modules Bus N◦ of cycle Speed Up
Software 3900864 1

4 pixels per time 32 bits OPB 6037218 0,65
Pipelined Core 32 bits OPB 2923865 1,33
Pipelined Core 32 bits PLB 2766401 1,41
Pipelined Core 64 bits PLB 2055701 1,90

results for the Laplace convolution: the same considerations
made for the Sobel convolution apply, with the only excep-
tion of the bus width. Laplace convolution is based on a 5x5
pixel matrix and so a single row occupies 40 bits, as a result
a 64 bits bus width leads to one-cycle communications and
so better performance.

4.1 The Reconfigurable Solution
Aim of this section is to show that the proposed flow is

platform-independent and that it can be used to design dif-
ferent reconfigurable architectures (both internal and exter-
nal reconfigurations are supported). Again we will show that
the flow is processor-independent (PowerPC or Microblaze)
and that it can use different placement constraints (1D and
2D) and different reconfigurable constraints. As a target
device for the first two examples we consider the Digilent
Starter Board, the reprogrammable device is a S3 FPGA.
The S3 does not contain a hard-processor, as a consequence
a Microblaze soft-processor has been used. The second and
third examples target the Avnet Evaluation Board, which
contains a Virtex-II Pro V2P7 FPGA. Finally, the target
device of the last two examples is again a Avnet Evaluation
Board, where the PPC hard-processor of the V2P7 FPGA
substitute the Microblaze soft-processor. For each one of
these settings two tests have been run featuring respectively:
two modules directly connected with external components or
two modules communicating through the bus to the static
portion of the architecture. Furthermore, for each setting
the size of reconfigurable and static part of the architecture
has been incrementally decreased, to test different shapes for
each of them. The presented approach has been applied to
automatically develop several reconfigurable architectures.
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Table 6: Experimental results
FPGA S3 S3 Virtex-II Pro Virtex-II Pro Virtex-II Pro Virtex-II Pro Virtex 4

Processor kind Soft-processor Soft-processor Soft-processor Soft-processor Hard-processor Hard-processor Soft-processor
Processor name Microblaze Microblaze Microblaze Microblaze PowerPC 405 PowerPC 405 Microblaze

Static part region Without From X8Y0 From X24Y0 From X24Y0 From X24Y0 From X24Y0 From X0Y10
constraints to X39Y47 to X63Y79 to X63Y79 to X63Y79 to X63Y79 to X23Y99

Size of the static part 1514 of 1920 1464 of 1920 1698 of 4928 2837 of 4928 2837 of 4928 2837 of 4928 1712 of 5472
slices (78 %) slices (76 %) slices (34%) slices (34%) slices (58%) slices (58%) slices (32%)

Fragmentation index 1.5 % 4.7 % 46.9 % 46.9 % 11.3 % 11.3 % 21 %
Complete bitstream size 127 KB 127 KB 548 KB 548 KB 548 KB 548 KB 582 KB

First reconfigurable region From X4Y0 From X0Y14 From X0Y0 From X0Y12 From X0Y0 From X0Y12 From X28Y0
to X7Y47 to X3Y47 to X11Y35 to X11Y41 to X11Y35 to X11Y41 to X43Y39

Maximum module size in the
first reconfigurable region 116 slices 116 slices 116 slices 116 slices 116 slices 116 slices 640 slices

Fragmentation index 39.6 % 14.7 % 73.2 % 67.8 % 73.2 % 67.8 % 48%
Partial bitstream size 8.51 KB 8.51 KB 36 KB 36 KB 36 KB 36 KB 72 KB

Second reconfigurable region From X12Y0 From X4Y14 From X12Y44 From X12Y44 From X12Y44 From X12Y44 From X28Y64
to X15Y47 to X7Y47 to X23Y79 to X23Y73 to X23Y79 to X23Y73 to X43Y103

Maximum module size in the
second reconfigurable region 115 slices 115 slices 115 slices 115 slices 115 slices 115 slices 640 slices

Fragmentation index 40 % 15.5 % 73.4 % 68.1 % 73.4 % 68.1 % 48%
Partial bitstream size 8.51 KB 8.51 KB 36 KB 36 KB 36 KB 36 KB 72 KB

All the solutions have been successfully tested on the target
devices. Table 6 shows, grouped in 4 sections, the most rel-
evant experimental results. The first section presents gen-
eral information such as the name of the FPGA on the target
board, the kind of processor included in the static part of the
architecture (a soft-processor or a hard-processor) and the
name of the processor. The second section concerns the
static part of the architecture, and it indicates the location of
the static region, the fragmentation index of the static part
(that is the percentage of space that is not really used by the
static part) and the size of the bitstream that is necessary
to initially configure the FPGA with the static part region
and two reconfigurable modules. The third section corre-
sponds to the first reconfigurable module and it presents the
location of the first reconfigurable region, the maximum size
of modules that will be plugged in the first reconfigurable
region, the fragmentation index of the first reconfigurable
region part, the maximum size of the bitstream that is nec-
essary to reconfigure a module of the first reconfigurable re-
gion on the FPGA. The fourth section concerns the second
reconfigurable module and it presents the same information
of the previous section referred to the second reconfigurable
module. All the locations are expressed with the notation
From XaYb to XcYd, where (a,b) is the coordinate of the
low-left corner of the region, while (c,d) represents the high-
right hand corner of the region. Furthermore, Figure 2 show
the FPGA layout of the reconfigurable architecture. A Vir-
texIIPro reconfigurable architecture is shown in Figure 2.
This architecture has been designed using a 2D placement
assignment and a 1D embedded reconfigurable technique.
The 1D approach is mandatory since the architecture has
been implemented using a VIIP, that does not support 2D
reconfigurations. The VirtexIIPro-based architecture can be
used to define a self partial dynamic reconfigurable architec-
ture for all those applications that can benefit from it, since
it is provided with a ICAP port. Several cores, spanning
from simple functional units to more complex ones such as
RGB converter, FIR (the last two have been used as part of
a complete edge detector system), have been implemented as
reconfigurable components. The evaluation framework has
been defined using an architecture composed of two recon-
figurable cores reconfigured using a self partial dynamic re-
configuration technique managed by the Microblaze. In the
generic evaluation scenario composed of 5 (this value can be

Figure 2: VIIP-based Reconfigurable Architecture

modified without loosing in generality) functionalities that
have to be mapped in a known sequence, the start-up con-
figuration is characterized by the presence of a functionality
in each module, while the reconfiguration bistreams have to
reconfigure just one of the modules leaving the others unal-
tered. The experimental results have been performed on the
Virtex-II Pro Development Board using the architectural so-
lution proposed in Figure 2, with the processor running at
66 MHz and the average measured throughput is of 1.496
MByte/sec.

4.2 A simple complete application
Next, we demonstrate a complete example from the Dig-

ital Image Processing area. Several applications in this do-
main are characterized by data intensive kernels that involve
a large number of repetitive operations on the input im-
ages. This lead us to consider an implementation where all
compute intensive tasks are mapped onto the reconfigurable
hardware. The application chosen to validate the overall so-
lution is the edge detection problem, computed on sequen-
tial frames, e.g. for a motion detection application [14].
The edge detector we used in our experiments is the canny
edge detector which is composed of four main steps: image
smoothing (fa), gradient computation (fb), non-maximum
suppression (fc) and finally the hysteresis threshold (fd).
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We decided to adapt our execution model to be able to jus-
tify the reconfiguration approach using a model similar to
the one proposed in [15]. The idea is to iterate the exe-
cution of each module a certain number of times, and in
such a way to obtain modules whose running time is com-
parable to the reconfiguration time of other modules, thus
hiding reconfiguration overhead. The image smoothing
(FIR) phase is necessary to remove the noise from the im-
age. The image gradient, computed by applying the fil-
ter function with a window-approach, is used to highlight
regions with high spatial derivatives. Next, the intensity
value image and the direction value image, are computed
during the non-maximum suppression stage. At this
point we obtain an image with approximate edges detected,
which are often corrupted by the presence of false-edges. In
order to delete these non-edges the gradient array is now
further reduced by hysteresis. The most computationally
expensive parts of the system are the image smoothing fil-
ter (FIR), the image gradient and the hysteresis. We have
first implemented these functions as IP-Cores in VHDL and
they have been plugged into the self reconfigurable architec-
ture, as the one proposed in Figure 2. The resulting sys-
tem is composed of four modules. The distribution of the
application functions into these modules is shown in Table
7. Module m1 contains the static side, i.e., the PowerPC

Table 7: Modules partitioning.
Tasks Application Functions Occupied Slices Percentage

m1 Static Side, 2662 54
non-maximum suppression fc

m2 image smoothing (FIR) fa 245 4
m3 gradient fb 2168 44
m4 hysteresis fd 5343 108

core and all the interface infrastructures as well as the func-
tion fc (non-maximum suppression). The other three tasks
correspond to one IP core implemented with reconfigurable
hardware. The resource requirements of these IP cores are
shown in last two columns of Table 7. As a result, m1 is ex-
tended to support both fc (non-maximum suppression) and
fd (hysteresis). This move does not incur any additional
overhead for the realization of module m1. Module m1 al-
ready contained one application function (fc). Therefore,
necessary computational resources (a PowerPC core) and
communication components to correctly interface the soft-
ware functions with the IP cores have already been created
and accounted for. The newly added application function fd

will also use this existing infrastructure. With this solution,
hardware reconfiguration has to be taken into account be-
cause the static portion of the architecture, m1, along with
the two IP-Cores, the FIR Filter, m2, and the image gra-
dient function, m3, are not going to fit into the available
reconfigurable hardware resources. In order to have an effi-
cient implementation using partial dynamic reconfiguration,
we have to process enough data to justify the reconfigura-
tion between the FIR and image gradient cores (368ms).
This example has been proposed just to present a complete
and real application that can be implemented using a self
dynamic reconfigurable architecture, obviously the same ap-
plication can be implemented using a bigger FPGA without
needing any reconfiguration. Reconfigurable SoCs are par-
ticularly powerful platforms for image and video processing
and other multimedia applications. These domains provide
essential services for many emerging embedded systems i.e.

Smart-Transportation and Biomedical architecture.

5. CONCLUSIONS AND FUTURE WORK
Preliminary results show that the Shining methodology,

provides an effective and low cost approach to the partial dy-
namic reconfiguration and mixed HW-SW execution prob-
lems. Its strength lies both on the introduction of the partial
dynamic reconfiguration degree of freedom at design time,
and on the use of widely available tools. The proposed flow,
called Shining, organizes the input specification into three
different components: hardware, reconfigurable hardware
and software, managed by proper portion of the methodol-
ogy. A fully automated version of the entire flow is currently
under development in order to provide a completely auto-
matic management of problems such as task partitioning,
and core creation, which are now only semi-automated.
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