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Abstract— In nanometer regime, IC designs have to consider
the impact of process variations, which is often indicated by man-
ufacturing/parametric yield. This paper investigates a yield model
- the probability that the values of multiple manufacturing/circuit
parameters meet certain target. This model can be applied to pre-
dict CMP (Chemical-Mechanical Planarization) yield. We focus
on the difficult cases which have large number of partially cor-
related variations. In order to predict the yield for these diffi-
cult cases efficiently, we propose two techniques: (1) application
of Orthogonal Principle Component Analysis (OPCA); (2) hier-
archical adaptive quadrisection (HAQ). Systematic variations are
also included in our model. Compared to previous work, the
OPCA based method can reduce the error on yield estimation
from 17.1%−21.1% to 1.3%−2.8% with 4.6× speedup. The HAQ
technique can reduce the error to 4.1% − 5.6% with 6 × −9.4×

speedup.

I. INTRODUCTION

When VLSI feature size shrinks to nanometer regime, manu-
facturing process variations are no longer negligible compared
to corresponding nominal values [1]. Consequently, manufac-
turing and parametric yield need to be considered in circuit
design stages. Roughly speaking, manufacturing yield refers
to the probability that certain manufacturing spec is satisfied.
Likewise, parametric yield is the probability that the target per-
formance metrics, such as timing and power, are met. Accurate
and efficient yield prediction models can guide circuits designs
toward low variability and/or high tolerance to process varia-
tions.

In this work, we focus on a specific yield model that can
handle the probability for m random variables within a given
range. This model is applicable to either manufacturing vari-
ations or parametric variations. For example, if the m ran-
dom variables represent metal thickness, this model can pre-
dict CMP (Chemical-Mechanical Planarization) yield [2]. As
pointed out by previous research works, after the CMP proce-
dure, metal thickness may have systematic variations depend-
ing on layout patterns and random variations due to CMP pro-
cess fluctuations [3]. Figure 1 illustrates such variations. Too
large variations may cause considerable performance devia-
tions as well as the risk of open/short circuit. Therefore, it
is highly desired that the thicknesses of all metals on the same
layer are within certain range. In addition to CMP yield, this
model can be extended to predict timing yield of sequential
circuits [4] if the random variables correspond to the maximal
combinational path delays.

Fig. 1. Metal thickness variations after CMP (Chemical-Mechanical
Planarization).

In general, process variations include systematic variations
and random variations. Systematic variations can approxi-
mately be traced out according to circuit designs. Random
variations can be further decomposed to inter-die and intra-die
variations. For a manufactured chip, the inter-die variations are
perfectly correlated and therefore can be treated as a single ran-
dom component. Obviously, it is easy to estimate the yield for a
single random variable. Intra-die variations, on the other hand,
consist of independent parts and partially correlated parts. If
the m random variables representing intra-die variations are in-
dependent of each other, the overall yield is the product of the
probability for each individual variable within the given range.
Compared to the perfectly correlated and independent random
variables, the case of partially correlated random variables is
much more difficult to handle. In theory, the yield of partially
correlated variations can be obtained via numerical integration
over the joint distribution function [5]. In practice, such com-
putation can be quite expensive when the number of random
variables is large.

Although partial correlation causes difficulties, it still allows
the problem dimension m to be reduced to certain extent, as
correlations are often spatially dependent. For instance, [2]
clustered the random variables according to spatial proximity
and treat the variables within each cluster as perfectly corre-
lated. Then, it managed to reduce the problem dimension to the
number of clusters. However, this heuristic faces a dilemma:
cluster size influences the accuracy of the yield estimation and
the associated computation cost in opposite ways. Large clus-
ter size leads to over-estimated yield while small size results in
high computational cost. In extreme cases, for example, when
the number of variables m is very large, it is almost impossi-
ble to find a cluster size that leads to both high credibility and
reasonable computation cost.

In order to handle partial correlations in the yield prediction
efficiently, we propose two techniques. The first one is based
on Orthogonal Principle Component Analysis (OPCA), which
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is a more formal treatment to partial correlations compared to
the clustering based method [2]. The second one is a hierarchi-
cal adaptive quadrisection (HAQ) technique which can form
heterogeneous cluster sizes according to systematic variations.
Experiments are performed on large testcases, each of which
has 360K variation locations. Compared to [2], which is the
only previous work to the best of our knowledge, the OPCA
based method can reduce the error on yield estimation from
17.1%−21.1% to 1.3%−2.8% with 4.6× speedup. The HAQ
technique can reduce the error to 4.1%−5.6% with 6×−9.4×
speedup.

The rest of this paper is organized as follows. The variation
and yield model in this work will be defined in Section II. In
Section III, we will briefly review the previous work on this
problem. Our new reduction techniques will be described in
Section IV. Section V will provide the experimental results.
In Section VI, we will give the conclusion and discuss future
works.

II. VARIATION AND YIELD MODEL

The variation and yield models in this work are based on the
case of metal thickness like in [2]. With small modifications,
they can be applied to other cases, such as sequential timing
yield.

Consider the metal thicknesses at m locations which are rep-
resented by an m-dimensional vector �p = (p1, p2, ..., pm)T .
Then, each thickness pi∀i ∈ {1, 2, ...,m} can be decomposed
as:

pi = μi + δi and μi = μ̄ + Δi (1)

where μ̄ is the nominal value, Δi denotes the systematic vari-
ation and δi is the random variation. The nominal value μ̄

is a constant and corresponds to the dashed line in Figure 2.
The systematic variation Δi is a deterministic value depend-
ing on the layout pattern around metal segment i. We define
μi = μ̄ + Δi as deterministic thickness, which is shown
as black dots in Figure 2. The random variations, including
inter-die variations, intra-die correlated variations and intra-die
independent variations, are indicated by the vertical segments
with double-arrow in Figure 2. Same as in [2], we assume that
the random variations follow normal distributions with roughly
equal variance. Then, the thickness vector �p can be repre-
sented by a multivariate normal distribution N(�μ,Σ) where
�μ = (μ1, μ2, ..., μm)T and Σ is an m × m covariance matrix.
More specifically, the joint distribution can be described as:

Φ(�p) =
e−

1

2
(�p−�μ)T Σ−1(�p−�μ)√

(2π)m|Σ| (2)

where |Σ| is the determinant of the covariance matrix.
According to [2], CMP yield Y is defined as the probability

that all values of �p are within a given range [L, U ]. In Figure 2,
this corresponds to the probability that all thickness values are
in the shaded region. In CMP yield prediction, an entire chip
area is tessellated into an array of tiles. The metal thickness in
each tile τi is represented by pi. Since there could be sharp sys-
tematic variations, an accurate yield prediction requires fine-
grained tessellation, i.e., a large number of small tiles.

U

L
tiles

p

Fig. 2. Systematic and random variations of metal thickness.

III. PREVIOUS WORK

In theory, the yield Y defined in the previous section can be
obtained by computing

Y =

∫ U

L

∫ U

L

...

∫ U

L

Φ(�μ)dp1dp2...dpm (3)

However, numerical integration on high dimensional problems
is usually very expensive. In reality, the dimension m (or the
number of tiles) for CMP yield prediction is in the order of 105

to 106 [2], which makes the numerical integration unaffordable.
In [2], a clustering based divide-and-conquer method was in-

troduced. It first decomposes the CMP yield into upper yield
and lower yield. Upper yield YU (lower yield YL) is the prob-
ability that all thickness values are no greater than the upper
constraint U (no less than the lower constraint L). Then, the
overall yield is

Y = YU + YL − 1 (4)

The upper yield YU and lower yield YL can be computed sep-
arately yet in the same manner. It is observed that the correla-
tion between the variations at two different locations decreases
with the distance between them. The work of [2] defines per-
fect correlation circle (PCC) based on this observation. PCC is
a circle where all variations inside can be assumed as perfectly
correlated. This assumption is valid and accurate only when
the radius of PCC is small.

When computing upper yield YU , the method used in [2]
first finds the tile τi with the maximum deterministic thickness,
i.e., the tile τi with the maximum value of μi. Then, a PCC is
built centered at this tile. Since the variations in the PCC are
assumed to be perfectly correlated, their impact to YU can be
degenerated to pi. For those regions not covered by this PCC,
the tile τj with the maximum value μj is picked and the previ-
ous procedure is repeated. In the end, the entire chip is covered
by these PCCs and YU is computed based on the tiles with the
maximum μ in each PCC. This approach reduces the dimension
of the problem to the number of PCCs. After the reduction, the
upper yield YU is computed using Genz’s algorithm [5], which
is an efficient numerical integration method. The lower yield
YL can be handled in the same manner.

In order to reduce computation runtime, a large radius is pre-
ferred for the PCCs. However, a large radius may result in over-
estimation of the yield. For example, consider the case that the
center tile τi of a PCC has μi = 402nm and a boundary tile
τj of the same PCC has μj = 400nm. According to [2], if
pi = μi + δi ≤ U , then pj = μj + δj ≤ U , as δi and δj are
assumed to be perfectly correlated. However, when the radius
is large, such assumption may cause errors. If δi and δj are in
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fact not perfectly correlated due to a large radius, it is likely that
pj = μj + δj > U even when pi = μi + δi ≤ U . Therefore,
the method of [2] may miss such violation and over-estimate
the yield.

IV. NEW REDUCTION METHODS

Given a yield prediction problem with large number of par-
tially correlated random variables, our approach is to first re-
duce the number of variables and then perform numerical inte-
gration using Genz’s algorithm [5] like in [2]. The focus of our
work is on the variable reduction. We propose two reduction
methods in order to improve the accuracy of the prediction as
well as the computation efficiency.

A. Reduction with Orthogonal Principle
Component Analysis (OPCA)

With the large number of correlations in the metal thick-
nesses due to the local variations, the resultant performance
models have a number of random variables. The goal of using
OPCA is to compute the most meaningful basis to re-express
these correlated random variables into a set of independent and
less number of random variables through an orthogonal base.
Determining this orthogonal basis allows circuit designers to
discern which random variables or variation sources are im-
portant, which are just redundant variables and which are just
noise [6, 7].

In the CMP example, we treat m local metal thicknesses as
m random variables. Let vector �δ = {δ1, δ2, · · · , δm} represent
the m random parameters. The possible correlations among
different metal thicknesses can be denoted by a correlation ma-
trix

Γ(�δ) = (Γij)m×m (5)

Assume the variance of each metal thickness is σ2
i , the covari-

ance matrix Σ can be obtained as

Σ(�δ) = (Γijσiσj)m×m (6)

It is easy to prove that this covariance matrix is symmetric.
Each entry of this matrix is covariance. By definition, covari-
ance must be non-negative, therefore the minimal covariance
is zero. Covariance has important physical meanings. While
the variance measures the perturbation of each random vari-
able from its mean value, the covariance indicates the degree
of the linear relationship between every two random variables.
A small (large) value reveals low (high) redundancy or depen-
dency.

Our goal is to find the dominant random variables by max-
imizing the main impact of these variables measured by vari-
ance while minimizing redundancy measured by covariance.
This target can be achieved by performing eigenvalue decom-
position on symmetric covariance matrix Σ(�δ),

Σ(�δ) = QΛ(�δ)QT (7)

where Q is a m × m matrix with column vectors representing
eigenvectors. Here Λ(�δ) is a diagonal matrix with eigenvalues

λi at the diagonal locations.

Λ(�δ) =

⎡
⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
0 0 · · · 0
0 0 · · · λm

⎤
⎥⎥⎦ (8)

where λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. This eigenvalue de-
composition on the covariance matrix serves two purposes: it
provides the dominant directions of the covariance relation-
ship by a diagonal matrix Λ(�δ); it indicates, as an initial step,
how we can map the original vector �δ to a new vector. As-
sume we would like to map the m × 1 vector �δ to a new one
�ξ = {ξ1, ξ2, · · · , ξm}.

�δ = B�ξ (9)

where B is a m×m matrix and �ξ is a m×1 vector. How to find
out B and �ξ ? Without loss of generality, we assume that the
transferred variational sources have Gaussian distribution and
can be standardized as

μ(�ξ) = �0

Λ(�ξ) = I (10)

One can easily deduce that there exists a matrix J with dimen-
sion m × m such that

Λ(�δ) = JΛ(�ξ)JT = JJT (11)

And J can be obtained as

J =

⎡
⎢⎢⎣

√
λ1 0 · · · 0
0

√
λ2 · · · 0

0 0 · · · 0
0 0 · · · √

λm

⎤
⎥⎥⎦ (12)

J together with Q gives the map B = QJ that can transfer the
original vector �δ to �ξ:

�δ = B�ξ = QJ�ξ (13)

It is obvious that the covariance matrix can be decomposed as

Σ(�δ) = QΛ(�δ)QT = QJΛ(�ξ)(QJ)T (14)

Figure 3 explains this mapping operation with a 2D case. By
using eigenvalue decomposition on Σ(�δ), we find a set of in-
dependent vectors (eigenvectors Qi) to express the correlated
random variable vector. Then we project this set of indepen-
dent vectors to a set of orthogonormal vectors (vector (QJ)is).
Thus, we successfully decompose the correlated random vari-
able vector to a orthogonormal, independent one.

Remember that λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. It is possible that
some eigenvalues are much smaller that the others. By neglect-
ing the small eigenvalues, we reduce the number of variation
sources. That is, we approximate Λ(�δ) as

Λ(�δ) ≈

⎡
⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
0 0 · · · 0
0 0 · · · λk

⎤
⎥⎥⎦ (15)

Because
Λ(�δ) = JJT (16)
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(b)  (a)

Fig. 3. OPCA finds out the dominant directions of sampling space for the
random variables. (a) directions of the sampling space for the random
variables; b) adjusted directions for the sampling space.

Then, Jm×m becomes Jk×k and can be formulated as

J =

⎡
⎢⎢⎣

√
λ1 0 · · · 0
0

√
λ2 · · · 0

0 0 · · · 0
0 0 · · · √

λk

⎤
⎥⎥⎦ (17)

The correspondent matrices in deriving the mapping matrix
procedure B = QJ follows the dimensions shown in Fig-
ure 4(a). This B matrix maps k variables in �ξ to m variables in
�δ by �δ = B�ξ. Figure 4(b) demonstrates the dimensions in this
case. Because OPCA approach in the current paper employs
eigen-decomposition, the column vectors in B matrix are or-
thogonal to each other.

k

m

 k

m

 k

m

k k x k

(a)

(b)

m

Fig. 4. Dimension demonstration for the reduction procedure, (a) dimension
display for B = QJ ; (b)dimension display for �δ = B�ξ

In summary, performing OPCA requires four steps: 1)
extract the correlation matrix of the metal thicknesses from
CMP procedure; 2) organize the covariance matrix for random
variables representing metal thicknesses; 3) perform eigen-
decomposition for the covariance matrix; 4) construct mapping
matrix B for dimension reduction. After the OPCA method,
the large number of correlated random variables are transferred
into a smaller set of independent random variables.

B. Reduction with Hierarchical Adaptive
Quadrisection (HAQ)

In this method, we divide the entire chip area into a set of ba-
sic subregions and let the variations in each basic subregion be
characterized by a single random variable. Similar as the PCCs
in [2], each basic subregion usually contains many tiles. By this
division, the total number of random variables in the yield pre-
diction is largely reduced. In contrast to the uniform PCC size
in [2], the sizes of the basic subregions may be different from
each other. The size of each basic subregion is decided accord-
ing to systematic variations. The purpose of the heterogeneous
granularity is to minimize the number of basic subregions with
limited side-effect on the accuracy of yield prediction.

We use the procedure of computing the upper yield YU to
illustrate the hierarchical adaptive quadrisection method. The
same method can be applied to compute the lower yield YL as
well. At the beginning, we divide the entire chip area into an
array of relatively large subregions, i.e., a coarse-grained ar-
ray. For each of the large subregions, we perform hierarchical
adaptive quadrisection as follows. For a subregion S, we first
find the tile τi with the maximum deterministic thickness, i.e.,
μi = μmax in S. Next, the subregion S is temporarily quadri-
sected into four plates {P1, P2, P3, P4} of the same size. The
plate Pk containing tile τi is called critical plate and the others
are called non-critical plates. For each non-critical plate Pj ,
we identify one of its tiles that has the maximum deterministic
thickness μj,max. Then, we compute the critical difference
d = min∀j∈{1,2,3,4}, j �=k(μmax − μj,max). This is the mini-
mum difference between μmax and the maximum determinis-
tic thickness of each non-critical plate. If d > θ, where θ is a
constant threshold, we keep subregion S as a basic subregion
without further division. Otherwise, we divide S according to
this temporary quadrisection and repeat this procedure for each
of the four plates, recursively.

Procedure: AdaptiveQuadrisection(S)
Input: A layout region S consisting of an array of tiles
Output: A set of subregions P covering S

1. Find tile τi ∈ S with max deterministic thickness μmax

2. Temporarily quadrisect S into plates {P1, P2, P3, P4}
3. Identify critical plate Pk that contains τi

4. Find the max deterministic tile thickness μj,max

for all plates except Pk

5. d = min∀j∈{1,2,3,4}, j �=k(μmax − μj,max)
6. If d is greater than a threshold θ, P ← S

7. Else
8. P ← ∅
9. For j = 1 to j = 4
10. P ← P ∪ AdaptiveQuadrisection(Pj)
11. Return P

Fig. 5. Algorithm of hierarchical adaptive quadrisection.

The pseudo code of this algorithm is given in Figure 5. The
key step is step 6. If the value of the critical difference d is
large, the tile thicknesses in all non-critical plates are signifi-
cantly smaller than μmax. Hence, the impact of thickness vari-
ations in the non-critical plates are dominated by μmax. In
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other words, if the thickness of critical tile pi ≤ U , then we
can safely assume that the thickness in non-critical plates are
no greater than U . Therefore, the probability of satisfying the
upper constraint U is approximately decided by μmax and the
quadrisection on S is unnecessary.

98

9289

73

64

54

88
66

76

69

75

79

52

57

63

68

Plate 1

Plate 3 Plate 4

Plate 2

Fig. 6. An example of hierarchical adaptive quadrisection. The tiles are
indicated by the dotted lines.

Figure 6 is an example of the hierarchical adaptive quadri-
section procedure. At first, we find the maximum deterministic
thickness, which is 98. Then, the given subregion is temporar-
ily quadrisected into four plates. Since the maximum deter-
ministic thickness 98 lies in plate 1, plate 1 is the critical plate
and the others are non-critical plates. Next, the maximum de-
terministic thickness of each non-critical plate is found, 88 in
plate 2, 92 in plate 3 and 79 in plate 4. One can see that the crit-
ical difference is 6, which occurs between 98 and the maximum
deterministic thickness of plate 3. If 6 < θ = 10, we divide the
subregion according to this quadrisection and repeat this proce-
dure for all four plates. In the next level, the critical differences
are 22, 20, 3 and 16 for the four plates, respectively. Only in
plate 3, the critical difference 3 < θ = 10. Therefore, plate 3 is
divided again according to quadrisection while the other plates
are unchanged and become basic subregions. In Figure 6, tem-
porary quadrisections are shown as dashed lines and the finally
realized quarisections are indicated by solid lines. At the end,
we have 7 basic subregions in this example. If we use uniform
sizes as in [2], either we have 4 basic subregions which are
too coarse, or 16 basic subregions which are too fine-grained.
This example clearly shows the flexibility and advantage of our
method.

V. EXPERIMENTAL RESULTS

The experiment setup is similar as that of [2]. The size of
entire chip is 4.8mm × 7.5mm. It is tessellated into a 480 ×
750 array of tiles, i.e., each tile has size of 10μm × 10μm.
The nominal thickness is μ̄ = 0.358μm. The lower and upper
thickness constraints are L = 0.258μm and U = 0.458μm,
respectively. For the random variations, the standard deviation
is 0.03μm. Same as [2], the correlation coefficient between the

variations of two tiles is modelled as

γ = −α × 10−5x + 0.9958

where x is the distance between the two tiles and α is a con-
stant. When α increases, the correlation decreases faster with
the distance. Based on this setup, we obtained three testcases,
case 1, case 2 and case 3, which have different systematic vari-
ations (or deterministic thickness profiles) and different values
of α. The α values for the three cases are 2, 3 and 4, respec-
tively.

We compared the following methods in the experiments:

• Monte Carlo (MC): 50K-run Monte Carlo simulation is
performed for each case. In the simulation, the correla-
tions are handled by OPCA, but without dimension re-
duction. In general, such results can serve as a baseline
for evaluating the accuracy of yield prediction.

• Perfect correlation circle (PCC) based method [2]: To the
best of our knowledge, this is the only previous work on
this yield prediction problem. It first reduces the num-
ber of random variables using PCC and then obtains the
yield based on Genz’s algorithm [5]. We tested for the
PCC approach using two different radii: PCC1 with ra-
dius of 150μm and PCC2 with radius of 250μm. In [2],
it is assumed that variations within 200μm are perfectly
correlated. Therefore, we tested two radii around 200μm.

• Orthogonal principle component analysis (OPCA): Vari-
able reduction using OPCA followed by Genz’s algo-
rithm. We tried two different levels of reductions: OPCA1
which reduces the number of variables from 360K to 300,
and OPCA2 which reduces the number to 200.

• Hierarchical adaptive quadrisection (HAQ): Variable re-
duction using HAQ followed by Genz’s algorithm. We
performed HAQ with two different values of threshold θ

(see line 6 of Figure 5): HAQ1 where θ = 0.09μm and
HAQ2 where θ = 0.075μm. A larger threshold θ usually
implies finer granularity of the basic subregions.

All of these methods are implemented in MATLAB. The ex-
periments are performed on a Windows machine with 1.6GHz
CPU and 1GB memory.

TABLE I
RESULTS FROM MONTE CARLO (MC) SIMULATIONS.

MC without OPCA MC with OPCA
Testcase α Yield CPU(sec) Yield CPU(sec)
Case 1 2 60% 6165 76% 6516
Case 2 3 60% 6191 74% 6518
Case 3 4 60% 6158 71% 6472

The results from Monte Carlo simulations are summarized
in Table I. For reference, we also include the results of Monte
Carlo without considering correlations (without using OPCA)
in the 3rd and 4th column. Since correlation is not addressed,
the yield results in the 3rd column are independent of the value
of α, which is a part of correlation model. One can see that ne-
glecting correlation may significantly under-estimate the yield.
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The yield results in column 5 include the effect of correlations
and will serve as baselines for yield accuracy evaluation. The
runtime of Monte Carlo simulations is nearly two hours for
each case.

TABLE II
EXPERIMENTAL RESULTS FROM PCC [2], OPCA AND HAQ.

Testcase Method # variables Yield CPU(sec)
Case 1 PCC1 431/435 89% 2242

PCC2 305/310 90% 1636
OPCA1 300/300 77% 481
OPCA2 200/200 78% 470
HAQ1 175/178 80% 372
HAQ2 153/155 82% 312

Case 2 PCC1 432/427 88% 2238
PCC2 305/310 88% 1619

OPCA1 300/300 76% 482
OPCA2 200/200 77% 469
HAQ1 80/79 77% 239
HAQ2 61/61 79% 221

Case 3 PCC1 429/425 86% 2214
PCC2 307/308 87% 1649

OPCA1 300/300 73% 476
OPCA2 200/200 74% 463
HAQ1 172/170 75% 361
HAQ2 148/143 76% 316

The results from PCC, OPCA and HAQ are shown in Ta-
ble II. The 3rd column tells the number of variables after re-
duction. Since the overall yield is obtained from upper yield
and lower yield according to Equation (4), the two numbers
in the 3rd column correspond to the numbers of variables for
computing the upper yield and the lower yield, respectively.
For each method, the first variant (PCC1, OPCA1 and HAQ1)
has less variable reduction. Consequently, they provide yield
results closer to that of Monte Carlo simulation, i.e., more ac-
curate results, compared to the second variant (PCC2, OPCA2
and HAQ2). Evidently, the runtime of the first variant is always
larger than that of the second variant.

TABLE III
COMPARISONS AMONG PCC, OPCA AND HAQ.

Testcase Method Yield Error Speed
Case 1 PCC1 17.1% 1×

OPCA1 1.3% 4.7×
HAQ1 5.3% 6.0×

Case 2 PCC1 18.9% 1×
OPCA1 2.7% 4.6×
HAQ1 4.1% 9.4×

Case 3 PCC1 21.1% 1×
OPCA1 2.8% 4.7×
HAQ1 5.6% 6.2×

Since the results from the first variant of these methods are
more accurate, we compare these methods based on their first
variant in Table III. The 3rd column shows the errors of these
methods with respect to the results of Monte Carlo with OPCA.

One can see that both of our methods lead to much less errors
than the previous work of PCC [2]. At the same time, our meth-
ods are much faster than PCC. The speedup from our methods
is listed in the rightmost column.

VI. CONCLUSION AND FUTURE WORK

In yield prediction, it is difficult to handle large number of
random variables with partial correlations. We propose two
reduction techniques for such difficult cases. Compared to pre-
vious work, our reduction techniques can significantly improve
both the accuracy and the speed of yield prediction. In this pa-
per, we applied our techniques for predicting CMP yield. In
future, we will extend these techniques for estimating timing
yield of sequential circuits.
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