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ABSTRACT
In modern circuit design, it is difficult to provide reliable
parametric yield prediction since the real distribution of pro-
cess data is hard to measure. Most existing approaches are
not able to handle the uncertain distribution property com-
ing from the process data. Other approaches are inadequate
considering correlations among the parameters. This pa-
per suggests a new approach that not only takes care of the
correlations among distributions but also provides a low cost
and efficient computation scheme. The proposed method ap-
proximates the parameter variations with Chebyshev Affine
Arithmetics (CAA) to capture both the uncertainty and the
nonlinearity in Cumulative Distribution Functions (CDF).
The CAA based probabilistic presentation describes both
fully and partially specified process and environmental pa-
rameters. Thus we are capable of predicting probability
bounds for leakage consumption under unknown dependency
assumption among variations. The end result is the chip
level parametric yield estimation based on leakage predic-
tion. The experimental results demonstrate that the new
approach provides reliable bound estimation while leads to
20% yield improvement comparing with interval analysis.

1. INTRODUCTION
Due to the hard-to-measure distribution of the real pro-

cess data, it is difficult to provide accurate parametric yield
prediction for IC design. One example is leakage power
which becomes a major issue when scaling down to submi-
cron technology node. To be more specific, the 30% variation
in the effective channel length could cause over 20x fluctua-
tions in leakage current [1][2][3]. Therefore, it is very crucial
to develop an efficient and accurate performance bound es-
timation framework to provide yield prediction.

One obstacle in yield prediction is the mismatch between
the fundamental feature of practical IC design processes and
the assumptions made to carry on research in the related
area. The real process data is neither complete nor well
understood. It may not behave as normal distribution as
assumed in a number of papers. Wang and Orshansky were
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the first ones pointed out this problem [4]. The authors
addressed the limitations of the existing methods and sug-
gested a probabilistic interval analysis method which has the
capability of preserving the notion of probability comparing
with the pure interval analysis approaches.

However, as pointed out in [5], the interval analysis ap-
proach uses first order approximation to estimate the im-
pact of variations. Not only the probability information is
not incorporated in each operation, nonlinear dependency of
performance on parametric variations is always either over-
estimated or underestimated. Moreover, correlation situa-
tions are handled in over optimistic manner. Such situation
is getting worse in the leakage power prediction case. To
illustrate, the leakage current, in general, is modeled as an
exponential function of variation parameters, e.g. effective
channel length Leff and threshold voltage Vth. An inter-
val analysis with first order approximation of an exponen-
tial function will definitely lead to inaccurate predictions.
Regarding the leakage current equation as an operation re-
defined in the format of interval analysis, the above induced
error will further worsen the overall yield prediction even
with probability included in every step.

This paper overcomes the above-mentioned limitations by
introducing a new Chebyshev affine arithmetic (CAA) based
formulation that allows the preservation of probability while
captures nonlinearity of the predicted performance, i.e. leak-
age consumption. The new method enables robust predic-
tion of timing- and power-limited parametric yield. In addi-
tion, CAA based method also allows representations describ-
ing correlated, fully or partially specified parameter varia-
tions. It approximates a nonlinear function by a piece-wise
linear function with the representation of a random variable
as a family of distributions, i.e., bounds for cumulative dis-
tribution functions (CDF), and therefore can work with a
wider class of uncertainty models. During each operation,
the new approach finds the upper and lower bounds of CDF
instead of computing probabilities by discretized P-box as
in [4][6][7][8]. The CAA based approach divides the whole
range of a random variable into several intervals and ap-
proximates the random variable’s CDF in piece-wise linear
formulation. We name the probability box as Piece-wise
Linear Probability Bounds (PLPB). The experimental re-
sults are promising. In most cases, not only the accuracy
is guaranteed because of the high accuracy of CAA approx-
imation, the efficiency is also improved as we avoid per-
forming optimization procedure. The experimental results
show that our CAA based method is able to reliably predict
the chip-level parametric yield and improve the estimation
by evaluating the impact of environmental variations. The
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proposed method leads to 21.7% improvement in the mean
value prediction of total leakage current, compared with in-
terval analysis.

The paper is organized as follows. Section 2 describes the
new CAA based robust estimation methodologies. Section
3 presents the new mathematical formulation of CDF com-
putation procedure. Then Section 4 demonstrates how to
applying the new CAA based method on chip-level leakage
model and yield estimation. Experimental results are in-
cluded in Section 5. Finally Section 6 concludes the paper.

2. CAA BASED RANDOM VARIABLE
PRESENTATION AND COMPUTATION

Affine Arithmetic (AA) [10] is a methodology for range
analysis, which is used to solve range estimation problems
in the presence of uncertainties. In this work, we apply
AA to handle random variable computation and nonlinearity
estimation. In affine arithmetic, the uncertainty of a random
variable x is represented by a first order affine form x̂:

x̂ = x0 + x1ε1 + x2ε2 + · · · + xnεn. (1)

The quantity x0 is called the central value (mean), and each
εi is called an uncertainty symbol or a variation symbol,
which stands for an independent component of the total fluc-
tuation from the central value. The coefficient xi is so-called
partial deviation which gives the magnitude of correspond-
ing component εi. Note here that in our yield estimation
framework, variation symbols will represent parameter vari-
ations, including process variations and environmental vari-
ations, and central value will denote the nominal value of
corresponding parameter. Following this presentation, we
can conveniently transform parameter variations into affine
forms.

With random variables represented in affine forms, we
need to further evaluate the arithmetical operations upon
these affine formed variables. In general, AA operations
could be classified into two categories: affine operations and
non-affine operations.

Let’s observe specifically a bivariate AA operation z ←
f(x̂, ŷ). This is a procedure that returns an affine form for
z in terms of x̂, ŷ:

z = f(x̂, ŷ)

= f(x0+x1ε1+· · ·+xnεn, y0+y1ε1+· · ·+ynεn). (2)

Our task is to find an affine form ẑ = z0 + z1ε1 + · · ·+ znεn

to substitute f(x̂, ŷ) in (2).
If the operation f itself is an affine function of x̂ and ŷ,

then (2) could be simply expanded into an affine combina-
tion of the variation symbols εi. Explicitly, for any constant
value α, ζ,

x̂ ± ŷ = (x0 + y0) + (x1 + y1)ε1 + · · · + (xn + yn)εn,

αx̂ = (αx0) + (αx1)ε1 + · · · + (αxn)εn, (3)

x̂ ± ζ = (x0 ± ζ) + x1ε1 + · · · + xnεn.

An affine operation directly return an affine form variable
without any introduced computation error.

We now turn to the non-affine case. For a non-affine op-
eration ẑ ← f(x̂, ŷ), ẑ is described by:

z = f(x0+x1ε1+· · · + xnεn, y0+y1ε1+· · ·+ynεn)

= f∗(ε1, · · ·, εn). (4)

If f∗ itself is not affine, then z cannot be exactly an affine
combination of the variation symbols εi. In this situation,
we need to find a suitable and effective approximation for
f∗. Therefore, we choose certain affine function in terms of

εi, namely

fa(ε1, · · · , εn) = z0 + z1ε1 + · · · + znεn

to approximate f∗(ε1, · · · , εn) over a given domain. Besides,
we will then introduce an extra independent term to repre-
sent the approximation error. Therefore we have:

ẑ = fa(ε1, · · · , εn) = z0 + z1ε1 + · · · + znεn + zkεk (5)

where zkεk denotes above-mentioned approximation error :

e∗(ε1, · · · , εn) = f∗(ε1, · · · , εn) − fa(ε1, · · · , εn).

Variation symbol εk (guaranteed to lie in the interval [−1, 1])
is induced in the approximation procedure, thus should be
independent of all other existing variation symbols.

Then we focus on how to decide the most appropriate
approximation expression. In general, for the purpose of
simplicity and efficiency, we only consider the approxima-
tions fa which themselves are affine combinations of input
arguments x̂ and ŷ [10], that is,

fa(ε1, · · · , εn) = αx̂ + βŷ + ζ (6)

Thus, we only need to determine the optimal coefficients in
(6), α, β and ζ. This is the subject of Chebyshev approxima-
tion theory [10]. Chebyshev approximation is actually the
optimal affine approximation that minimizes the maximum
absolute error.

Chebyshev approximations theory is a well-developed field
in a number of literatures. In particular, for univariate func-
tions ẑ ← f(x̂), [11] states the existence of Chebyshev affine
approximation. It can be easily extended to multi-variate
cases. Furthermore, [10] provides an algorithm to find the
optimal coefficient α and ζ for Chebyshev approximation.

Figure 1: Geometry of Chebyshev Approximations

Figure 1 illustrates the geometrical interpretation of uni-
variate Chebyshev approximations. The shaded parallelo-
gram is exactly the range of univariate Chebyshev approxi-
mation. The dash line denotes the approximation equation
αx̂ + ζ, with a perturbation of approximation error zkεk

in (5). Clearly, Chebyshev approximation guarantees the
smallest area of this parallelogram by minimizing the ap-
proximation error δ. According to (5), we can express ẑ in
following affine form explicitly:

ẑ = αx̂ + ζ + δεk

= (αx0 + ζ) + (αx1)ε1 + · · · + (αxn) + δεk (7)

where εk is a new variation symbol, introduced to represent
approximation error.

3. CAA BASED DEPENDENCY BOUNDS
COMPUTATION

In this section we develop a robust estimation framework,
which enables reliable computation of distribution functions
of random variables. As indicated before, in order to deal
with correlations among variations, bounds computations
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will be performed under the assumption of unknown depen-
dency. As a first step, we apply Chebyshev approximations
to extract appropriate probabilistic representation which re-
sults in a very low computation cost.

3.1 P-box Representation
In our prediction scheme, we first need to work out an

appropriate probabilistic representation for the uncertainty
of variables. Most generally, a fully specified random vari-
able is represented by its CDF. While for a partially specified
random variable, the most general representation is a family
of cumulative distribution functions, or a p-box [9].

Definition 1 [9]: F and F are non-decreasing functions,
and F ≤ F . A p-box, denoted by [F , F ], is defined as a
set of imprecisely known cumulative distribution functions,
F (x) = P (X ≤ x), where F (x) ≤ F (x) ≤ F (x).
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Figure 2: p-box is a probability box consisting of a
left and right bound

A p-box actually represents upper and lower bounds for
cumulative distribution function of a random variable. It is
possible to provide a robust description of random variable
even on the condition of uncertain distributions. For a par-
tially specified random variable, given necessary statistical
metrics (i.e. mean value and variance) as well as variable
range, we can successfully construct a p-box by applying
one-sided Chebyshev inequality and Cantelli inequality [4].
Therefore we are able to deal with a variety of non-Gaussian
distribution.

3.2 P-box Linearization using Chebyshev
Approximations

P-box is the basic notion of our probability bounds compu-
tation framework, all parameter variabilities will be trans-
formed into p-box representations, also all the operations
are performed upon p-boxes of random variables. Based on
Chebyshev Approximations, we propose a novel piece-wise
linearization method to obtain appropriate p-boxes, which
are convenient for calculating dependency bounds. Different
from traditional p-box discretization schemes (e.g.[4][6][7][8]),
we divide the whole range of a certain random variable into
several intervals, apply Chebyshev approximations to prob-
ability bounds for each interval, and construct the CDF
bounding functions in piece-wise linear formation. Here we
name it Piece-wise Linearized Probability Bounds (PLPB).

We here claim that PLPB is a better representation for
probability in comparison with traditional discretized p-box.
For better illustration, we draw in Figure 3 both discretized
p-box and PLPB expression for the same probability box.
We see that PLPB preserves more useful probability infor-
mation than simply discretized p-box, which is in fact a
constant value for each interval. In contrast, PLPB holds
the property of continuity. Moreover, since continuous CDF
generally exhibits a slowly increasing property, we can al-
ways extract a corresponding PLPB with few number of
divided interval. It will be clear in next part that such
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Figure 3: Discretized p-box vs. PLPB

piece-wise linear form provides an impressive low compu-
tation cost as well as high accuracy.

If we are given a fully specified random variable, which
means its CDF is determined, we can directly apply Cheby-
shev approximation on its CDF to extract PLPB formula-
tion (See Figure 4).

3.3 Dependency Bounds Computation
Having CAA representation for uncertainty and PLPB

representation for probability, we are now capable of cal-
culating probability bounds under AA. We will see in Sec-
tion 4.2 that, in Affine Arithmetic, bounds computation only
needs to be executed for “Add” and “Subtract” operations
on random variables. [7] indicates that CDF bounds com-
putation could be effectively performed under these two op-
erations, when there exists unknown dependency between
random variables.

We now discuss how to compute dependency bounds. Given
two random variables X and Y in p-box representations, i.e.,
with upper bound F X and lower bound F X for random vari-
able X, while F Y and F Y for B respectively. We need to
compute dependency bounds [F Z , F Z ] for Z = X ± Y . It is
pointed out in [7] that by applying duality theorem we can
express the inverses of FZ bounds in terms of the inverses
of FX and FY bounds. Specifically, for “Add” operation:

F
(−1)
Z (p) = F

(−1)
X+Y (p)

=

{
min

u∈[p,1]
[F

(−1)
X (u) + F

(−1)
Y (p − u + 1)], if p �= 0

F
(−1)
X (0) + F

(−1)
Y (0), if p = 0

(8)

F
(−1)
Z (p)=F

(−1)
X+Y (p)

=

⎧⎨
⎩

max
u∈[0,p]

[F
(−1)
X (u) + F

(−1)
Y (p − u)], if p �= 1

F
(−1)
X (1) + F

(−1)
Y (1), if p = 1

(9)

Likewise, for “Subtract” operation, we have

F
(−1)
X−Y (p) = min

u∈[p,1]
[F

(−1)
X (u) − F

(−1)
Y (u−p)], p �= 0. (10)

F
(−1)
X−Y (p) = max

u∈[0,p]
[F

(−1)
X (u) − F

(−1)
Y (u−p+1)], p �= 1. (11)

The associated derivations and their proofs are provided
in [7]. From (8)-(11), it is shown that for Z = X ± Y , Z
and X, Y exhibits a function relationship in their respective
inverses of CDF bounds. This observation provides us an
approach to work out the dependency bounds for FZ .

Take F
(−1)
Z = F

(−1)
X+Y for instance. For a fixed input prob-

ability p, F
(−1)
X+Y (p) is actually the minimum of the summa-

tion of two inverse CDF functions over the range [p, 1]. From
this point of view, it seems to be attributed to an optimiza-
tion problem. However, with our PLPB representation of
random variables, we will show that the dependency bounds
computation does not require complicated optimization pro-
cedure and thus has very low computation cost.
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Figure 4: PLPB representation for a fully-specified
random variable

Given a random variable A in PLPB representation (shown
in Figure 4, fully specified in this case). we have:

F X(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, for x < xU,1

kX,i · x + uX,i, for xU,i−1 ≤ x < xU,i,
i = 2, · · · , mX

1, for x ≥ xU,mX

(12)

F X(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, for x < xL,1

kX,j · x + lX,j , for xL,j−1 ≤ x < xL,j ,
j = 2, · · · , nX

1, for x ≥ xL,nX

(13)

Due to the non-decreasing property of cumulative probabil-
ity, clearly kX,i and kX,j values are positive.

x

)()( xXPxF
X

)( 1

)1(

1 pFX

1p

))(( 11 pXXP

inverse

p

)(
)1(

pF
X

0 1p

1X

0 1

1

Figure 5: The inverse of CDF for a random variable

For the inverse function of CDF, the input argument is a
probability value, while the output argument is the corre-
sponding quantile. With PLPB representation for a random
variable, we can conveniently derive the inverses of its CDF
bounds. Because PLPB formed CDF is continuous and non-
decreasing, and is a linear function for each interval, its in-
verse function should also be in piece-wise linear formation
(shown in Figure 5). We then define the inverse of PLPB:

F
(−1)
X (w) =

⎧⎪⎪⎨
⎪⎪⎩

xU,1, if 0 ≤ w ≤ qX,1
1

kX,i
(w − uX,i), if qX,i−1 < w ≤ qX,i,

i = 2, · · · , mX

xU,mX , if qX,mX < w ≤ 1

(14)

F
(−1)
X (w) =

⎧⎪⎪⎨
⎪⎪⎩

xL,1, if 0 ≤ w ≤ rX,1
1

kX,j
(w − lX,j), if rX,j−1 < w ≤ rX,j ,

j = 2, · · · , nX

xL,nX , if rX,nX < w ≤ 1

(15)

where 0 ≤ qX,1 ≤ qX,2 ≤ · · · ≤ qX,mX ≤ 1, and 0 < rX,1 ≤
rX,2 ≤ · · · ≤ rX,nX ≤ 1. Random variable Y has similar
expressions for piece-wise linearized bounding functions.

We now focus on how to construct lower dependency bound
F X+Y . Under unknown dependency assumption, (8) gives:

F
(−1)
X+Y (p) = min

u∈[p,1]
[F

(−1)
X (u) + F

(−1)
Y (p − u + 1)], p �= 0. (16)

For a fixed probability value p, F
(−1)
Y (p − u + 1) can be

regarded as a function with respect to u, and we let F ′(u) =

F
(−1)
Y (p − u + 1), where p ≤ u ≤ 1. According to (15):

F ′(u) = F
(−1)
Y (p − u + 1)

=

⎧⎪⎪⎨
⎪⎪⎩

yL,1, if p < u ≤ p + 1 − rY,nY−u+p+1−lY,j

kY,j
, if p + 1 − rY,j < u ≤ p + 1

−rY,j−1, j = 2, · · · , nY

yL,nY , if p + 1 − rY,1 ≤ u ≤ p + 1

(17)

For any p �= 0, our purpose is to find the minimum value

of F
(−1)
X (u) + F ′(u) over the range [p, 1], where F

(−1)
X (u)

and F1(u) are both piece-wise linear functions (expressed in

(15), (17)). The probability range for F
(−1)
X (u) is divided

by a set of transition points {0, rX,1,· · · , rX,nX}, while
F ′(u) is divided by set {p, p + 1 − rY,nY , p + 1 − rY,nY −2,
· · · , 1}. Therefore we can redivide the probability range by
constructing a combinational set consisting of the transition

points of F
(−1)
X (u) and F ′(u). Specifically, let

S = {rX,1, · · · , rX,nX , 1, p, p + 1 − rY,nY , · · · , 1}.
Rearrange the elements of S in ascending order, i.e., from
smallest to largest and rename them s1, s2, · · · . For each

interval [si, si+1], F
(−1)
X (u) + F ′(u) is a summation of two

linear functions and the resulting function is a linear func-
tion with respect to u. That is, the minimum function value
for each interval must be determined by either starting point

or end point. We conclude that the value of min[F
(−1)
X+Y (p)]

can be directly determined by the interval endpoints, since

the global minimum of F
(−1)
X (u) + F ′(u) must be achieved

at certain transition points over range [p, 1]. Thus, we avoid
performing optimization procedure which may induce ex-
pensive computation cost.

Other cases for F X+Y , F X−Y , and F X−Y can be derived
in the same way.

4. PARAMETRIC YIELD ESTIMATION
PROCEDURE

In this section an effective CAA based method to predict
full-chip parametric yield is represented. We apply the leak-
age current model proposed in [1][4], where leakage current
is modeled as an exponential function of several key param-
eters. We first use CAA described in Section 2 to trans-
form the leakage model into affine operations. Then we can
perform dependency bounds computation under affine op-
erations. Finally, we provide a reliable performance bound
estimation for leakage current.

4.1 Leakage Current Model
In [1], Rao etal. presented a leakage current model for

yield analysis. In this model, subthreshold and gate leakage
current are functions of different process parameters. The
total leakage current is a sum of these two components:

Itotal = Isub + Igate (18)

In previous work [1], only process parameters are incorpo-
rated in the modeling function. [4] improves the model by
taking into account environmental parameters. In general,
the variations of following key parameters are considered:
process variations including effective channel length (�L),
threshold voltage (�Vth) and oxide thickness (�Tox), as well
as environmental uncertainty including power supply volt-
age (�Vdd) and on-chip temperature (�T ).

For a unit device transistor, the subthreshold leakage is
described as a nominal value with multiplication of an ex-
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ponential function in terms of Leff , Vth, Vdd and T :

Isub = Isub,nom · ea�L2+b�L+c�Vth+d�Vdd+e�T

Furthermore, we decompose the variation of each process
parameter into global and local components [1] and them
separately:

Isub = Isub,nom · ea�L2
l +(2a�Lg+b)�Ll+c�Vth,l+d�Vdd+e�T

· ea�L2
g+b�Lg+c�Vth,g (19)

where Isub,nom is the nominal value of subthreshold leak-
age, (�Ll,�Vth,l) and (�Lg,�Vth,g) denote intra-chip and
inter-chip components of process variations respectively.

Similarly, the intra-chip gate leakage is modeled as an
exponential function of �Tox and �Vdd [4]:

Igate = Igate,nom · eh�Tox+k�Vdd

= Igate,nom · eh�Tox,l+k�Vdd · eh�Tox,g (20)

where Igate,nom is the nominal value of gate leakage. This
model is insensitive to on-chip temperature variation [3].

4.2 Robust Estimation Procedure
In this part, we discuss about how to estimate the chip-

level parametric yield by the CAA based method proposed
in previous sections. Our work focuses on predicting the
probability bounds for the leakage current of a specific chip.

First of all we represent all the parameter variations in
affine forms. For each parameter P with variation:

P = Pnom + �P.

Since in our leakage model, we are only concerned about
the deviation from the nominal value, �P is modeled as a
zero mean variable. Then in Affine Arithmetic, the central
value is clearly denoted by the nominal value, each param-
eter variation can be regarded as an variation symbol, and
the partial deviation is simply equal to one. Let P0 = Pnom,
and ε be the corresponding parameter variation, hence we
get affine representation for each parameter:

P̂ = P0 + 1 · ε.
In this work, we model all process variations as truncated
Gaussian distributions. However, as demonstrated previ-
ously, a partially specified distribution also can be handled
by constructing the PLPB from its p-box to represent the
uncertainty.

Following [1], given a particular chip, we compute the sub-
threshold leakage current for a single device (19) based on
such assumption: each device has unique local variations
�Ll and �Vth,l, while sharing the same global variations
�Lg and �Vth,g. Therefore, �Lg and �Vth,g are assumed
to be fixed for each device. We then focus on intra-chip
variations �Ll and �Vth,l. Rewrite (19) in affine form:

Isub = Isub,nom · eaL̂2
l +(2aL̂g+b)L̂l+cV̂th,l+dV̂dd+eT̂

· ea�L2
g+b�Lg+c�Vth,g (21)

where �L̂l denotes the deviation from the nominal value of
Ll, and simply �L̂l = 0 + 1 · �Ll. Other parameters are
on the analogy of this formula. According to (21), clearly

the quadratic term of �L̂l and the exponential term are
non-affine operations, and thus need to apply Chebyshev
approximations. As discussed in Section 2, we perform two
affine approximations z ← x̂2 and z ← ex̂ respectively, in
order to transform them into affine counterparts. Thus we
actually reduce the subthreshold leakage model to a serial
of affine operations on variation symbols, i.e. parameter
variations of �Ll, �Vth,l, �Vdd and �T .

We now discuss how to compute the probability bounds
for Isub under affine operations. According to (3), affine
operations can be generalized into three fundamental cases:
Case 1. ẑ = x̂ ± ζ. We can directly obtain probability
bounds for ẑ given x̂ in PLPB presentation, using probability
knowledge [12].
Case 2. ẑ = αx̂. We can also work our the probability
bounds for ẑ analytically [12].
Case 3. ẑ = x̂ ± ŷ. In Section 3 we have represented
exhaustively how to compute the dependency bounds for
summation and difference of two random variables.

Now we are capable of computing the probability bounds
for each affine operation. Since the subthreshold leakage
equation (21) has been reduced to a serial of affine opera-
tions, we can perform the computation step by step. Clearly
each step returns an affine form, thus we are able to produce
the probability bounds for subthreshold leakage current with
affine operations.

Also, we can estimate gate leakage current by similar pro-
cedure, regarding parameter variations �Tox,l and �Vdd as
variation symbols and reducing Igate into affine operations
of them.

Igate = Igate,nom · eh�T̂ox,l+k�V̂dd · eh�Tox,g (22)

It is mentioned above that total leakage current Itotal is
the sum of the subthreshold and the gate leakage compo-
nents. From (19) and (20), due to the introduction of envi-
ronmental parameter variations, subthreshold and gate leak-
age currents are correlated since they both are dependent on
Vdd variation. Thus we still use the algorithm of dependency
bounds computation, proposed in Section 3, to predict the
probability bounds of total leakage current for a unit device.

In the last step, to estimate the overall leakage current
for a specific chip, we need to sum up the leakages for all
devices on the chip. By Central Limit Theorem [12], we
can use the mean value of Itotal to approximate the sum
of leakages over all devices. Having the predicted bounds
of cumulative probability, we can easily deduce a bounded
estimation for the mean value of chip-level leakage.

5. EXPERIMENTAL RESULTS
The experiment environment is similar to that of [4]. We

use the 65nm (Leff = 24.5nm) Technology node PTM model
[13]. The parameter coefficients of the leakage model (19),
(20) are extracted by SPICE simulations. The process varia-
tions are modeled as truncated Gaussian distributions. The
3σ values of L, Vth and Tox parameters are 20%, 10% and 8%
of the nominal values respectively. We assume that for all
process parameters, the inter-chip and intra-chip variation
each accounts for half of the total variation. For environ-
mental uncertainty, the supply voltage variation is about
10% of the nominal value, and the on-chip temperature de-
viates about 10◦ from the nominal value.

For a particular chip, the inter-chip variations are assumed
to be fixed, which means all the devices on the chip share
the same global variations. For simplicity, we first estimate
the parametric yield with zero inter-chip variations. Figure 6
shows the experimental results for subthreshold leakage cur-
rent (normalized to the nominal value). Since our purpose
is to predict the guaranteed yield, we are only concerned
about the lower probability bound. The upper bound is not
shown in all figures.

We reaffirm that our CAA based method can handle ar-
bitrary correlations among parameter variations. For the
purpose of verification, we first run SPICE simulations in
the very special case of independency. From Figure 6 we see
the deterministic CDF obtained by Monte-Carlo simulation
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Figure 6: Subthreshold leakage current considering
process and environmental variations
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Figure 7: Gate Leakage
Current
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Figure 8: Total Leakage
Current

is well bounded by the dependency bound computed by our
proposed algorithm. More significantly, this indicates the
importance of taking into account the correlations among
parameter variations. Since the simple assumption of in-
dependency tends to give an over-optimistic prediction of
parametric yield, which implies a lower estimate at a speci-
fied cumulative probability.

In previous chip-level leakage analysis, e.g. [1], environ-
mental parameter including supply voltage (Vdd) and on-
chip temperature (T ) are not taken into account and as-
sumed to be fixed. Therefore to give a guaranteed yield,
algorithm in [1] needs to select the maximum values of Vdd

and T for prediction. To evaluate the impact of environ-
mental variations, we also compute the (lower) probability
bound based on maximum and average values of Vdd and
T , respectively. Figure 6 shows, our reliable prediction con-
sidering environmental variations provides a tighter bound
for Isub. It predicts 1.697X of nominal subthreshold leak-
age at 95th percentile, which means that the probability of
Isub ≤ Isub,nom is greater than 95%. Compared to algo-
rithm in [1], it improves the leakage estimate by 13.3% at
95th percentile. The improvement is more significant at 50th

percentile, which is 27.1%. In addition, the predicted bound
based on average Vdd and T also gives an over-optimistic
estimation. There are similar results in cases of Igate and
Itotal(shown in Figure 7 and 8). The improvements are listed
in Table 1.

Table 1: Estimate Improvements of Leakage Current
Estimate Improvement Isub Igate Itotal

50th percentile 13.29% 5.49% 10.91%
95th percentile 27.11% 17.58% 23.60%

mean value 25.07% 15.26% 21.68%

At last we estimate the (lower) probability bound of Itotal

based on different inter-chip Leff variations (�Lg). Figure
9 illustrates the 50th, 68th, 95th and 99th percentiles when

�Lg = 0, ±σ, ±2σ, ±3σ. The experimental result veri-
fies that shorter channel length Leff causes more significant
variation of leakage current.
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Figure 9: Contours for inter-chip Leff variations

6. CONCLUSIONS
In this paper, a new parametric yield estimation frame-

work is presented based on Chebyshev affine arithmetic.
This proposed strategy is able to handle uncertain parame-
ter distributions, and thus improve the estimation of interval
analysis for partially specified parameters. Under unknown
dependency assumption to deal with the correlations among
parameter variations, our CAA based method is capable of
predicting reliable guaranteed bounds for chip-level para-
metric yield, with high accuracy and low computation cost.
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