
Faster Projection Based Methods for Circuit Level Verification

Chao Yan, Mark Greenstreet
CS Department, University of British Columbia

Vancouver, BC, V6T1Z4
{chaoyan,mrg}@cs.ubc.ca

Abstract— As VLSI fabrication technology progresses to 65nm
feature sizes and smaller, transistors no longer operate as ideal
switches. This motivates the verification of digital circuits using
continuous models. Recently, we showed how such verification
can be performed using projection based methods.However, the
verification was slow, requiring nearly four CPU days to verify a
nine-transistor toggle flip-flop. Here, we describe improvements
to the reachability algorithms and optimizations of the software
architecture. These produce a 15× reduction in computation time
and significant reductions in the overapproximation errors. With
these changes, the same toggle flip-flop can be verified in a few
hours, making formal verification a viable alternative to circuit
simulation.

I. INTRODUCTION

Deep-submicron technologies simultaneously confront de-
signers with transistor behaviors that require circuit-level mod-
els to produce working designs and integration densities that
require working at high-levels of abstraction. Due to leakage
currents, small transistors do not operate as the ideal switches
that have been the foundation of synthesis and switch-level
simulation tools for the past twenty years. Formal methods can
help address these challenges by verifying proper behaviors at
low-levels of abstraction and ensuring that the abstractions of
these low-level behaviors to higher levels of abstraction are
sound.

Reachability analysis plays a central role in formal meth-
ods. Forward reachability computes all states that are reach-
able from an initial state or set of states. Conversely, back-
ward reachability computes all states that can eventually reach
a specified state or set of states. Efficient reachability algo-
rithms for systems with discrete models have enabled the prac-
tical application of model checking in digital design.

Circuit-level verification requires reachability with contin-
uous state spaces, and practical verification requires efficient
representation and manipulation of regions in these spaces.
COHO [], the tool described in this paper, uses projectagons
to represent reachable regions by their projections onto two-
dimensional subspaces. As nearly all properties of systems
with continuous models are formally undecidable [1, 7], COHO

computes approximations of forward reachable sets. COHO

guarantees that all approximations are over approximations.
Thus, the analysis is sound but not complete for safety proper-

ties: COHO can fail to verify a correct circuit, but it will never
claim to verify an incorrect design. Section II describes COHO

in more detail.
Recently,we described the verification of a toggle flip-flop

circuit using COHO. While this demonstrated the feasibility
of using projectagon techniques for circuit verification, the
verification of this simple circuit required nearly four CPU
days. Section III describes improvements to COHO that make
it much more practical tool:

• COHO make extensive use of linear programs. We present
improvements to COHO’s LP solver and related algo-
rithms to dramatically speed-up COHO.

• We present improvements to the reachability algorithm
that allow larger time steps, improved accuracy and fewer
evaluations of the circuit model.

• We show how these changes fit within COHO’s software
architecture. COHO runs within MATLAB providing flex-
ible and interactive verification and debugging of circuits.
Java is used to implement complex data structures, and C
is used to maximize performance of the linear program-
ming codes.

In Section IV, we evaluate the impact of these changes. The
new version of COHO runs 15× faster than the original version
with smaller approximation errors. In Section V, we conclude
the paper and examine the practicality of formal techniques for
circuit-level verification.

II. COHO

COHO represents reachable sets with projectagons. A pro-
jectagon is the high-dimensional bounded polytope formed by
the intersection of a collection of prisms. Each prism is un-
bounded in all but two dimensions, and in those two dimen-
sions the cross-section of the prism is a bounded polygon.
The projection polygons are not required to be convex; thus,
projectagons can represent non-convex objects. The high-
dimensional object represented by a projectagon is the set of
all points that satisfy the constraints of each projection. To en-
sure that the projectagon is bounded, each dimension of the
full-dimensional projectagon must be in the basis of the two-
dimensional subspace for at least one projection polygon. As
an example, Fig. 1 shows how a three-dimensional object (the

5A-3

410978-1-4244-1922-7/08/$25.00 ©2008 IEEE

“anvil”) can be represented by its projection onto the xy, yz,
and xz planes.

y

z

x

x

y

x

zz

y

yx

z

Maximal
Reachable
Space

Projections

Fig. 1. A Three-Dimensional “Projectagon”

COHO utilizes the following properties of projectagons: the
intersection of two projectagons is represented exactly by the
intersection of their projection polygons; the union of two pro-
jectagons is over approximated by the union of their projection
polygons; the convex hull of a projectagon is over approxi-
mated by the convex hulls of its projection polygons; and, in
the absence of degeneracies, faces of a projectagon correspond
to edges of its projection polygons.

To verify a circuit, we represent its dynamics as an ordinary
differential equation:

v̇ = f(v, in) (1)

where v is the voltage state vector; v̇ is the time derivative of
v; and in is a vector of inputs to the circuit. COHO computes
reachability in a sequence of time-steps similar to those taken
by a numerical integrator. At each time step, COHO computes
an over approximation of the points reachable from each face
of the current projectagon. To do so, it computes a linear pro-
gram, Av ≤ b, that contains the face, and a differential inclu-
sion:

Fv + g − u ≤ v̇ ≤ Fv + g + u (2)

where Fv + g is a linear approximation of f(v) in a neighbor-
hood of the face, and u accounts for uncertainties in the model
and the inputs and errors introduced by linearizing f . From
these, COHO constructs a linear program (LP) whose feasible
region contains all points reachable at the end of the time step
by trajectories starting on the face. COHO the computes the
projection of this feasible region back onto the subspace for
the projection polygon with the edge that corresponds to this
face. The union of all of the projected faces for a projection
polygon gives the boundary of the polygon at the end of the
time step. More details are given in [].

To ensure soundness, the differential inclusion for each face
(see Eq. 2) must be valid anywhere that a trajectory starting
on that face may reach within the timestep. In this section,
we sketch the original algorithm, and Section III describes our
refinements to this algorithm. In the original version, COHO

constructed an LP for the convex hull of the current projec-
tagon, and bloated it by relaxing every constraint by a pre-
determined amount, Δv to produce a LP LPbloat . For each

projection polygon edge, COHO intersected LPbloat with con-
straints for an oriented rectangle with bloat Δv centered on the
edge. The resulting LP, LP face contained a neighborhood of
all points within distance Δv of the face. COHO called the
user provided model to obtain a differential inclusion that is
valid in LP face . COHO then solved two LPs for each variable
in the model to determine bounds on v̇ and used (Δv)/‖v̇‖∞
as an upper bound for the time-step for the current step. The
smallest such bound over all faces determined the size of the
time-step that COHO took. COHO then used this time-step to
compute the time-advanced projection polygons as described
in the previous paragraph.

The original version of COHO successfully verified the tog-
gle circuit. The program was divided into two pieces, a MAT-
LAB process that provided an interactive interface. The top-
level loops to iterate over each edge of each polygon to process
each face was written in MATLAB as were the circuit models.
To describe the circuits, we used the MSPICEpackage that pro-
vides a circuit simulation environment within MATLAB. This
allowed us to use the same circuit description for simulation
and verification. The Java process provided geometric opera-
tions and a robust LP solver. We had experienced that the LPs
arising in COHO are sometimes very ill-conditioned. Our LP
solver exploits the special structure of COHO’s LPs, and uses
arbitrary precision rational arithmetic when double-precision
methods fail. This partition into a MATLAB component and a
Java component provided a convenient point for logging and
checkpointing, which is a great aid for debugging.

Although COHO verified the toggle, it was too slow, and
we realized that we would have to improve the performance
of COHO before applying it to other circuits. As described
in the sketch above, COHO makes extensive use of LPs. To
obtain acceptable performance we focused on improving the
performance of the linear program solver. We also noted that
the time-steps taken by COHO were often extremely small. By
revising the bloating and time-step calculations, we reduced
the amount of computation required at each step, increased the
typical time-step size and reduced the amount of approxima-
tion error. We describe these changes in the next section.

III. PERFORMANCE IMPROVEMENTS

This section first describes how we improved the perfor-
mance of COHO’s LP solver. We then describe how we revised
the bloating and time-step calculation.

A. Faster LP Solves

COHO solves LPs when creating linear inclusion models for
each face and when projecting faces back onto their projec-
tion planes at the end of each time step. As we will describe
in Section B, we eliminated the LP solves from the time-step
calculation. Although some LP solves can still be performed
by the user-provide model code to determine linear inclusions
with small errors, most LPs in the new version of COHO occur
when projecting faces back onto their projection place. Thus,
we will focus on this case.

5A-3

411

All of the constraints in COHO’s LPs are inequality con-
straints corresponding to the convex hulls of the projection
polygons and constraints to describe the oriented rectangles of
bloated edges. Thus, a COHO LP has the form: Av ≤ b. Let
m,n ∈ Z

+ such that A ∈ R
m×n. The basic idea behind the

projection algorithm is to solve LPs of the form

max
v∈Rn

(x̂ cos θ + ŷ sin θ) · v s.t. Av ≤ b (3)

for all θ from 0 to 2π. where x̂ and ŷ are unit vectors for the
basis variables of the projection. Of course, COHO does not
need to solve Eq. 3 for every possible θ, it only needs to solve
it for one θ for each edge of the projection polygon. COHO

uses Simplex which works on the dual of Eq. 3:

min
u∈R+m

b · u s.t. AT u = x̂ cos θ + ŷ sin θ (4)

When COHO finds a solution to Eq. 4, it finds an optimal basis,
B, and u = A−T

B (x̂ cos θ + ŷ sin θ). The critical value of θ
is the one at which u acquires a negative element. Successive
values for θ can be determined by a single linear system solve
each. This is how COHO computes the projection of each face
at the end of each time step.

When θ in Eqs. 4 and 3 is increased to force a pivot to the
next edge of the projection, the standard form LP becomes in-
feasible. Traditional formulations of Simplex assume a feasi-
ble basis; thus, the original COHOrestarted the LP solver to
establish feasibility for each edge of the projection of each
face. In the absence of degeneracies, only a single pivot is
required to re-establish feasibility. Accordingly, we modified
our projection algorithm to try each column of AT to determine
if its introduction into the basis achieves optimality. This re-
quires a single linear-system solve for each column tried which
can be performed in O(n) time due to the special structure
of COHO’s LPs.We found that this optimization works about
80% of the time which resulted in a significant improvement
in performance. The rather high failure rate is because the
prisms whose intersection forms the projectagon are orthog-
onal to each other, leading to a higher rate of degeneracy than
for typical LPs.

The projection of a face at the end of a time step can have
clusters of very closely spaced vertices separated by much
larger gaps. These clusters arise from near degeneracies in the
COHO LPs. To avoid a rapid growth in the number of vertices
in the projection polygon, COHO performs a simplification step
where the projection polygon is replaces by an enclosing poly-
gon of smaller degree. Consequently, every vertex but one in a
cluster will be discarded by the simplification process, but the
projection algorithm expended a significant amount of compu-
tation time to determine these vertices. We avoided this extra
work by enforcing a lower bound on the change of θ at each
step of the projection algorithm.

Our new projection algorithm can skip over vertices if the
normals of the consecutive polygon edges are nearly parallel.
Thus, the polygon obtained from these the revised projection
algorithm could be an under approximation which would vio-
late the soundness requirement for COHO. Conversely, we can

use each vertex from the projection algorithm to define a half
plane, and construct the polygon defined by the intersection of
these half-planes. The resulting polygon is an over approxima-
tion. COHO computes both polygons. If their areas differ by
more than a preset tolerance (2%), COHO reverts to computing
the exact projection polygon. Otherwise it uses the overap-
proximation.

Another consequence of the degeneracies in COHO LPs is
that it can be numerically difficult to determine a favorable
pivot. This can lead to pivots to infeasible vertices and cause
Simplex to fail. The original COHO solved this problem by ver-
ifying each pivot using arbitrary precision rational arithmetic
(APR). With the special structure of COHO LPs, this could be
done with a single linear system solve requiring O(n) arith-
metic operations. Nevertheless, the APR calculations domi-
nated the execution time of the solver.

The revised COHO uses ordinary double-precision arith-
metic for each pivot. It then verifies that each pivot succeeded
in reducing the cost function first by using interval arithmetic,
and in the infrequent event that this fails, COHO uses APR.
If the pivot failed to reduce the cost, COHO repeats the pivot
step with APR. Likewise, at the end of the algorithm, COHO

tests the optimality of the solution by verifying that it is fea-
sible in both the primal and dual LPs, again using interval
arithmetic first and APR if the result from the interval calcu-
lation is inconclusive. In this way, we obtain the certainty of
APR while performing nearly all calculations using ordinary,
double-precision arithmetic.

Finally, we note that while Java is an ideal language for pro-
totyping, it does not achieve the performance of code written
in C. Thus, once we had developed our linear programming
codes in Java, we re-implemented the final versions of the LP
solver and projection algorithm in C using the GNU MP pack-
age [5] for rational computation and Profil/BIAS [9] for inter-
val computation. BIAS uses the directed rounding modes of
IEEE 754 [4] compliant floating point units which make the
switching of rounding modes quite efficient. We used Java’s
JNI interface. Thus, we preserved the MATLAB ↔ Java inter-
face of COHO, and this change had only a small, local impact
on the software architecture.

B. Bloating and Time-Step Calculations

Choosing a good bloat amount at each time step is impor-
tant to obtaining good performance. If the bloat is too small,
then COHO will take very small time steps resulting in in long
execution times and larger over approximations from the pro-
jection errors. Conversely, if the bloat amount is too large, then
the non-linearity errors (u in Eq. 2) will be large, causing an-
other kind of over approximation and small time steps. In the
original COHO algorithm, the time steps were nearly always
much smaller that what would actually be safe for the given
bloat. This is because the �∞ norm for the derivative used in
calculating the time step (see Section II) is usually very pes-
simistic. When edges were advanced, their projections at the
end of a time step would lie well inside the bloat region. In
the original COHO, we compensated for this by observing how

5A-3

412

much of the bloat had been used at the end of a time step and
repeating the time advance operation with a correspondingly
larger step. In spite of doubling the number of projection com-
putations, this sped-up the original COHO.

The present version of COHO completely discards the phase
of computing a time step for a given bloat. Instead, at the end
of each time step, COHO computes the bloat and time step that
it should have used. It uses these to set the time step and bloat
for the next step. COHO also checks at the end of each step
that the estimated bloat was sufficient for the estimated time
step. If not, COHO updates the bloat amount and/or step size
and repeats the time step. In addition to enabling larger time
steps, COHO computes each step in less time because it has
eliminated the step-size calculation phase and the projection
phase is only performed once.

In the original COHO, each variable is bloated equally in
both the positive and negative directions and all variables were
bloated equally. In digital circuits, a few signals will be in tran-
sition at any given time and the others will be relatively stable.
This results in excess bloating. To achieve an acceptable step
size, the bloat for fast changing signal must be relatively large.
When the same bloat is used for all variables, the bloat for
slow changing signals is excessive, leading to much larger er-
ror terms in the differential inclusion than needed. Likewise,
when a signal is changing, it is generally either clearly rising or
clearly falling. Thus, a large bloat is only needed in one direc-
tion, allowing the total bloat for these variables to be reduced
by nearly a factor of two.

We implemented asymmetric and anisotropic bloating in the
new version of COHO. Asymmetric bloating allows the posi-
tive and negative bloats for a variable to be different. Thus,
bloating can adapt to the direction in which a signal is mak-
ing a transition. Anisotropic bloating allows each variable to
have its own bloat amount. Thus, bloating can adapt according
to which variables are changing and which are stable. COHO

determines these bloat amounts at the end of each time step
for use in the next time step. This approach allowed a signifi-
cant increase in the typical step size. As an added benefit, the
smaller total bloat reduced the error terms in the differential
inclusion, allowing COHO to compute much tighter bounds on
the reachable regions.

C. Summary

In summary, we modified the COHO’s LP solver and its
bloating and time-step calculations to address issues of run-
time and approximation errors. We eliminated the need to
restart the LP solver for each vertex computed by the projec-
tion algorithm; we avoid the computation of closely spaced
vertices that would just be eliminated by the simplification step
later; we allowed most calculations to be performed using na-
tive double precision arithmetic while retaining the robustness
and soundness of arbitrary precision, rational arithmetic; and
we wrote a C implementation of the linear program routine that
utilizes hardware supported directed rounding to obtain an ef-
ficient LP solver. Many of these optimizations are present in

q

36φ

φ

φ

φ

y z

6

10

10

10

xx

x zz

6

6

10

10 10

φ
yy

φ

φ

x

y z

6

10

φ

10

xx

yy zz

6

6

10 10

10

10

20

10

Fig. 2. Yuan and Svensson’s Toggle Circuit

3
2

1104

0 0 1 10

step Φ x y z

100
011
010

1
0
11

0

HLHH

LLHH

LLLH

HLLH

HHLH

HHLL

HHHL

LHHL LLHL

Transient state

of toggle element
xyzΦ

xyzΦ
Stable state

of toggle element

x

y

z

HLHL

Fig. 3. State Transition Diagram for the Toggle

commercial LP solvers such as cplex [8]. However, such off-
the shelf codes do not provide the operation of projecting the
feasible region of an LP onto a subspace which is the dominant
use of LPs in COHO.

We increased the typical step size and reduced bloating er-
rors by using the results of each time step to estimate the step-
size and bloat amounts for the next time step. We implemented
asymmetric and anisotropic bloating to account for the direc-
tion of signal transitions and the fact that at any given time,
many signals are relatively stable. The next Section evaluates
these optimizations and quantifies their benefits.

IV. EVALUATION

To evaluate the impact of the algorithmic changes described
in the previous section, we repeated the verification of the tog-
gle circuit. This section describes the toggle verification and
then evaluates the new version of COHO showing how the new
version achieves a 15× improvement in performance com-
pared with the original COHO.

A. Verifying the Toggle

Fig. 2 shows the toggle circuit from [10] and Fig. 3 shows
the state transition diagram starting from the state where z is
high when φ is low. Transistors are labeled with their shape
factors and the capacitor on the q output represents a load
equivalent to the gate capacitance of transistors with the a to-
tal shape factor of 36; this is the load that the toggle places on
its clock input. We use this load to verify that the output of

5A-3

413

V

V

V

V

1l

1h

0l

0h

V

x

V

V
1h

V
0h

1l

x

0l

2

4
3

t

x

dx/dt

x
1

V V V0lV 1l 1h

A "typical" trajectoryThe Annulus

0h
2 3 4

t
1

A "ricochet" trajectory

Fig. 4. Brockett’s Annulus

one toggle can drive the clock input of another to implement a
ripple counter. The toggle has seven nodes (we verify the the
output inverter separately); thus, the state space of this system
is R

7.
To specify the desired continuous behavior of the toggle cir-

cuit, we use the Brockett annulus construction [2] shown in
Fig. 4. Region 1 specifies a logical low signal: the level of the
signal is constrained but its derivative may be either positive
or negative. When the variable leaves region 1, it must be in-
creasing; therefore, it enters region 2. Because the derivative
of the variable is positive in region 2, it makes a monotonic
transition leading to region 3. Regions 3 and 4 are analogous
to regions 1 and 2 corresponding to logically high and mono-
tonically falling signals respectively.

A signal may remain in regions 1 or 3 arbitrarily long. This
is essential when verifying the toggle where we must show that
the output satisfies the constraints assumed of the input, even
though the period of the output is twice that of the input. We
add constraints for the minimum time that φ must remain in re-
gion 1 before entering region 2, and likewise for region 3; these
minimum low- and high-times are readily satisfied by real cir-
cuits and necessary for successful verification. This Brockett
annulus construction allows a large class of input signals to be
described in a simple and natural manner.

We specify the behavior of the toggle as a safety property.
In particular, we specify a hyper-rectangle for the initial region
and regions for the end of each state transition from Fig. 3. The
final hyper-rectangle is contained in the initial hyper-rectangle,
demonstrating the desired invariant. The regions at the end of
each transition are disjoint, which shows that the toggle has a
period twice that of the clock. Finally, we then show that for
all reachable states, q, the output of the inverter, satisfies the
same Brockett annulus constraints as we required for the clock
input, φ. This shows that toggles can be composed to form a
ripple-counter.

B. Performance

We verified the toggle circuit using the original version of
COHO and COHO with the modification described in Sec-
tion III. We ran both versions on a 3 GHz Xeon dual-core
processor with 2Gbytes of memory. Although COHO is parti-
tioned into separate MATLAB and Java processes, in both im-
plementations, only one process is active at a time. Thus, only
one core was used. We used the time function of the bash
shell and the Java’s nanoTime to measure runtimes. We ac-
knowledge that nanoTime measures elapsed time, rather than

CPU time. We used the Unix utility vmstat to verify that our
processes had negligible paging activity and always had use
of the CPU. Thus, elapsed time and CPU time should be very
nearly the same.

C. The Linear Program Solver

We ran both versions of the face projection algorithm on
1219 example projections randomly selected from the toggle
verification. The original algorithm had a run time of 570 sec-
onds. When we modified the algorithm to skip over clusters
of closely spaced vertices, the run-time dropped to 340 sec-
onds. The number of LPs solved dropped from 18305 to 8923,
roughly a 50% decrease which corresponds the decrease in run
time. We set the error tolerance (maximum difference in area
between the over- and under-approximated projections) to two
percent. We note that more that 90% of the projections had
errors less than 0.1%. Fewer than 2% of the problems violated
the error bound and required running the exact algorithm.

We then modified the LP solver in the projection algorithm
to check for the case that the new optimal basis is a single
pivot from the old, now infeasible, one. Of the remaining 8923
LPs, 1219 are for finding the first vertex of the projection poly-
gon. Of the remaining 7619 LPs, COHO solves 3862 in a sin-
gle pivot and finds a feasible basis in one pivot for 1773 more.
Only 1984 require restarting the LP solver from the beginning.
With this modification, the time drops to 127 seconds, and ad-
ditional 62% reduction in the run time.

Finally, using the C version of the LP solver reduces the
time to 88 seconds, a savings of just over 30%. This disap-
pointing result is due to overhead in the JNI and problems with
incompatibilities between the Profil/BIAS interval arithmetic
package and the JVM. We hope to solve these problems soon.
Overall, the LP solver is now 6.4% times faster than the orig-
inal. In the original implementation of COHO, the LP solver
accounted for 75% of the total runtime; thus, we’ve achieved a
net speed-up of 2.4×.

D. Improved Bloating and Time-Step

We used part of the third state transition of the toggle to
evaluate the new bloating and time-step calculations. This seg-
ment took 570 minutes in the original COHO, and the new ver-
sion completed the same segment in 39 minutes. As described
above, the improvements to the LP solver account for a factor
of 2.4 of this speed up. The remaining factor of 6 comes from
the changes to the bloating and time-step calculations.

The original version of COHO required 186 time steps to
complete the verification of this phase. With the new algo-
rithm, this decreases to 67 steps. Thus, the average time-step
is a factor of 2.8 larger in the new version which gives a corre-
sponding speed-up for verifying this phase. As shown in Fig. 5
show the improvement in step-size in more detail. At the be-
ginning of the phase, all three of x, y and z are stable. When
the clock input, φ is sufficiently high, nodes y and yy start to
fall, triggering the rising transition on z which then triggers a
falling transition on x. Thus, there is a large amount activity

5A-3

414

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−12

time (second)

st
ep

 s
iz

e
(s

ec
on

d)

new Coho
old Coho

Fig. 5. Step size of new/original COHO

during the middle of this phase, and Fig. 5 shows how the new
version of COHO adapts and decreases its step size during this
activity. At the end of the cycle, the nodes of the toggle are
converging to their limit values, and the new version of COHO

returns to taking larger steps. In contrast, the step size for the
original COHO remains small throughout its verification of this
phase.

The computation of each step is also more efficient because
the new COHO only performs the face projections once, and the
bloat amount and step-size calculations are a fast calculation
following the projections. On the other hand, the new COHO

may have to repeat a time step if the estimated bloat is too
small (or, equivalently, the step-size is too large). We observed
that of the 67 time-steps performed to verify the third phase of
the toggle operation, 38 succeeded and 29 failed and required
revising the time step and for 11 of those 29 revising the bloat
amounts. This failure rate, 43%, seems high. However, when
we revised the algorithm parameters to reduce the number of
failures, we found that the step-size decreased even faster. The
overall effect was to increase the total run-time. We plan to
further investigate the trade-offs in making step-size and bloat
amount estimates in our future work.

Finally, the new algorithm significantly reduces the over-
approximation errors. The average length of an edge of the
bounding hyper-rectangle at the end of the phase decreased by
48%.

V. CONCLUSIONS AND FUTURE WORK

We have presented performance improvements to COHO

that have enabled a 15× reduction in run-time. These reduc-
tions came from improvements projection algorithm that com-
putes the image of the feasible region of a linear program onto
a projection plane and better calculation of the step-size for the
integration algorithm and the bloat amounts that are required

to ensure that the reachability calculation is sound. This allows
the verification of the toggle circuit to be completed in under
10 hours.

There are many areas for future work. First, we would like
to compare our verification result and run-time with those from
other verification tools. Unfortunately, the other tools that
we are aware of have not verified a seven-dimensional circuit
such as the toggle. CheckMate [6] and PHAVer [3] have been
used to verify a simple tunnel-diode oscillator and an idealized
Sigma-Delta modulator. Much earlier, Kurhan and MacMil-
lan verified an arbiter circuit with four nodes. COHO appears
to be able to verify significantly larger designs than these other
tools. An important topic for further research is to apply COHO

to more complicated circuits such as flip-flops and pre-charged
logic gates. We would like to be able to automatically verify
typical cells in a standard cell library.

We also know that there are further areas of improvement
possible for COHO. We are investigating why the step-size and
bloat estimates often fail, and we believe that we can improve
our circuit models to further reduce the over-approximations.
We note that the computations performed by COHO for each
projectagon face are independent. This suggests that additional
performance gains should be possible with by exploiting this
parallelism.

ACKNOWLEDGEMENTS

REFERENCES

[1] Eugene Asarin and Oded Maler. On the analysis of dynamical systems
having piecewise-constant derivatives. Theoretical Computer Science,
138:35–65, 1995.

[2] R.W. Brockett. Smooth dynamical systems which realize arithmetical
and logical operations. In Hendrik Nijmeijer and Johannes M. Schu-
macher, editors, Three Decades of Mathematical Systems Theory: A Col-
lection of Surveys at the Occasion of the 50th Birthday of J. C. Willems,
volume 135 of Lecture Notes in Control and Information Sciences, pages
19–30. Springer, 1989.

[3] Goran Frehse. PHAVer: Algorithmic verification of hybrid systems past
HyTech. In Proceedings of the Fifth International Workshop on Hybrid
Systems: Computation and Control, pages 258–273. Springer-Verlag,
2005. LNCS 3414.

[4] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1):5–48, March
1991.

[5] T. Granlund. GNU MP: The GNU Multiple Precision Library. The Free
Software Foundation, Inc.: Boston, 2002.

[6] Smriti Gupta, Bruce H. Krogh, and Rob A. Rutenbar. Towards for-
mal verification of analog designs. In Proceedings of 2004 IEEE/ACM
International Conference on Computer Aided Design, pages 210–217,
November 2004.

[7] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decid-
able about hybrid automata? Journal of Computer and System Sciences,
57:94–124, 1999.

[8] ILOG CPLEX Inc. Cplex. http://www.ilog.com/products/cplex/.

[9] O. Knuppel. Profil/bias: a fast interval library. Computing, 53:277–287,
1994.

[10] Jiren Yuan and Christer Svensson. High-speed CMOS circuit technique.
IEEE Journal of Solid-State Circuits, 24(1):62–70, February 1989.

5A-3

415

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

