A Symbolic Approach for Mixed-Signal Model Checking

Alexander Jesser
Department of Computer Science
J. W. Goethe University Frankfurt a.M.
D-60325 Frankfurt a.M., Germany
{jesser, hedrich}@em.cs.uni-frankfurt.de

Abstract—In this paper we firstly introduce a novel symbolic model checker (MScheck) for mixed-signal circuits. MScheck is capable to conflate the continuous behavior, typical for analog designs, and the discrete behavior in the digital domain for formal verification. Timing information of both systems will be symbolically stored within multi terminal binary decision diagrams (MTBDDs) for the entire verification procedure. The effectiveness of our approach is demonstrated on a phase locked loop (PLL) by formal verification of the locking property.

I. INTRODUCTION

Today's microelectronic systems are characterized by an increasing level of integration complexity. In recent years multi circuit boards have been evermore integrated in few or ideally one single chip. Such systems are called System on Chip (SoC) and consist usually of a collection of digital and analog subcircuits. Generally, circuits that are divided into an analog and a digital part are often called mixed-signal systems.

One characteristic of mixed-signal systems is that each sub-system interacts with each other by internal connections and reacts to inputs coming from extern. Another characteristic is different state change behavior in both domains. Digital systems behavior usually exhibits discrete changes in time and values, whereas analog circuits usually exhibit continuous changes. The integration of both sub-circuits in one chip is an advanced but widely used method in chip design.

Because of this increase in complexity, the likelihood of subtle functional errors is much greater. Today mixed-signal circuit validation can be done by several analog/mixed-signal (AMS) simulators that only give an input pattern dependent, incomplete correctness of the circuit. To overcome today's design complexity formal proof techniques that guarantee total correctness must be evaluated. One common formal verification technique is model checking. Model checking tools prove the model of a design against a number of stated properties that the system must fulfill under all possible input variations.

A. Previous Work

The basic methodologies used by today's digital formal verification tools based upon symbolic representations like binary decision diagrams (BDD) or applying satisfiability (SAT) solvers mostly used in bounded model checkers (BMC). However, analog and mixed-signal formal verification is much more crucial. Nevertheless, in recent years several approaches for verification of mixed- and hybrid systems were proposed. Most of them base on the finite state discrete abstraction by partitioning the continuous state space, whose dynamic is described by differential algebraic equations (DAE), into hypercubes using a fixed grid. The most popular tool is called HyTech and was introduced in [1]. HyTech is a symbolic model checker for linear hybrid automata that can be analyzed automatically using polyhedral state sets. In [2] the tool d/dt is proposed which computes the reachable states for hybrid systems by discrete time integration. Set of states are represented with orthogonal polyhedra, which guarantees the reachable state enclosures. PHAVer (Polyhedral Hybrid Automaton Verifier) [3] is another tool that do an on-the-fly overapproximation of piecewise affine dynamics and by partitioning the state space based on user definable constraints of the systems.

All the above mentioned tools are restricted to circuit properties like the linearity of the analog part or can only do reachability analysis. Furthermore, they suffer from explicitly handling and describing each digital state. In this work we introduce our tool MScheck that can verify mixed-signal circuits by using symbolic model checking techniques which represent states implicitly. We are capable to treat non-linear analog circuits integrated with a sequential digital circuit part at gate level. We used multi terminal binary decision diagrams (MTBDD) to efficiently represent time behavior within the circuit. Additionally, we used CTL-AT for defining mixed-signal properties.

The following sections discuss the verification flow we used for mixed-signal model checking. Section II gives a formal definition of the specification language CTL-AT we used for characterizing necessary circuit behavior. In section III a short introduction to the symbolic representation of timed delayed transition relations and state declarations will be given. The principles of the verification flow will be given in sections IV and V. In section VI we demonstrate our verification flow by verifying the behavior of a phase locked loop (PLL). Finally, a conclusion will be given in section VII.

II. SPECIFICATION LANGUAGE

In digital circuit verification some common formal specification languages exists. All these languages are based on linear
time logic (LTL) or computation tree logic (CTL). The up-to-
now proposed specification languages are able to analyze tim-
ing behavior for digital circuits based on a state transition graph
called Kripke structure [4]. To specify dynamic system be-
behavior with a CTL syntax, it is necessary to introduce time-
constrained temporal operators that additionally constrain the
scope of the operations. To extend Kripke structures with tran-
sition delay time information and interface variables we intro-
duce the time delayed transition structure.

Definition 1 (Time Delayed Transition Structure) Let

\[AP = \{ p_1, p_2, \ldots \} \]

be a set of atomic propositions. A time delayed transition structure (TDTs) is a six tuple \(\mathcal{M} = (S, S_0, \delta, G, T, L) \) where

- \(S \) is an infinite set of states.
- \(S_0 \subseteq S \) is the set of initial states.
- \(G \) is a finite set of input symbols.
- \(\delta \subseteq S \times S \times G \) is a dependent transition relation that must be
total, that is, for every state \(s \in S \) there is a successor
state \(s^+ \in S \) such that \(\delta(s, s^+, g) \) with \(g \in G \).
- \(T : \delta \rightarrow \mathbb{R} \) is a function that labels each transition from
state \(s \) to \(s^+ \) with the delay time using this transition.
- \(L : S \rightarrow 2^{AP} \) is a function that labels each state with
the set of atomic propositions true in that state.

A path \(\pi \) in a TDTs is an infinite sequence of states
\(s_0, s_1, \ldots \) in \(\mathcal{M} \) with \((s_i, s_{i+1}, g_i, t_i) \in \delta \times T \) for every \(i \geq 0 \).
With \(\pi[i] \) we denote the part of \(\pi \) starting at \(s_i \). In the follow-
ing, each state \(s_i \) can be encoded by a binary coding vector
\(\vec{z} \in \mathbb{B}^n \) which gives each state a unique representa-
tion.

In [5] a timed constraint CTL (CTL-AT) specification lan-
guage especially for analog properties was introduced. At this
point we want to define CTL-AT more formally. We write
\((\mathcal{M}, s_0) \models p \) to express that in a time delayed transition
structure \(\mathcal{M} \) formula \(p \) is true for starting state \(s_0 \). The formal
semantics of CTL-AT will be given in Definition 2.

Definition 2 (Time Constrained CTL Semantics) Let \(\mathcal{M} \) be
a TDTs, \(\pi \) be a path starting with the state \(s_0 \) in \(\mathcal{M} \), \([t_i, t_h] \) be a
time interval with the boundaries \(t_i, t_h \in \mathbb{R}^+ \). Hence, \(\phi \) and
\(\psi \) be CTL-AT formulas and \(p_i \in AP \) be an atomic proposition.
Then we will define the following Time Constrained CTL model
relations:

\((\mathcal{M}, s_0) \models p_i \iff p_i \in L(s) \)
\((\mathcal{M}, s_0) \models \neg \phi \iff \pi \not\models \phi \)
\((\mathcal{M}, s_0) \models EF_{[t_i, t_i]}(\phi) \iff \exists \pi \exists i : t_i \in [t_i, t_h], \pi[i] \models \phi \)
\((\mathcal{M}, s_0) \models EG_{[t_i, t_i]}(\phi) \iff \exists \pi \forall i : t_i \in [t_i, t_h], \pi[i] \models \phi \)
\((\mathcal{M}, s_0) \models AF_{[t_i, t_i]}(\phi) \iff \forall \pi \exists i : t_i \in [t_i, t_h], \pi[i] \models \phi \land \forall j < i : \pi[j] = \psi \)
\((\mathcal{M}, s_0) \models AG_{[t_i, t_i]}(\phi) \iff \forall \pi \forall i : t_i \in [t_i, t_h], \pi[i] \models \phi \land \forall j < i : \pi[j] = \psi \)
\((\mathcal{M}, s_0) \models E(\psi U_{[t_i, t_i]}(\phi)) \iff \exists \pi \forall i : t_i \in [t_i, t_h], \pi[i] \models \phi \land \forall j < i : \pi[j] = \psi \)
\((\mathcal{M}, s_0) \models A(\psi U_{[t_i, t_i]}(\phi)) \iff \forall \pi \forall i : t_i \in [t_i, t_h], \pi[i] \models \phi \land \forall j < i : \pi[j] = \psi \)

A. Past Time CTL-AT

For many property circumstances it is useful to apply past
time CTL-AT expressions. Past temporal operators can be de-
scribed as a mirror image of future operators. Hence, we intro-
duce past time operators \((P, H, \text{and } S) \) which are mirror images
of future operators \((F \leftrightarrow P, G \leftrightarrow H, U \leftrightarrow S) \). In this way,
e.g. \(EP(\phi) \) means that \(\phi \) was true at some past instant.

III. Symbolic Representation

The key breakthrough in the digital verification domain came
by using symbolic representation for states to avoid the state
explosion problem. Rather than explicitly enumerating ev-
every single state symbolic model checkers use BDDs to specify
sets of states in the form of Boolean functions. To store tim-
ing behavior we used multi terminal binary decision diagrams
(MTBDDs) as an extension of BDDs. MTBDDs represent
pseudo-Boolean functions by mapping a vector of Boolean val-
ues into a real number. With BDDs as well as with MTBDDs
we can get a formal description of transition relations and state
sets using characteristic functions [6].

A. Characteristic Transition Function

In digital model checking theory transition relations and
states are often denoted by characteristic functions. Charac-
teristic functions are functional representations that indicate if
a variable from a set \(A \) is contained in a subset \(B \). To denote
transition relations with delay time according to TDTs we de-
finite the following characteristic transition function.

Definition 3 (Characteristic Transition Function) Let \(A \)
and \(B \) be sets and \(s, s^+ \in A, s^+ \in B \). \(\tau \in \mathbb{R} \) be a real
number characterizing the transition delay time between the
states \(s \) and \(s^+ \). The characteristic transition function (CTF)
\(\chi_\delta : \delta \rightarrow \mathbb{R} \) related to TDTs is then defined as:

\[\chi_\delta(s, s^+, \tau) = \begin{cases} \tau & : (s, s^+, \tau) \in \delta \\ \infty & : (s, s^+, \tau) \notin \delta \end{cases} \]

Considering the binary coded vector \(\vec{z} \in \mathbb{B}^n \) represent-
ing each present state, the binary coded vector \(\vec{g} \in \mathbb{B}^m \) rep-
resenting each successor state, and the binary input coded vector
\(\vec{g} \in \mathbb{B}^m \). The overall CTF can now be written as a conca-
ate-nation of all pseudo Boolean transition relations between each
states \(s_i, s_j \in S \).

\[\chi_\delta = \bigvee_{s_i, s_j} (\pi_{i,j} \cdot (\vec{z} \equiv \vec{z}(s_i))(\vec{z}^+ \equiv \vec{z}(s_j))(\vec{g} \equiv \vec{g}(s_i, s_j))) \]

The symbol \(\pi_{i,j} \) denotes the according transition delay time
between the present state \(s_i \) and the successor state \(s_j \) under
the related input \(\vec{g}(s_i, s_j) \). For example, Figure 1(a) shows an illus-
tration of a TDTs structure. The transitions, displayed as edges
between the discrete states, are tagged with the delay time and
the valid input value \(\vec{g} \in G \). The related MTBDD representa-
tion of the transition relation is given in Figure 1(b). Each non-
terminal value represents a state coding bit \(\vec{z} = [z_1, z_2], \vec{z}^+ =
[z_1^+, z_2^+] \) or an input \(\vec{g} \). The terminal value denotes the delay

405
time using the transition represented by the path to its terminal
time. Related to definition 3, the infinity symbol ∞ as a termi-
nal value characterizes that there is no valid transition between
two states.

Similar to the symbolic representations in the digital manner,
sets of states can also be given by MTBDDs. The terminal
nodes in these MTBDDs are labeled only with 1 for a valid
state or 0 for no valid state. For this reason MTBDDs which
represent states can be considered as BDDs. In the remain of
this paper we will denote the characteristic function for a set of
states with \(\phi = \chi(\vec{z}) \).

IV. ANALOG STATE SPACE

Our approach is basically superimposed on the analog state
space discretization that was presented in [7]. Based on a mod-
ified nodal analysis a system of nonlinear differential-algebraic
equations (DAE) is setup up for the circuit. The energy storing
quantity (like voltage at capacitances and currents through in-
ductors) and inputs span an extended continuously state space.
This infinity state space is then bounded to a finite space, lim-
ited by e.g. supply voltages, and automatically divided into a
finite number of homogeneous n-dimensional hyperboxes that
cover the limited state space. Each hyperbox is treated as a
discrete state and the dynamics can be interpreted as transi-
tions which labels the delay time. The transition delay time
between the discrete states is obtained by numerically solving
the nonlinear DAE-systems of the circuit for a finite number of
randomly chosen points within the predecessor hyperbox. The
obtained discrete model describes the dynamics of the analog
systems by a TDTS.

V. SYMBOLIC MIXED-SIGNAL MODEL CHECKING

Figure 2 gives the framework of the verification flow we
used. The mixed-signal netlist contains both analog and dig-
tal circuit parts, which is split into a digital and an analog sub-
circuit. The interfaces between these two parts are modeled
by simple 1-bit quantizer on the analog side (AD) and an 1-
bit converter on the digital side (DA). The converter transforms
the output value to a voltage source which supplies the analog
circuit. To get a discrete time delayed transition structure for
the analog circuit we applied the above described discretiza-
tion method. The discretized state space is transformed into a
corresponding transition relation MTBDD which contains all
transition delay times.

From the sub-netlist of the digital part the corresponding
transition MTBDD is directly determined. Both transition
MTBDDs are inputs of the model checking algorithm. Ad-
ditionally, the mixed-signal specification of the system, which
should be proven, is needed. For evaluating a CTL-AT formula
simultaneously on the MTBDDs of both systems, we imple-
mented a scheduling algorithm which is strongly dependent on
the interface signals within the mixed-signal system.

A. Mixed-Signal CTL-AT Analysis

Considering mixed-signal systems, the strong concur-
cencies between the analog and digital subsystems have to be applied
carefully. Hence, such systems consist of two kinds of input
signals. One input (\(\vec{e} \)) is the immediate consequence to the out-
put of the intercommunicating system and can be therefore con-
sidered as a state variable. The other input (\(\vec{w} \)) comes from ex-
tern and is independent of the system states. Both input signals
are included in the transition MTBDD. The basic quantification
functions for the EX and AX operations has to be modified as
follows.

\[
EX(\phi_{st}) = \exists \vec{z}^+ \exists \vec{e} \exists \vec{w} \chi_{st}(\vec{z}, \vec{z}^+, \vec{e}, \vec{w}) \wedge \chi_{st}(\vec{z}^+) \\
AX(\phi_{st}) = \exists \vec{z}^+ \exists \vec{e} \forall \vec{w} \chi_{st}(\vec{z}, \vec{z}^+, \vec{e}, \vec{w}) \wedge \chi_{st}(\vec{z}^+)
\]

Furthermore, the time constraints and the different delay
time in both circuit domains restrict the verification to a cru-
cial procedure. Hence, we developed a scheduling algorithm
that sequentially decides which subsystem has to be evaluated
by the CTL-AT formula and the time restriction. The time in-
terval included in the CTL-AT formula is automatic divided
into subintervals that guarantee that evaluation in the actual
subsystem without having any affect to the other system part
causin g state change. Algorithm 1 shows the basic struc-
ture of the recursive scheduling procedure for analog and dig-
tal CTL-AT evaluation. The initial arguments \(\phi_A \) and \(\phi_D \) are
the analog and digital starting state MTBDDs declared in the
Algorithm 1 CTLschedul(φ_A, φ_D, φ_A, φ_D, χ_D, χ_D; [t_l, t_h])

\[A_{Min} = \text{getMin_Transition}(φ_A, χ_D) \]
\[D_{Min} = \text{getMin_Transition}(φ_D, χ_D) \]
if \(A_{Min} \leq t_h \lor D_{Min} \leq t_h \)
if \(A_{Min} < D_{Min} \)
\[(θ_A, θ_D) = \text{CheckCTL}(φ_A, φ_D, [t_l, D_{Min}]) \]
\[ϕ_D = \text{CheckImpact}(φ_D, θ_D) \]
\[(θ_D, θ_D) = \text{CheckCTL}(φ_D, φ_D, χ_D; [t_l, D_{Min}]) \]
\[ϕ_A = \text{CheckImpact}(θ_D, φ_A) \]
\[t_l = t_l - D_{Min} \]
\[t_h = t_h - D_{Min} \]
end if
else
\[(θ_D, θ_D) = \text{CheckCTL}(φ_D, φ_D, [t_l, A_{Min}]) \]
\[ϕ_A = \text{CheckImpact}(θ_D, φ_A) \]
\[(θ_A, θ_A) = \text{CheckCTL}(φ_A, φ_A, φ_A, φ_A, [t_l, A_{Min}]) \]
\[t_l = t_l - A_{Min} \]
\[t_h = t_h - A_{Min} \]
end if
\[(θ_A, θ_D) = \text{CTLschedul}(φ_A, φ_D, θ_A, φ_D, [t_l, t_h]) \]
\[θ_A = θ_A \cup θ_A \]
\[θ_D = θ_D \cup θ_D \]
return \(θ_A, θ_D \)

Algorithm 2 CheckDigitalTimeEF(φ_D, χ_D, [t_l, t_h])

\[Ω = false, Ω_{i+1} = φ_D, χ = φ_D, θ = false \]
if \(t_l < τ_{dk} \)
\[θ = φ_D \]
end if
while \(t_h \geq τ_{dk} \)
if \(Ω \neq Ω_{i+1} \)
\[t_h = t_h - τ_{dk}, t_l = t_l - τ_{dk} \]
\[Ω = Ω_{i+1} \]
\[χ = \text{CheckEX}(χ, χ_D) \]
if \(t_l < τ_{dk} \)
\[θ = θ \cup Ω \]
end if
\(Ω_{i+1} = Ω \cup Ω_i \)
else
\[θ = θ \cup Ω \]
\[t_h = 0 \]
end if
end while
return \(θ, χ \)

Algorithm 3 CheckAnalogTimeEF(φ_A, φ_A, φ_D, [t_l, t_h])

\[θ = false, χ = false \]
for all transitions \(λ(φ_A, χ_D) \in δ \)
\[τ_r = \text{getTransitionTime}(λ(φ_A, χ_D)) \]
if \(t_l < τ_r \)
\[θ = φ_A \]
end if
if \(τ_r \leq t_h \)
\[φ_A = \text{CheckEX}(φ_A, χ_D, τ_r) \]
\[(θ, χ) = \text{CheckAnalogTimeEF}(φ_A, χ_D, [t_l-τ_r, t_h-τ_r]) \]
\[θ = θ \cup Ω, χ = χ \cup χ \]
else
\[χ = θ \cup χ \]
end if
end for
return \(θ, χ \)

The quantification procedure in equation (2) after mapping the MTBDD to a BDD. This can be done, because all terminal nodes excluding the infinity nodes are equal. The algorithm returns two MTBDDs θ and χ, while θ represents the result of the EF operation and χ gives the last state in iteration needed for the impact checking in Algorithm 1 (θ_D).

Algorithm 3 applies a recursive call to evaluate the EF operation in the analog domain. We used a recursive algorithm, because all transitions are considered under time restriction explicitly. For every transition λ(φ_A, χ_D) ∈ δ outgoing from the actual state φ_A the delay time τ_r and the iteration step is determined (CheckEX) by extracting the related transition relation and transforming it to a transition BDD before the recursive call is executed. The result θ is a collection of all interim results during the time interval [t_l, t_h]. Whereas χ gives the last state needed for the impact checking in Algorithm 2 (φ_A). Figure 3 demonstrates the scheduling algorithm by using the CTL-operation EF[t_l, t_h](D_1 ∩ A_1). To ease the understanding we consider the product automata of an interacting set of analog and digital states. The big dashed circles depict digital states (D_1, ..., D_4) and the smaller circles depict analog states.

\[A_{Min} = \text{getMin_Transition}(φ_A, χ_D) \]
\[D_{Min} = \text{getMin_Transition}(φ_D, χ_D) \]
if \(A_{Min} \leq t_h \lor D_{Min} \leq t_h \)
if \(A_{Min} < D_{Min} \)
\[(θ_A, θ_D) = \text{CheckCTL}(φ_A, φ_D, [t_l, D_{Min}]) \]
\[ϕ_D = \text{CheckImpact}(φ_D, θ_D) \]
\[(θ_D, θ_D) = \text{CheckCTL}(φ_D, φ_D, χ_D; [t_l, D_{Min}]) \]
\[ϕ_A = \text{CheckImpact}(θ_D, φ_A) \]
\[t_l = t_l - D_{Min} \]
\[t_h = t_h - D_{Min} \]
end if
else
\[(θ_D, θ_D) = \text{CheckCTL}(φ_D, φ_D, [t_l, A_{Min}]) \]
\[ϕ_A = \text{CheckImpact}(θ_D, φ_A) \]
\[(θ_A, θ_A) = \text{CheckCTL}(φ_A, φ_A, φ_A, φ_A, [t_l, A_{Min}]) \]
\[t_l = t_l - A_{Min} \]
\[t_h = t_h - A_{Min} \]
end if
\[(θ_A, θ_D) = \text{CTL schedul}(φ_A, φ_D, θ_A, φ_D, [t_l, t_h]) \]
\[θ_A = θ_A \cup θ_A \]
\[θ_D = θ_D \cup θ_D \]
return \(θ_A, θ_D \)

The quantification procedure in equation (2) after mapping the MTBDD to a BDD. This can be done, because all terminal nodes excluding the infinity nodes are equal. The algorithm returns two MTBDDs θ and χ, while θ represents the result of the EF operation and χ gives the last state in iteration needed for the impact checking in Algorithm 1 (θ_D).

Algorithm 3 applies a recursive call to evaluate the EF operation in the analog domain. We used a recursive algorithm, because all transitions are considered under time restriction explicitly. For every transition λ(φ_A, χ_D) ∈ δ outgoing from the actual state φ_A the delay time τ_r and the iteration step is determined (CheckEX) by extracting the related transition relation and transforming it to a transition BDD before the recursive call is executed. The result θ is a collection of all interim results during the time interval [t_l, t_h]. Whereas χ gives the last state needed for the impact checking in Algorithm 2 (φ_A). Figure 3 demonstrates the scheduling algorithm by using the CTL-operation EF[t_l, t_h](D_1 ∩ A_1). To ease the understanding we consider the product automata of an interacting set of analog and digital states. The big dashed circles depict digital states (D_1, ..., D_4) and the smaller circles depict analog states.
Without loss of generality, we assume that the digital clock, i.e., the digital transition time, is bigger than each analog transition delay. Each set of states can be divided into states that produce a Boolean value 0 and a Boolean value 1 at the interacting output ports. The digital states with the grey background depict states that produce an $e_A = 0$ and the states with white background an $e_A = 1$. The red hatched analog states generate an $e_D = 0$ and the green ones an $e_D = 1$ at the output. The green dashed and the red edges between the digital states indicate which transition has to be applied depending on the output of the analog subsystem and vice versa. All transitions between the digital states are labeled with the digital delay time t_D. Further, we assume that the delay transition time t_A between the analog states can be different. The interval $[t_l, t_h]$ is partitioned into subintervals constrained by the digital clock cycle t_D.

First the CTL-operation EF is applied using fixpoint iteration until the time reaches the upper bound t_D. The obtained analog path is A_4, A_2 related to the digital state D_1. The function CheckImpact modifies the input of the digital subsystem (e_A) to a 0. Next, the digital part takes one step using the digital red transition to state D_4. The boundaries in the time interval are then decreased by $t_D ([t_l - t_D, t_h - t_D])$. The new digital state generates an output of 1, therefore the actual analog state changes after a delay to state A_3. With the new time boundaries the algorithm repeats while the origin upper bound of the time interval is not reached. The result is a set of analog and digital states collected during the iterations fulfilling the time restrictions. For the results of the $EF[t_l, t_h](D_1 \land A_4)$ formula we obtained the set of states $\{(D_4, A_3), (D_4, A_5), (D_2, A_3), (D_2, A_2), (D_3, A_2)\}$.

VI. EXPERIMENTAL RESULTS

To demonstrate our symbolic approach we consider the phase locked loop (PLL) in Figure 4. The PLL consists of an analog voltage controlled oscillator (VCO), a charge pump and a digital phase detector. The voltage at capacity C_1 drives the input of the digital part using an 1-bit quantizer (A/D-Interconnection). The output v_D of the digital block drives the input of the analog part by converting the Boolean value into a high voltage $U(v_D = 1) = 2.25V$ or a low voltage $U(v_D = 0) = 0.25V$ value. Within the digital part we added a decimation block to divide the digital clock into the desired reference clock T_{ref}. We used a clock frequency of $f_{clk} = \frac{f_{ref}}{128} = 250Hz$ and a decimation factor of 128 ($T_{ref} = 128 \cdot T_{clk}$). This means that we used a 7-bit counter, where the most significant bit (MSB) belongs to the clock level. The phase detecting is done by a simple XOR-gate. The synchronous output of the phase detector set the output latch W_0 which defines the output of the digital subcircuit. As a direct consequence the state MTBDD exhibits 9 variables, 7 for the counter, 1 for the output latch and 1 for defining the input.

For the analog part we got a four dimensional state space spanned by the three capacitance voltages ($U_{C_1}, U_{C_2}, U_{C_3}$) and the input voltage ($U(v_D)$) within the D/A-Interconnection. We got 2,048 analog states which are symbolic encoded by 11 MTBDD variables. In Figure 5 the sub-state space spanned...
by the three capacitance voltages U_{C_1}, U_{C_2}, and U_{C_3} for input voltage $U(v_D) = 0.25V$, corresponded to the digital output zero, is depicted. The figure indicates the discretized sub-state space and a simulation trajectory as a black spiral line showing the dynamic behavior of the PLL.

A. Reachability Analysis

First we did reachability analysis by using the $EP[0.0 ms, 20 ms](\phi_D \land \phi_A)$ CTL operation starting with a randomized single state ϕ_D and ϕ_A for the digital and analog subsystems to get a simulation comparable progress showing phase locking behavior. Figure 6 (a) illustrates the voltage U_{C3} at the capacity C_3 extracted from the MTBDDs we got by stepwise traversal using the EP operation. The voltage U_{C3} at C_3 represents the smoothed input voltage dependent to the digital phase detector output. After 16 ms the voltage achieved 0.55 V that has the effect that the output oscillation frequency at capacity C_1 remains at 250 Hz (see Figure 6 (b)) which is identical to the digital reference frequency f_{clk}. The set of states the EP operation remained after 16 ms will be below denoted as $\phi\text{lock} = U_{C3} > 0.5 \land U_{C3} < 0.6$. We used the following property to verify reachability behavior.

$$\phi\text{lock} = EP[0.0 \text{ms}, 20 \text{ms}](\phi_D \land \phi_A)$$

(4)

This property means, that starting from the given analog and digital states ϕ_A and ϕ_D the locking states ϕlock will be achieved within 20 ms by at least one path.

B. Locking Analysis

Furthermore we verify locking behavior of the PLL. To get all states that lead to the locking states ϕlock we used the AF formulation. We defined the locking property

$$true = AF[0.0 \text{ms}, 30 \text{ms}](\phi\text{lock})$$

(5)

to verify that all states lead to the locking states ϕlock within the next 30 ms. This property is the main behavior of the PLL for phase synchronization of the input signal. For the above assumptions we got what we expected, that all starting states ϕ_D and ϕ_A lead to the locking states ϕlock within 30 ms. For this verification example our general purpose single CPU PC consumed 3.15 minutes for the discretization of the analog state space and 50 seconds for the verification procedure.

C. Discussion

Upto now every verification method applying mixed-signal or hybrid systems suffers from an explicit representation of digital states. Furthermore, they can only analyze linear systems or can only do reachability analysis. In this contribution we firstly introduced a verification method for mixed-signal systems with a non-linear behavior. Our method represents both analog and digital states as well as timed transitions implicitly by MTBDDs. This approach is able to overcome different transition times in the analog circuit part in combination with the digital clock. Hence, interactions between the analog and digital circuit parts can now be formal verified. The proposed example gives an advanced mixed-signal circuit with non-linear behavior and a strong dependency between the analog and digital parts. The resulted state variables for both, the analog and digital part, did not achieved practical limits when considering today’s BDD based verification tools. But it shows that different time restrictions and interactions between analog and digital parts can now be overcome for formal verification issues.

VII. CONCLUSION

This paper introduces a novel approach for symbolic mixed-signal circuit model checking. To treat the different time properties that characterize the analog and digital subcircuits we used MTBDDs for efficient storing time behavior. We extend common digital quantification procedures to handle timing dependency between the circuits. For specifying mixed-signal properties that will be checked we used CTL-AT as the specification language. To demonstrate our approach we verified the reachability and the locking behavior of a PLL.

REFERENCES

