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Abstract— On chip memories provide fast and energy efficient
storage for code and data in comparison to caches or external
memories. We present techniques and algorithms that allow for
an automated use of on chip memory for code blocks of instruc-
tions which are dynamically scheduled at runtime to increase per-
formance and reduce power consumption.

I INTRODUCTION AND RELATED WORK
In the light of increasing area, big on chip memories are

becoming more and more affordable. In coming multi-core

systems they are also a necessity to cope with the increasing

memory bandwidth pressure towards external memories. We

show that block caches alone can already outperform instruc-

tion caches of the same size and provide initial data and insights

into the automated use of block caches and their respective on-

and offline phases.

Energy and power dissipation constrain clock rates in em-

bedded systems. However Moore’s law still holds true and

therefore available area will increase for the foreseeable future

providing new opportunities to the designer. Internet enabled,

wireless consumer gadgets e.g., deploy multi-core systems

[1, 2] to securely deliver multimedia content in real time to its

users. Typical workloads encompass video encoding/decoding,

packet handling, wireless communication and cryptographic

protocols simultaneously. SoCs such as the NEC mobile phone

application processor MP211 statically assign specific tasks to

five dedicated cores. A significant amount of power is con-

sumed in the memory hierarchy. Especially off-chip DRAM

accesses are costly in power. For performance reasons off-chip

accesses are usually cached in instruction caches which con-

sume more power and take more area than on chip memory

[3, 4, 5] which we use for our block cache. On chip memories

- also called scratchpad memory - are already a commodity in

modern SoC designs. They are typically used to keep compu-

tational intensive code e.g. multimedia or cryptographic algo-

rithms close to processing elements. On chip memories are not

yet big enough to accommodate all application code. Therefore

a designer must identify and prepare a set of performance crit-

ical system components for on chip usage. For todays multi-

megabyte software systems this is no longer feasible. Previous

work focused on static code placement [5] in on chip memo-

ries. To automatically identify worthy code portions (hot spots)

profiling was used. However profiling may miss or underesti-

mate the importance of code portions. An extension of [5], [6]

places copying procedures in front of statically selected code to

use on chip memory more efficiently. Additional care has to be

taken that the copying costs amortize. This approach still lacks

caching capability and adaptability. The copying code also in-

creases the code size, for some benchmarks as high as four-fold

[7]. The authors of [8] propose an integrated hardware / soft-

ware approach for on chip data management (only). For effi-

cient transfers from external to on chip memory DMA is used

to reduce copying cost, subsequently lowering the amortization

bound. In [9] a MMU is used to page code between off- and on

chip memory. The pageable code resides in a special memory

region. Additionally, there are two further regions which are

either cached by a direct mapped instruction cache or not. The

memory region partitioning is not runtime adaptable.

The rest of this paper is organized as follows. In Section II,

we present our novel contributions. In Section III, we intro-

duce our workflow, algorithm and design considerations. Ex-

perimental results are presented in Section IV-B, and we finally

conclude in Section IX.

II OUR CONTRIBUTION
1) We have designed a new runtime adaptable instruction

(block) cache which leverages on chip memory to increase per-

formance, lower power consumption using less area in compar-

ison to instruction caches.

2) The challenge of efficient offline code block composition is

handled by our algorithm.

3) The effects of different block cache parameters, such as

block size and online management strategies have been ana-

lyzed.

Hence, our block cache allows (increasing) on chip mem-

ories to be efficiently used, is scaleable in size and allows of-

fline knowledge to be exploited in our algorithm. Besides these

unique characteristics, our approach does not require source

code access or compiler modifications. Re-linking is sufficient.

Our tools can take gcc generated ELF-binaries and the re-

sulting binaries are still executable on systems without block

cache. Furthermore, the concept, the algorithms and our tools

are instruction set independent.

III WORKFLOW
The designer must create function call traces of individual

system components e.g. jpeg compression, so that a call graph

can be constructed (Figure 1). The function call traces can be

obtained by instrumenting or monitoring inside a simulator or

on the target hardware. Our block composition algorithm takes
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Fig. 1. Workflow, block building

Fig. 2. Workflow, block cache simulation

the (dynamic) function call graph as input and merges func-

tions into groups/ blocks of functions until the (block) size limit

prevents further inclusions. The block size is chosen by the de-

signer. Functions that are bigger than a single block need to be

split or the block size needs to be increased. Function splitting

can already be done by the compiler. After block composition a

block linker file is created from the block graph. It states which

functions go into a distinct block. The re-linker processes the

input binary accordingly. The restructured binary is slightly

bigger because most blocks will have some space left.

To cover functions not included in the execution trace we

disassemble the binary and analyze it to derive a static function

call graph which is merged to the dynamic block graph before

the block linker file is generated.

In the next step (Figure 2) the designer can assess the perfor-

mance of the block composition by feeding function call traces

into our block cache simulator. Therefore he needs the previ-

ously determined block linker file. In the block cache simula-

tor the number of simultaneously available code blocks (called

block slots) and the online eviction strategy can be evaluated.

For different block sizes, the composition process needs to be

repeated. The overall cache size is the block size multiplied by

the number of block slots.

Program III.1 Code merging algorithm

cfg to block graph() {
combine neigbors() // first step
merge direct children() // second step
bubble merge() // third & last step

}

combine neigbors(graph) {
while(success) {

compute centrality(graph);
normalize centrality(graph);
Node n1 = select node with centrality(graph,1.0);
Node n2 = max(edge weights(children(n1)),

edge weights(parents(n1));
if (n1 && n2) merge(n1,n2); else return;

}
}

merge direct children(graph) {
compute centrality(graph);
normalize centrality(graph);

foreach(Node n in centrality sorted(graph):
with more than one child) {

c = sort by edge weight(children(n));
merge until block size reached(c);

}
}

bubble merge(Graph g,Node n,p
parents of n) {

walk entire graph(graph in post order,
Node n)

{
foreach(p) { if merge(p,n) return; }
recurse(parent p’ of p,n) {
if merge(p’,n) exit;

}
recurse(children c’ of p,n) {
if merge(c’,n) exit;
}
recurse(root r’ of graph,n) {
if merge(r’,n) exit;

}
} // end walk entire graph

}
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Benchmark

Code size of ex-

ecuted functions

[Byte]

Average function

size [Byte]

Number

of

functions
CJPEG 26935 216 125

MPEGDEC 27766 309 90

WGET 39185 180 219

TABLE I

BENCHMARKS: CODE AND FUNCTION SIZES

A MERGING ALGORITHM FOR DYNAMIC FUNC-
TION CALL GRAPHS

The merging algorithm uses the greedy strategy to reduce

control flow transfer (function calls) between blocks to a min-

imum in order to avoid block cache misses. The frequency of

control flow transfer is derived from the function call trace.

The pseudo code for the dynamic graph merging algorithm

is shown in Figure III.1. Step1: For every node in the call

graph the centrality measure is computed (compute centrality)

which considers the in- and outgoing edge weights which are

the calling frequencies. Then the node with highest central-

ity measure is merged with the neighbor it shares the high-

est edge weight (combine neigbors). This is repeated until no

more functions can be merged into blocks (size limit). The first

step only merges directly linked nodes/functions. Step2: In the

next step (merge direct children) the children of every node are

merged in sequence of their centrality measure. Step3: In the

last step (bubble merge) the algorithm goes even further and

considers distant nodes. First, the parents‘ children are con-

sidered. Then the parents‘ parents are recursively considered.

Then the children of the children and as a last resort a recursive

decent from the root node takes all other nodes of the graph

into consideration. Finally the block linker file is created.

The graph started out as function call graph and is converted

into a block call graph by merging. The designer specified

block size has to be obeyed within each step.

B DESIGN CONSIDERATIONS IN BLOCK COMPO-
SITION

Both run-time trace and static analysis are limited in accu-

racy. For static analysis meta-information such as relocation

and symbol tables can be used to create an approximate call

graph. The results however cannot be relied on if function

pointers are passed around in data structures. This is quite

common in the C-language to implement software interfaces.

Therefore the designer needs to adjust the component’s pa-

rameters and input data carefully, possibly even merging and

weighting multiple execution traces to finally obtain an execu-

tion trace close enough to the ones encountered in the field.

So that all frequently executed code portions are included in

the dynamic call graph. The merging algorithm exploits the

knowledge about function calling relations to group strongly

related functions into one block. This is important because ev-

ery call outside a block may require a new block to be fetched

and another to be evicted. The block size determines the la-

tency encountered for every miss in our block cache.

One has to keep in mind that a good block composition and

a sufficiently sized block cache cause the system to spend most

of the time executing code from on chip memory.

Fig. 3. Internal block fragmentation in CJPEG

Fig. 4. Function size distribution in CJPEG

C RESULTS OF BLOCK COMPOSITION

Figure 3 shows the (theoretical) minimum amount of blocks,

the amount of attained and the number of functional calls be-

tween blocks in total for different block sizes (512-8192 bytes)

in CJPEG. This benchmark has been used throughout the pa-

per. The other benchmarks (Table I) perform quite similar and

would convey little additional value and are therefore omitted.

The merging algorithm presented in A reduces inter-block

calls exponentially for block sizes up to 4096 bytes.

The minimum amount of blocks can be achieved if (inter-

nal) fragmentation is non-existent. In configurations with small

block sizes (<1024 byte) internal fragmentation is more se-

vere than in bigger blocks. This can be explained by the re-

lation between block size and average function size (Table I)

which is 216 bytes for CJPEG. The function size distribution

is shown in Figure 4. Most functions in CJPEG are already

smaller than 512 bytes, the smallest block size we chose in our

benchmarks. Bigger functions were split into smaller ones to

compose blocks with a maximum size of 512 bytes.

The function sizes are given for the Intel architecture (32bit,

x86) which has been used for all simulations. Other than dif-

ferent function sizes there is nothing which is architecture de-

pended in our analysis tools and in block composition. If a

designer wants to compose code blocks for the ARM/THUMB

architecture e.g. he/she only needs a (cross) compiled binary
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Fig. 5. High level hardware overview

Control Logic Area

Slices
Equivalent

gates
Percentage

32 Bit DSP-

Processor (OR1200)
4530 10192 89.9

DMA / Control Unit 492 1107 9.8

TLB 16 36 .30

TABLE II

AREA IN A FPGA IMPLEMENTATION

to determine the architecture specific function sizes in order

to build a new block composition. The function trace can be

taken from the Intel architecture because it is application spe-

cific. This allows different architectures to be analyzed without

actually running code for them.

IV HARDWARE OVERVIEW
Figure 5 shows a high level hardware overview. The num-

ber of block slots need to be fixed at design time and determine

along with the block size the overall cache size. The fixed block

size has been specifically chosen with an efficient hardware im-

plementation in mind.

The block cache uses a μTLB [9] to map code blocks into

on chip memory (a MMU is optional). It is also necessary to

detect function calls/returns to other blocks efficiently. Soft-

ware based approaches [10, 11] suffer from complexity and

need time consuming checks to catch function calls/returns to

unloaded/evicted code.

The DMA unit transfers new blocks from external memory

to the on chip memory. It exploits burst transfers in the external

memory to transfer blocks and is therefore much faster than a

software copy implementation. The copying and eviction pro-

cess is controlled by the block cache control unit.

A HARDWARE COSTS

The area for processor, DMA/control unit and μTLB are

shown in Table II (FPGA implementation). The majority of

the area almost 90% - is taken by the processor.

Performance wise a block cache miss causes the processor to

stall until the requested block is in place. The time for a miss is

fixed and depends on the time necessary for the block transfer.

V EVICTION STRATEGIES
Every time a new block is loaded into on chip memory, the

block cache needs to evict an old block. In [9] a round robin

(RR/FIFO) algorithm has been implemented in hardware. We

evaluated the performance of RR, LRU and ARC (Adaptive

Cache Replacement) [12]. For reference we use the (optimal)

Block size

[Byte]

Block cache size for

6,8 and 12 slots [Byte]
Instruction Cache

6 slots 8 slots 12 slots

512 3072 4096 6144 512

1024 6144 8192 12288 1024

1536 9216 12288 18432

2048 12288 16384 24576 2048

2560 15360 20480 30720

3072 18432 24576 36864

... . . . 4096

8192 49152 65536 98304 8192-131072

TABLE III

CACHE SIZES

Belady algorithm which requires future knowledge to base its

decisions.

LRU is well researched algorithm and myriads of improved

versions have been published. Only one deficiency shall be

mentioned here: in loops LRU tends to overwrite old entries

which are subsequently needed, in case cache size and loop

access patterns mix poorly. Under such circumstances it is bet-

ter to keep some entries fixed for the time being. However, if

such situations arise in our block cache it can be a good indi-

cation for a too small cache and/or a suboptimal block compo-

sition. None of our benchmark suffered from this phenomenon

because looping mostly takes place inside blocks. In CJPEG

loops never spanned more than four blocks. Our smallest block

cache already uses 6 block slots which are more than sufficient.

ARC balances recency and frequency by dynamically divid-

ing the cache size into recent and frequent accesses. ARC is

scan-resistant, meaning that one time access sequences have

limited impact in terms of cache pollution.

FIFO (First in first out, round robin) is easy to implement

in hardware but suffers from Beladys anomaly meaning that

bigger caches can lead to worse performance.

VI FUNCTION CACHE
Additionally we are also interested in comparing the block

cache with a fictional function cache of the same size. A func-

tion cache caches at function granularity instead of block gran-

ularity. A function cache therefore can approximate the work-

ing set more precisely than a block cache. Ideally a function

cache would be used for on chip memory handling. Unfortu-

nately the runtime costs for dynamic function relocation is too

high. Such work is usually done offline by a linker.

The function cache uses LRU for eviction because it is also

the algorithm we favored for hardware-implementation.

The block cache in comparison is a trade-off between flexi-

bility and effort. The usage of block slots allows runtime adap-

tation similar to the function cache. This also increases robust-

ness.

VII INSTRUCTION CACHE
For assessing the relative performance of our block cache,

we use a 4x associative instruction cache with a 32 byte cache

line. The code cache size always grows to the power of two

and its size is shown Table III along with the sizes of different

block caches.

For block caches the size depends on the number of block

slots and the block size. We increased the block size in 512

byte steps until 8192 bytes.
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Fig. 6. Transferred data for 6-12 blocks, using LRU (upper graph uses log

scale, the lower (zoomed) graph a linear scale)

VIII BLOCK CACHE PERFORMANCE
TRANSFERRED DATA

For assessing the runtime performance of different block

cache configurations we used our block cache simulator (Fig-

ure 2). The configurations evaluated span different block sizes

and thus block compositions, ranging from 512 bytes up to

8192 bytes in 512 byte increments (Table III). For every block

size we simulated the block caches with 6,8,10 and 12 block

slots. Furthermore we evaluated the performance of different

evictions strategies presented in Section V. For reference the

performance of the function and instruction cache are included.

We determined the amount of data transferred (external mem-

ory to on chip memory), the amount of misses and cycles in a

specific hardware implementation.

Figure 6 shows the amount of code transferred from external

memory to the block cache. For a cache size of about 5 kB

which is 19% of the executed code size the block caches are at

their smallest block size of 512 bytes. At this size they perform

as good as the instruction cache. The function cache outper-

forms both slightly. Between 5 and 10 kB transferred code the

function caches curve sharply drops below 0.05 MB closing on

the 26935 bytes executed code totally (Table I). For bigger or

equally sized caches the function caches only encounters fill

misses and does not evict any code. The reason for the func-

Fig. 7. Transferred data for 8 blocks, using RR, ARC, LRU and Belady

Fig. 8. Misses for 6-12 blocks, using LRU

tion cache coming close to the 26935 bytes is that code eviction

affects only a small part of the entire cache. The average func-

tion size is only 216 bytes. Even tough the instruction cache

has a smaller granularity it cannot fully exploit its size because

of its limited associativity.

For the block cache the performance varies depending on the

block size and number of slots available. Block size affects the

function composition and may in unfortunate cases decrease

performance even for a bigger cache. This can be seen for the

cache with the fewest slots (6). The amount of transferred data

rises between 10-15 kB.

Twice as many slots allow for more runtime adaptation and

perform best in this benchmark. In between, for 8 and 10 slots

the results are mixed and depend on the quality of the block

composition for a specific block size. For block caches big-

ger than 15 kB (lower Figure 6) all block caches stay below

0.1 MB transferred code while stabilizing for cache sizes near-

ing the size of the total executed code at 26 kB depending on

their internal fragmentation sooner or later. Interestingly the

instruction cache performs quite similar to the 12 slot block

cache independently of the individual block size.

Figure 7 shows the transferred code amount the block cache

with 8 slots for different eviction strategies. As expected round

robin (RR) / first in first out performs worst, followed by ARC

and LRU. Belady the optimal algorithm is the lower bound

and shows the remaining space for improvement. ARC which
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Fig. 9. Memory copy cycles for 6-12 blocks, using LRU

dynamically trades cache space between recent and frequent

block accesses closely tracks LRU because it mostly favors re-

cency over frequency.

From a hardware perspective LRU and RR are well suited

for implementation. ARC is out of question considering the

complexity and LRU-like performance (in our case).

A BLOCK CACHE PERFORMANCE - MISSES

Figure 8 shows the amount of misses. The instruction cache

exhibits the highest number of misses in accordance to its gran-

ularity. For the function cache the curve climbs down to 125

misses, the total number of executed functions which is reached

for cache sizes bigger or equal to 27766 bytes (Table I). For

small block sizes the block cache is close to the function cache

in performance. For 12 slots the number of misses is less than

for the function cache after about 10 kB. For cache size big-

ger than 15 kB, there is little variation among all block cache

configurations. For different cache granularities, basically dif-

ferent miss rates can be expected.

B BLOCK CACHE PERFORMANCE - CYCLES

The performance of a memory hierarchy can be described

by its latency and bandwidth. For block caches latency mat-

ters not as much as for the instruction cache e.g. Bandwidth

however can be used to its advantage. Figure 9 reflects this. It

shows the number of cycles needed to transfer the code from

external to on chip memory (7 times faster). We assume a dou-

ble data rate dynamic memory chip with tRCD=3, CL=3 and a

64 bit interface. For every block access we need to change the

row address and encounter the full latency of tRCD+ CL. The

parameter choice is arbitrary but realistic and if changed will

reflect the aforementioned inflictions. For the given parameters

the block cache outperforms the instruction cache. The 12 slot

block cache even outperforms the function cache for all block

and cache sizes. Similar to the instruction cache, the function

cache cannot exploit the high bandwidth as well as the block

cache and suffers more from the access latencies.

IX CONCLUSION AND OUTLOOK
Block caches are a viable method to cache code in on chip

memories. In comparison to instruction caches on chip mem-

ories need less area and power for the same size [3, 4, 5] and

can take advantage of high bandwidth memory links as we have

shown. In the past memory latencies were going up and down

[13] unlike capacity and bandwidth which rise steadily with

time. For future embedded systems we expect to see an increas-

ing number of multi-core systems equipped with local memo-

ries in the megabyte range. Block caches are one opportunity to

put them to a use without manual programming efforts which

are time consuming and costly for the large software systems

deployed nowadays. In research block caches still have a lot of

potential. We are currently investigating new block composi-

tions by identifying distinct working sets in time. Additionally,

we plan to store selected functions into more than one block,

trading space against performance. On the hardware site we

plan to support step-wise granularities for code blocks thereby

increasing the design space.
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