
Symmetry-Aware Placement with Transitive Closure Graphs for Analog Layout Design

Abstract - A new scheme is proposed to use transitive
closure graph (TCG) to explore the full symmetry solution
space in analog layout design. We define a set of TCG
symmetric-feasible conditions and show that it is
extremely useful in reducing the solution space. A method
is presented for generating random symmetric-feasible
TCGs in O(n) time preserving the TCG closure property.
Experimental results have confirmed the effectiveness of
the proposed symmetry-aware TCG placement algorithm.

I. Introduction
Logical and physical synthesis tools revolutionized digital

IC designs over the past two decades, resulting in a huge
improvement in design productivity and chip functionality.
The need for analog synthesis is particularly important for
ever growing mixed-signal system-on-a-chip (SoC) designs
that comprise both digital and analog circuitry. Unfortunately,
analog synthesis is yet a far more difficult operation, as it has
to explore a much larger design space. Therefore, up to date,
the analog-design portion of a mixed-signal chip has to be still
routinely hand-crafted by experienced human designers,
which costs extraordinarily disproportional amount of effort
and time compared to only a small fraction of the chip area.

The analog device-level or macro-cell placement, whose
purpose is to assign exact locations of various circuit
components within the chip, is one of the most significant
stages in the analog layout synthesis [1][2]. The core of the
placement is the rectangle packing problem: given a set of
rectangular cells with arbitrary size, place them without
overlap on a plane within a rectangle of minimum size under
certain constraints. There are two general placement
strategies, absolute placement and relative placement. The
absolute placement [2]-[4] used to be considered as the most
effective solution to the analog placement problem for
decades. Within the recent half a decade, a few new
representations for relative placement [5][9], also called
topological placement, have been proposed to solve the analog
placement problem. Their applications have been changing the
traditional views on how topological representations can help
satisfy special constraints in analog layout design.

However, recent studies have shown that those
representations are partial in exploring feasible solution space.
In this paper, we attempt to apply another topological
representation, i.e., transitive closure graph (TCG) [6], to the
analog placement problem. We will illustrate how TCG can be
used to handle the complex constraints pertaining to analog
layouts. In particular, we shall show how to efficiently explore
the symmetry solution space using the TCG representation.

The rest of the paper is organized as follows. Section II
reviews prior work. In Section III, the TCG symmetric
feasibility conditions are defined. In Section IV, we discuss
how to construct a symmetric placement from a
symmetric-feasible TCG. Section V describes a strategy for

generating random symmetric-feasible TCG representations
while keeping TCG valid. The experimental results are listed
in Section VI and the conclusion is drawn in Section VII.

II. Prior Work and Our Focus

Murata et al. [7] proposed sequence-pair (SP) as a general
non-slicing floorplan representation. After that, quite a few
other topological representations, e.g., Bounded-Sliceline Grid
(BSG), O-tree, B*-tree, Corner Block List (CBL), TCG [6],
Q-sequence and TCG-S [8], have been developed for digital
layout design.

In the analog layout domain, quite a few well-known layout
automation systems, such as [2]-[4], applied the
absolute-coordinate representation in their placement tools.
Balasa and Lampaert [5] applied SP representation in the
context of symmetry placement for analog designs.
Afterwards, O-tree, B*-tree and TCG-S [9] were employed to
satisfy the symmetry constraints in the analog placement
problem. These investigations have clearly demonstrated that
the topological representations are capable of handling very
complex analog constraints.

In an analog circuit, there are two typical symmetry cases: i)
symmetric pairs: a pair of cells have identical geometry and
mirror (or identical) orientations placed on the opposite sides
of a common axis; ii) self-symmetric: a cell can be partitioned
into two symmetric halves, and it shares the same axis with
other symmetric devices. In Fig. 1(a), (d, d′) and (e, e′) are
symmetric pairs, while b and f are self-symmetric cells. The
symmetric pairs and self-symmetric cells with respect to a
common symmetry axis form a symmetry group. An analog
layout may contain multiple symmetry groups. In this paper,
our analysis is only focused on a symmetry group. Without
loss of generality, the symmetry axis is assumed vertical.

According to the classification defined in [6], O-tree,
B*-tree, CBL and Q-sequence intrinsically have a smaller
solution space and low packing cost due to lack of the
definition of geometric relationship between each pair of cells.
On the other hand, the representations, such as BSG, SP, TCG
and TCG-S, can represent definite geometric relationship
between each pair of cells. However, BSG incurs many
redundancies, which lead to a much larger solution space. SP
encodes any placement as an ordered pair of sequences (α, β),
which can be called α-sequence and β-sequence, respectively.
Here we use 1−

aα (1−
aβ) to denote the position of cell a in

α−sequence (β−sequence). According to the definition of SP
[7], the topological relationship between two cells a and b can
be derived from an SP:
• if 11 −− < ba αα and 11 −− < ba ββ , cell a is to the left of cell b;

• if 11 −− < ba αα and 11 −− < ab ββ , cell a is on the top of cell b.
As an example, the corresponding SP of the placement in

Fig. 1(a) is (d, a, f, e, e′ , d′ , b, c) (a, b, d, e, e′ , f, c, d′).

Lihong Zhang
ECE, Memorial University of

Newfoundland
St. John’s, NL, A1B 3X5, Canada

C.-J. Richard Shi
Electrical Engineering Department

University of Washington
Seattle, WA 98105, USA

Yingtao Jiang
ECE, University of Nevada

Las Vegas, NV
89154-4026, USA

2C-1

180978-1-4244-1922-7/08/$25.00 ©2008 IEEE

In [5], an SP symmetric-feasibility condition is proposed as
follows. Assume Γ is a symmetry group. An SP (α, β) is
called symmetric-feasible if Eq. (1) holds:

babbaaand abba ≠Γ∈′Γ∈′∀<< −
′

−
′

−− ,),(,),(,1111 ββαα . (1)
According to the condition above, the symmetric cells

should appear in a mirror form in two sequences of SP. But
this observation is partial [10]. For instance, the SP of a
symmetric placement depicted in Fig. 2(b) is (a, c, b, b′ , d,
a′) (a, c, b, b′ , d, a′), which seems in line with the proposed
Eq. (1). Here, (a, a′) and (b, b′) are two symmetric pairs.
However, although another placement depicted in Fig. 2(d)
(similarly for Fig. 2(e)) is also symmetric for (a, a′) and (b,
b′), its SP of (a, c, b, b′ , d, a′) (b, c, a, b′ , d, a′) does not
follow Eq. (1). Thus, searching in a sub-set of the symmetric-
feasibility space as [5] may lead to a non-optimal solution.

Recently TCG-S was proposed to realize the symmetry
placement [9]. However, the proposed symmetry constraints
in [9] are only of the same capability as Eq. (1). The
placement shown in Figs. 2(d) or 2(e) cannot be accessed with
that proposed TCG-S method. And the symmetric cells are
only limited to symmetric pairs (i.e., excluding self-symmetric
cells). In Table I, we summarize the features of different
approaches, including SP, TCG-S and TCG (this work). The
third column Completeness means if a complete solution
space can be explored by each individual approach.

S. Kouda proposed an improved method of cell placement
with symmetry constraints [10]. The SP used in that method is
only for the perturbation purpose. No symmetry condition on
representation itself is deployed. Instead, any perturbed
solutions represented in SP are converted to linear
equations/inequalities and finally solved with linear
programming. In spite of generality, that proposed method
may experience inefficiency due to the time-consuming
feature of linear programming. More recently, Y. Tam et al.
proposed a placement algorithm considering symmetry and
other constraints simultaneously [11]. Since that work
employs Eq. (1), the limitation of only exploring part of
symmetric solution space is inevitable, as [5][9]. Moreover,
although SP is used as the representation, constraint graphs

have to be derived in order to append edges or adjust edge
weights for inclusion of symmetry and other constraints.

Although SP and TCG exhibit an inherent equivalence to
each other [8], their distinctions are exhibited in the following
aspects. For SP, many of the theoretical results from the
studies of sequence permutation/combination can be applied
to ease the analysis of the related solution space. Meanwhile,
as only sequences are included in the SP representation,
additional constraint graphs have to be resorted to in order to
handle placement with constraints (e.g., boundary constraints,
pre-placed cells, etc). For TCG, the explicit geometric
relationship between cells makes it possible that complex
constraints pertaining to the analog circuits can be evaluated
and/or satisfied at the graph level even before the real packing
operation takes place. Moreover, in spite of a topological
representation, TCG has a potential to handle device merging
or device separation constraints that can help increase the
layout density or minimize the induced parasitic effects.

With those considerations, in this paper, we shall study the
symmetry placement using TCGs, and focus on the
exploration of the placement solution space with
device-symmetry constraints.

III. Symmetric-Feasible TCG
A. TCG Representation

Consider a directed acyclic graph),(EVG = , where V is the
set of vertices, and E is the set of edges. The transitive closure
of G is defined as the graph),(EVG ′=′ with),(ji vvE =′ iff

∀ vi, vj∈V, there is a path from vertex vi to vertex vj in G.
A TCG representation of a placement consists of two

graphs: horizontal transitive closure graph Gh and vertical
transitive closure graph Gv [6]. In a graph, a vertex (e.g., vi)
corresponds to a cell (e.g., ci). Throughout the paper, the
terminologies of vertex and cell can be used interchangeably.
In Gh (Gv), a directed edge <vi, vj> represents that cell ci is to
the left of (below) cell cj, denoted as ci � cj (ci � cj). For
instance, Fig. 1(a) depicts a placement with eight cells. Fig.
1(b) shows the corresponding representation TCG=(Gh, Gv).

The weight associated with a vertex in Gh (Gv) corresponds
to the width (height) of the corresponding cell, and edge <vi,
vj> in Gh (Gv) denotes the horizontal (vertical) relationship
between ci and cj. For an edge <vi, vj> in Gh (Gv), vi (ci) is
called a fan-in vertex (fan-in cell) of vj (cj), while vj (cj) is
called a fan-out vertex (fan-out cell) of vi (ci).

B. TCG and SP
As shown in [8], given a TCG, its corresponding SP can be

constructed in O(n2) time. In the following, we show how this
can be performed in O(n) time. Consider a TCG. Every two
vertices are connected by one and only one directed edge,

b

a a'

b' b

a a'

b'

c d
b

a a'

b'

c d

a) a � b, b′� a′ (b) a � b, b′ � a′ (c) b � a, b′ � a′

b

a a'

b'

c d
b

a a'

b'

c d

(d) b � a, b′ � a′ (e) a � b, b′ � a′
Fig. 2. Five placements, (a, a′) and (b,b′) are symmetric pairs.

Table I: Time complexity comparison of different topological
representations in the context of symmetric-aware placement.
Approaches Packing Perturbation Completeness

General O(nlglgn) O(1) Yes
SP Symm. O(n2) [5] O(1) No

General O(nlgn) [8] O(n) Yes TCG-
S Symm. O(n2) [9] O(n2) No

General O(n2) [6] O(n2) Yes
TCG Symm. (this

work)
O(n2) O(n) Yes

a b c

d e e' d'

f

a b c

d e e' d'

f

5168

7
7

7 7

5

Gh

a b c

d e e' d'

f

7
6

4

6 8 8 6

5

Gv

(a) (b)
Fig. 1. (a) a placement, and (b) its corresponding TCG
representation. (d, d′) and (e, e′) are symmetric pairs, while b
and f are self-symmetric cells.

2C-1

181

either in Gh or Gv. An SP is composed of α-sequence and
β-sequence. If there is a directed edge <vi, vj> in Gh, the
corresponding SP will be (vi, vj) (vi, vj); while if there is a
directed edge <vi, vj> in Gv, the corresponding SP will be (vj,
vi) (vi, vj). Following the observations above, we can see that
the vertices in α-sequence are ordered incrementally
according to the sum of in-degree in Gh and out-degree in Gv

of each vertex, and the vertices in β-sequence are ordered
incrementally according to the sum of in-degrees in both Gh
and Gv of each vertex. So we have:
Lemma 1: Given a TCG, its corresponding SP can be
constructed in O(n) time, where n is the number of cells.
Proof: Based on the operation described above, since it takes
O(1) to obtain in-degree and out-degree of a vertex in TCG,
the time complexity of the operation above is O(n). �

As an example, in Fig. 1, in-degrees of d, a, f, e, e′ , d′ , b,
c in Gh are 0, 0, 2, 2, 3, 5, 1, 6, respectively. And out-degrees
of d, a, f, e, e′ , d′ , b, c in Gv are 0, 1, 0, 1, 1, 0, 5, 1,
respectively. Thus, based on the sum of two arrays above, we
can obtain the corresponding α-sequence of (d, a, f, e, e′ , d′ ,
b, c). Similarly, the corresponding β-sequence of (a, b, d, e,
e′ , f, c, d′) can also be derived.

C. TCG Symmetric-Feasibility Conditions
Let (Gh, Gv) be the TCG representation of a placement

containing a symmetry group Γ. For Γ∈′),(aa , if aa ′≠ ,
),(aa ′ is a symmetric pair consisting of two distinct cells a

and a′ , and if aa ′= , a (or equivalently a′) is a
self-symmetric cell.
Definition 1: For Γ∈′),(aa and Γ∈′),(bb , a TCG (Gh and
Gv) representation is symmetric-feasible if both of the
following conditions are satisfied:
 in Gh: a � b ‹�› a′�b′ , (2)
 in Gv: a � b ‹�› b′�a′ , (3)
where ‹�› denotes that the two cases before and after this
symbol cannot simultaneously appear in the same TCG. As an
example, the TCG depicted in Fig. 1(b) is symmetric-feasible.
Based on Eqs. (2) and (3) in Definition 1, we have the
following observations:
(i) if b is a self-symmetric cell (i.e., b=b′), we have:

in Gh, a � b ‹�› a′� b ; in Gv, a � b ‹�› b � a′ .
(ii) if both a and b are self-symmetric cells (i.e., a= a′ , b=b′),

we have: in Gv, a � b or b � a.
(iii) if a=b′ and a′ =b, we have: in Gh, a � a′ or a′� a.

The statement above governs the relationship between two
cells in a symmetric pair.

Now we show that a constructed TCG can satisfy the
symmetric-feasibility conditions defined in Definition 1.
Lemma 2: Any placement containing a symmetry group can
be represented with a symmetric-feasible TCG.
Proof: The relationship among multiple symmetric cells can
be viewed between each two symmetric pairs/cells. There are
all together four cases for two symmetric pairs/cells: (1) two
symmetric pairs; (2) one symmetric-pair and one
self-symmetric cell; (3) two self-symmetric cells; (4) two cells
in one symmetric pair. Once we analyze case (1), the rest of
cases can be studied in a similar way.

For any of two symmetric pairs Γ∈′),(aa and Γ∈′),(bb ,
there are three possible relative positions:

(i) (a, a′) sit within (b,b′) along the horizontal direction, and
their vertical projections overlap. Thus, no relationship in Gv
exists, and in Gh: b � a and a′�b′ .
Clearly, they are in harmony with Eq. (2) in Definition 1.

(ii) (a, a′) sit below (b, b′) along the vertical direction, and
their horizontal projections overlap, respectively. Thus, there
is no relationship in Gh, and in Gv: a � b and a′�b′ .
They are in line with Eq. (3) in Definition 1.

(iii) if both horizontal and vertical projections of (a, a′) and
(b, b′) do not overlap, according to the definition of TCG
[6], the horizontal relationships dominate (unless there exists
a chain of vertical relationships in between), as indicated in
Fig. 2(a) or Fig. 2(b), which can be handled in the same way
as case (i). Otherwise, there exist three other possible cases,
as depicted in Figs. 2(c)-(e), where edge relationships in the
corresponding TCGs are also marked. It can be seen that
there is no violation from the conditions in Definition 1.
Thus, for any of two symmetric pairs, Eqs. (2) and (3) in

Definition 1 always hold. The same conclusion can be drawn
if we study cases (2)-(4) in a similar way. �

IV. Symmetric-Feasible TCG and Symmetric Placement
In this section, we will study how to construct a symmetric

placement from a symmetric-feasible TCG. We shall
introduce a complete X/Y dimensional packing strategy to
satisfy positioning and symmetry constraints based on a given
symmetric-feasible TCG.

According to [8], β-sequence (also called topological order
in this paper) of an SP represents the packing sequence of both
Gh and Gv in the corresponding TCG. Let {c1, c2, …, cn} be a
set of n rectangular cells, and the i-th cell’s width (height) is
denoted as Wi (Hi), where 1 � i � n, and i is the index of cell ci
in the topological order of the given TCG’s corresponding SP.
Assume each cell is allowed to be rotated or mirrored. Let
(ci.x, ci.y) and (ci.rx, ci.ry) represent the coordinates of the
bottom-left and the right-top corners of cell ci.

We will first explain Y-dimensional symmetric packing
flow as listed in Fig. 3. Since there is no directed-edge chain
between a symmetric pair in Gv, the shift of a symmetric cell
described in Fig. 3 will not cause cyclic move between the
two symmetric cells. Line 2 initially satisfies the positioning
constraints, and the steps described in Lines 3-8 finalize the
cell positions while satisfying the Y-dimensional symmetry
constraints. Of a total of p symmetric pairs, the time
complexities of Lines 1, 2, and 3-8 are O(n) (Lemma 1),
O(n2), and O(p*n), respectively. Therefore, the complexity of
Fig. 3 is still O(n2), the same as that in the absence of
symmetry constraints.

Y-Dimensional Symmetric Packing
Begin
1 construct the topological order of the TCG; // Lemma 1
2 calculate the vertical longest path of the TCG based on the

topological order;
3 for (each cell ci in the topological order) {
4 if (ci has a symmetric counterpart cj) {
5 if (ΔY = ci.y - cj.y < 0) {
6 shift ci and its Gv fan-out cells for -ΔY; }
7 else if (ΔY = ci.y - cj.y > 0) {
8 shift cj and its Gv fan-out cells for ΔY; }}}
End

Fig. 3. Y-dimensional symmetric packing flow.

2C-1

182

The X-dimensional symmetric packing flow is depicted in
Fig. 4. Different from the two-sweep method developed in [5],
here we have proposed a one-stage packing strategy, that is,
the cells that form up as a symmetric pair are positioned
simultaneously. Therefore, only one iteration loop is enough
to satisfy the symmetry constraints. The proposed flow is
composed of the following major steps:
• Step 1: satisfy the positioning constraints in the absence of

symmetry (Lines 1-2).
• Step 2: determine the symmetry axis (Line 3). For a

symmetric pair (ci, cj), i�j, or a self-symmetric cell (ci, cj),
i=j, (i and j are indices in the topological order), the
symmetry axis is derived as follows:

 2)..(rxcxcX jisymmAxis += , (4)

ji − = min{ kl − , ∀(cl, ck) are symmetric counterparts,
l and k are indices in the topological order.}.

Thus, it is ensured that no other symmetric pairs or
self-symmetric cells will be located between the innermost
symmetric pair. As a result, the redundant empty space
around the symmetry axis as shown in Fig. 5(d), which
may happen when the two-sweep method [5] is applied,
will be avoided.

• Step 3: symmetric shift (Lines 4-19). This step is divided
into two stages: symmetric cells encompassed by ci and cj
are shifted as stated in Lines 4-7, and symmetric cells
outside ci and cj are shifted as stated in Lines 8-19. If the
symmetry axis is determined by a self-symmetric cell, due
to i=j, only the latter stage is performed.

Lines 6, 10 and 16 shift the symmetric pair (cs, ct), where cs
(ct) and its fan-in (fan-out) cells are moved leftwards
(rightwards) with respect to the symmetry axis. Since the
related fan-in or fan-out cells in the Ch always shift along with
the symmetric cells, the positioning constraints already being
satisfied by Step 1 will be preserved, while the symmetry
constraint between a symmetric pair is also realized. In a
similar manner, Lines 12 and 18 shift self-symmetric cell cs.

Since Eq. (2) holds for the given TCG, cycling of horizontal
shifts caused by multiple embedded symmetric cells will not
happen. Thus, a valid horizontal placement can surely be built
following the scheme detailed in Fig. 4. Lines 1-3 take O(n),
O(n2) and O(p+s) time, respectively, where p is the number of
symmetric pairs, and s is the number of self-symmetric cells.
The time complexity of Lines 4-19 is O((p+s)*n).

As an example, consider a TCG=(Gh, Gv) shown in Fig.
5(a) and Fig. 5(b), where (a, a′) and (b, b′) are two
symmetric pairs. Fig. 5(c) depicts the corresponding
placement in the absence of symmetry constraints. Fig. 5(d) is
the placement using the two-sweep packing method described
in [5]. Fig. 5(e) is the placement using the proposed one-stage
packing method outlined in Fig. 4. In Fig. 5(d) and Fig. 5(e),
the symmetry axes are shown in dash lines. Thus, we have:
Lemma 3: Given a symmetric-feasible TCG containing a
symmetry group, one can build a placement satisfying the
positioning and the symmetry constraints in O(n2) time.

V. Perturbation of Symmetric-Feasible TCG
Following Lemmas 2 and 3, we can see that an optimal

symmetric placement solution can be obtained by exploring
the symmetric-feasible TCGs. The problem is now converted

to designing a proper scheme that can preserve the
symmetric-feasibility and keep TCG valid after random
perturbations. Now we first introduce two definitions.
Definition 2: Any two symmetric pairs, two symmetric cells
in a pair, two self-symmetric cells, or two asymmetric cells in
a TCG representation are allowed to swap their geometric
positions and orientations. Those swapping operations are
called symmetric-swap.
Definition 3: In a TCG, moving an edge from Gh to Gv,, or
vice versa, is called edge move operation; moving an edge
from Gh to Gv, or vice versa, and also changing the direction
of the edge after the edge move is called edge move-reverse
operation. A set of edge move and edge move-reverse
operations is called edge change operation.

We have designed three operations for TCG perturbation:
(i) vertex rotation, (ii) symmetric-swap, (iii) edge change.

A. TCG Vertex Rotation
Given a symmetric-feasible TCG, for an asymmetric or

self-symmetric cell, the rotation operation can be done without
any constraints. However, for a symmetric pair, the rotation of
one cell should be accompanied by the mirror/identical
rotation of its symmetric counterpart.

X-Dimensional Symmetric Packing
Begin
1 construct the topological order of the TCG; // Lemma 1.
2 calculate the horizontal longest path of the TCG based on the

topological order;
3 determine the symmetry axis, and label the symmetric cells,

which are chosen to calculate the symmetry axis, as ci and cj,
(i�j); // see Eq. (4)

4 for (any unprocessed symmetric cell cs, i<s<j) {
5 if (cs has a symmetric counterpart ct) {
6 shift symmetric pair (cs, ct);
7 mark cs and ct as processed; }}
8 for (any unprocessed symmetric cell cs, j<s�n) {
9 if (cs has a symmetric counterpart ct) {
10 shift symmetric pair (cs, ct); }
11 else if (cs is a self-symmetric cell) {
12 symmetrically shift cs; }
13 mark cs(ct) as processed; }
14 for (any unprocessed symmetric cell cs, 0�s<i) {
15 if (cs has a symmetric counterpart ct) {
16 shift symmetric pair (cs, ct); }
17 else if (cs is a self-symmetric cell) {
18 symmetrically shift cs; }
19 mark cs (ct) as processed; }
End

Fig. 4. X-dimensional symmetric packing flow.

a b b' c a'
1 2 2 2 1

(a) Gh

a b b' c a'
2 1 1 3 2

(b) Gv

a b
c

b' a'

(c)

a b
c

b' a'

(d)

a b
c

b' a'

(e)

Fig. 5. A packing example. (a, a′) and (b,b′) are symmetric pairs.

2C-1

183

Lemma 4: Given a symmetric-feasible TCG, the perturbed
TCG is still symmetric-feasible and valid under the
vertex-rotation operation, and this operation takes O(1) time.
Proof: Since the vertex set and the edge set of TCG remain
unchanged after the rotation process, the resulting graphs are
still symmetric-feasible and valid. Exchanging the weights of
the related vertices in Gh and Gv only takes O(1) time. �

B. TCG Symmetric-Swap
In a symmetric-feasible TCG, if two cells in two symmetric

pairs are swapped, their corresponding symmetric counterparts
have also to be swapped.
Lemma 5: Given a symmetric-feasible TCG, the resulting
TCG after a symmetric-swap operation is still
symmetric-feasible and valid, and it takes O(1) time.
Proof: Since the symmetric-swap operation only exchanges
two or four vertices in both Gh and Gv without changing the
topology of the original TCG, the resulting graphs are still
symmetric-feasible and valid. Exchanging the corresponding
pointers of two or four vertices only takes O(1) time. �

C. TCG Edge Change
According to the definition of SP, the TCG edge move

operation is equivalent to the reversal of two vertices in the
α-sequence of the corresponding SP. For instance, if va � vb in
TCG, the corresponding SP is (va, vb) (va, vb). After the edge
move operation, the edge becomes va � vb and the
corresponding SP becomes (vb, va) (va, vb). Similarly, the TCG
edge move-reverse operation is equivalent to the reversal of
two vertices in the β-sequence of the corresponding SP.

We have designed a scheme as described in Fig. 6 to
randomly change TCG edges while keeping valid. There is no
need to check the symmetric-feasibility by packing the
perturbed TCG. Instead, without packing operation, the
proposed scheme itself will report failure (according to our
symmetric-feasibility conditions introduced in Section III.C) if
there exists any violation of symmetric-feasibility. Here the
explanation is given following the term α- or β-sequence.
However, the explicit representation of the corresponding SP
of a TCG is not required. All the operations only make use of
the information provided by the given TCG.

In Line 1 of Fig. 6, one vertex a is chosen randomly. The
slack range of symmetric-vertex a (used in Line 3) is defined
as the largest span of moving a in the α- (β-) sequence
without changing the horizontal relationship between a and
a′ (if (a, a′) is a symmetric pair) or without changing the
vertical relationship between a and any other self-symmetric
vertex (if a is self-symmetric). For instance, in Fig. 1, for
vertex d′ in the α-sequence (d, a, f, e, e′ , d′ , b, c), the
slack range is from a to c (due to the symmetric counterpart
d), while for self-symmetric vertex b in the β-sequence (a, b,
d, e, e′ , f, c, d′), the slack range is from a to e′ (due to the
closest self-symmetric vertex f).

In Line 4, one vertex b is randomly picked up and Set-A
(Set-B) is accordingly shrunk to only include the vertices
between a and b (including b). The operations in Lines 6-9 are
equivalent to move vertex a from the current position to the
one before (after) b in the corresponding α-(β-) sequence of
the TCG. Thus, we have the following lemma:
Lemma 6: Given a symmetric-feasible TCG, the perturbed
TCG is still symmetric-feasible and valid under the certain

edge change operation, and such an operation takes O(n) time.
Proof: The edge change operation can be performed in a flow
as outlined in Fig. 6. Since the corresponding SP is feasible, it
is ensured that the derived TCG is valid. In Line 8, the
symmetric-feasibility is checked according to the Eqs. (2) and
(3) in Definition 1. If any violation is found, no further
operation is performed and FALSE is returned. Otherwise, a
perturbed symmetric-feasible TCG can be obtained after
random edge-change operation.

Based on Lamma 1, it takes O(n) time to extract α-(β-)
sequence of a TCG. The rest of operations, including
relationship recognition of symmetric vertices and
symmetric-feasibility checking, takes O(1) time. Therefore,
the edge change operation takes O(n) time. �

In [6], a few schemes with O(n2) time complexity have been
proposed to move or reverse a TCG edge in the absence of
symmetry constraints. In that method, to keep the perturbed
TCG valid, special care has to be taken for fan-in and fan-out
vertices related to the moved/reversed edge. In contrast, our
proposed edge change operation above applies a set of
correlated edge move and edge move-reverse operations as a
whole, which inherently guarantees the TCG closure property
and sustain much lower time complexity.
Theorem 1: The solution space of symmetric-feasible TCG
can be fully explored using random vertex rotation,
symmetric-swap, edge change operations. The transformation
of two solutions represented in TCG takes at most O(n) time.
Proof: We may clearly view the exploration of the TCG
solution space with the aid of the corresponding SP.
According to the features of the vertex rotation,
symmetric-swap and edge change, a cell can be randomly
changed to any valid position in both α- and β- sequences. In
addition, due to Lemma 3, it is ensured that the perturbed
TCG satisfying the symmetric-feasibility conditions can map
to a valid symmetric placement. This means the full
exploration of the solution space can be performed by the

randomChangeTcgEdges
(Input: a symmetric-feasible TCG, Output: TRUE for a successful
random edge-change operation and FALSE for a failure random
edge-change operation)
Begin
1 randomly choose one vertex a;
2 if (a is symmetric) {
3 obtain the slack range of vertex a in the α- (β-) sequence

and save them into Set-A (Set-B);
4 in Set-A (Set-B), randomly pick up one vertex b (a�b) and

only keep the vertices between a and b (including b) in the
corresponding set;

5 randomly choose to operate on Set-A or Set-B;
6 for (each vertex c in Set-A (Set-B)) {
7 move (move-reverse) the edge between a and c;
8 if (c is a symmetric vertex and the updated (a, c) or

(a′ , c′) violates symmetric-feasibility Eqs. (2) and (3)) {
9 the random edge change fails and return FALSE;}}}
10 else {
11 randomly pick up one vertex b (a�b);
12 obtain the vertices lying between a and b in the α- (β-)

sequence and save them into Set-A (Set-B);
13 for (each vertex c in Set-A (Set-B)) {
14 move (move-reverse) the edge between a and c;}}
15 the random edge change is successful and return TRUE;
End

Fig. 6. TCG edge change scheme under symmetry constraints.

2C-1

184

vertex and edge operations. Obviously, the time complexity of
the operations above is O(n). �

VI. Experimental Results
We have developed a simulated annealing based

symmetry-aware TCG placement algorithm for analog layout
designs. According to Theorem 1, we can make use of the
operations introduced in Section V to explore the solution
space of valid symmetry placements. Compared with the
normal symmetry-free TCG placement [6], our symmetry
TCG placement algorithm can achieve faster solution
perturbation (in O(n) time) and the same packing time
complexity (i.e., O(n2)). The initial TCG, which can be
readily built in different ways, must be symmetric-feasible.

Our cost function used to evaluate a placement solution is a
weighted function of three components as given in Eq. (5),

sizesizenetsnetsareaarea CCCC ααα ++= , (5)
where α* is the weight factor for the corresponding cost C*.
Carea is the area cost that is made up of the whole area,
NWELL and PWELL region areas, and the analog and digital
region areas. It could make NWELL/PWELL regions
relatively concentrated and isolate analog/digital regions from
each other as required in mixed-signal circuits. Cnets is the
net-length cost, in which a priority coefficient can be
specified for each net. Csize is the size cost, which is used to
control the shape of the final layout.

To test the performance of our proposed algorithm, it has
been coded in C++ and applied to several test circuits on a
Sun-Ultra10 workstation. Our test circuits are collected from a
variety of sources. To demonstrate the efficiency of our
algorithm, two other approaches coded in C++ on the same
platform have been included for comparison: (i)AbsPlace.,
one absolute placement scheme using absolute coordinates
[2]-[4]; and (ii) SymmSP, an implementation that imitates [5].

The comparison results are given in Table II, where Cost
and T are the normalized percentages of mean cost and
execution time, respectively. It can be seen that our proposed
algorithm SymmTCG outperforms the other two algorithms in
the search quality. On average, compared with SymmSP,
SymmTCG reduces the cost by 10.7% with almost identical
CPU time. When compared with AbsPlace, SymmTCG
reduces the cost by 28.2% and the execution time by 40.6%.

Fig. 7(a) shows the schematic of a CMOS high speed
comparator abounding in symmetry and matching constraints.
The placement layout result obtained using our SymmTCG is
depicted in Fig. 7(b). In particular, all the matching devices
are oriented symmetrically. The PMOS and the NMOS
regions are respectively concentrated and separated.

VII. Conclusion

In this paper, the analog VLSI placement problem has been
solved using transitive closure graph. We introduced a set of
TCG symmetric-feasible conditions and proved that the
solution space of symmetric placements can be efficiently
explored by evaluating symmetric-feasible TCGs. Thus, an
efficient strategy has been proposed to generate random
symmetric-feasible TCG representations while keeping TCG
valid in O(n) time. In addition, we have developed a new
packing scheme for symmetric-feasible TCG in a

simulated-annealing based placement algorithm. Experimental
results have shown that this proposed algorithm, with very
high computation efficiency, can generate higher quality
placement results than two other well-known approaches.

Acknowledgements
This work was supported in part by the Natural Sciences

and Engineering Research Council of Canada (NSERC),
Memorial University of Newfoundland, and U.S. Defense
Advanced Research Projects Agency (DARPA).

References
[1] G. Gielen and R. Rutenbar, “Computer-aided design of analog and

mixed-signal integrated circuits,” Proc.IEEE,vol.88,pp.1825-1852,2000.
[2] J. Cohn, D. Garrod, R. Rutenbar, and L Carley, Analog Device-level

Layout Automation, Boston: Kluwer Academic Publishers, 1994.
[3] E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli,,

“Automation of IC layout with analog constraints,” IEEE Trans.
Computer-Aided Design, vol. 15, pp. 923-942, Aug. 1996.

[4] K. Lampaert, G. Gielen, and W. Sansen, Analog Layout Generation for
Performance and Manufacturability, Boston: Kluwer Academic
Publishers, 1999.

[5] F. Balasa and K. Lampaert, “Symmetry within the sequence-pair
representation in the context of placement for analog design,” IEEE
Trans. CAD, vol. 19, pp. 721-731, July 2000.

[6] J.-M. Lin and Y.-W. Chang, “TCG: a transitive closure graph based
representation for general floorplans," IEEE Trans. VLSI Systems, vol.
13, pp. 288-292, Feb. 2005.

[7] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module
placement based on rectangle-packing by the sequence-pair,” IEEE
Trans. Computer-Aided Design, vol. 15, pp. 1518-1524, Dec. 1996.

[8] J.-M. Lin and Y.-W. Chang, “TCG-S: Orthogonal coupling of
P*-admissible representations for general floorplans,” IEEE Trans.
CAD, vol. 24, pp. 968-980, June 2004.

[9] J.-M. Lin, G.-M. Wu, Y.-W. Chang, and J.-H. Chuang, "Placement with
symmetry constraints for analog layout design using TCG-S," Proc.
Asia and South-Pacific Design Automation Conf., 2005, pp. 1135-1138.

[10] S. Kouda, C. Kodama, and K. Fujiyoshi, "Improved method of cell
placement with symmetry constraints for analog IC layout design,"
Proc. International Symposium on Physical Design, 2006, pp. 192-199.

[11] Y. Tam, E. Young, and C. Chu, “Analog placement with symmetry and
other placement constraints,” Proc. IEEE/ACM Int. Conf. on CAD,
2006, pp. 349-354.

out1

out2

(a) (b)
Fig. 7. (a) schematic and (b) a placement from SymmTCG of the
CMOS comparator.

Table II: Comparison among different algorithms. Absolute values of
the cost and the CPU seconds are given only for the SymmTCG, the
rest of Cost and T being displayed as the normalized percentages
compared to the last column.
Analog Circuits AbsPlace SymmSP SymmTCG

Cost 119.6% 106.2% 142643 Rail-to-rail
Opamp T (sec) 134.2% 94.5% 48

Cost 126.6% 109.2% 306512 Comm.-mode-
feed. Opamp T (sec) 136.3% 102.1% 72

Cost 126.3% 105.7% 286559 Low-noise
opamp T (sec) 139.5% 104.2% 84

Cost 140.1% 121.6% 19720 Comparator
T (sec) 152.5% 98.2% 118

2C-1

185

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

