
A Multicycle Communication Architecture and
Synthesis Flow for Global Interconnect Resource Sharing

Wei-Sheng Huang, Yu-Ru Hong, Juinn-Dar Huang, and Ya-Shih Huang

Department of Electronics Engineering
National Chiao Tung University, Hsinchu, Taiwan

{wshuang,sali}@adar.ee.nctu.edu.tw, yrhong.ee94g@nctu.edu.tw, jdhuang@mail.nctu.edu.tw

Abstract—In deep submicron technology, wire delay

is no longer negligible and is gradually dominating the

system latency. Some state-of-the-art architectural syn-

thesis flows adopt the distributed register (DR) archi-

tecture to cope with this increasing latency. The DR

architecture, though allows multicycle communication,

introduces extra overhead on interconnect resource. In

this paper, we propose the Regular Distributed Regis-

ter - Global Resource Sharing (RDR-GRS) architecture

to enable global sharing of interconnects and registers.

Based on the RDR-GRS architecture, we further define

the channel and register allocation problem as a path

scheduling problem of data transfers. A formal and flex-

ible formulation of this problem is then presented and

optimally solved by Integer Linear Programming (ILP).

Experimental results show that RDR-GRS/ILP can av-

eragely reduce 58% wires and 35% registers compared

to the previous work.

I. Introduction

With the scale evolution of fabrication technology, the de-
lay of a long wire is no longer negligible due to RC delay,
coupling effect, inductance, high operating frequency, etc.
[1]. In architecture-level synthesis, the system cycle time is
decided by the maximum sum of the execution time of the
functional units (FUs) and the associated wire delays. If
the synthesis flow simply overlooks the wire delays as be-
fore, the serious impacts due to long interconnects may be
exposed after the physical floorplanning and potentially lead
to worse performance because the timing closure is hard to
achieve. To overcome this problem, some state-of-the-art
synthesis flows perform preliminary floorplanning to obtain
more accurate estimation of interconnect delays so that bet-
ter synthesis outcomes can be expected [2, 3, 4].

In conventional high-level synthesis, the target architec-
ture is assumed to contain a centralized register file (CR).
Also, an FU is assumed to be able to access any register
within a clock cycle. Under this paradigm, the increasingly
long wire delay would drastically lengthen the cycle time.
Hence, the distributed register (DR) architecture which par-
titions a whole system into several clusters is proposed [5, 6,
7]. Each cluster in the DR architecture contains FUs and lo-
cal registers; an FU can only access the registers within the
same cluster where it resides. The intra-cluster data trans-
fers should be completed within a cycle, while the global
data transfers, the inter-cluster transfers which go through
global interconnects, are allowed to take multiple cycles. As
a result, the new paradigm not only prevents the long wire
delays from increasing the cycle time but also enables paral-

lel computation and communication. That is, the FUs can
perform computing when the global data is transferring.

Under the DR architecture, [5] first performs binding then
places the functional units driven by inter-clock slack. With
the initial placement, [6] applies the performance-driven
scheduling with interconnect delay. Although these two
works try to reduce the system latency in different aspects,
they both rely on the interconnect delay information ex-
tracted from the preliminary placement. The rough result
of coarse placement is usually far from the actual imple-
mentation obtained after floorplanning and routing. The
inaccurate estimation of interconnect delay therefore signif-
icantly limit the final quality of synthesis.

To eliminate such inaccuracy, J. Cong et al. proposes the
regular distributed register (RDR) architecture and the cor-
responding synthesis methodology named the architectural
synthesis for multicycle communication (MCAS) [7]. The
RDR architecture divides the entire chip into a 2-dimensional
array of clusters (islands). Due to the highly regular layout,
the interconnect delay between each cluster pair can be cor-
rectly calculated and recorded into a table. With this de-
lay table, MCAS can perform resource allocation and bind-
ing, simulated annealing (SA)-based coarse placement with
scheduling-based timing analysis followed by the post-layout
scheduling with rebinding in a more accurate fashion.

Because the DR architecture introduces the multicycle
communication, it may take more cycles to complete a data
transfer than the CR one. Nevertheless, it can keep the
cycle time significantly smaller than its counterpart when
a large wire delay is present. Hence, the DR architecture
can still beat the CR architecture in terms of overall system
performance.

However, the DR architecture usually needs more regis-
ters and wires compared to the CR one. The reason is that
the same data may be demanded by several clusters con-
currently. Besides, extra registers are needed to pipeline or
hold the data during multicycle communication. Further-
more, the data exchanges among clusters need dedicated
wires which connect pairs of clusters in a point-to-point fash-
ion. Thus the number of required wires is lower-bounded by
the maximum number of concurrent data transfers. As a
result, the DR architecture usually suffers from a significant
overhead on interconnect resource, especially on the expen-
sive global wires. It is reported that the DR architecture
needs on average 100% more registers and 46% more global
wires than the CR architecture [7]. Therefore, the issue
of minimizing highly-demanded interconnect resource in the
DR architecture should be seriously addressed.

Therefore, in this paper, we propose a new architecture,
the Regular Distributed Register - Global Resource Sharing

1A-3

16978-1-4244-1922-7/08/$25.00 ©2008 IEEE

(RDR-GRS) architecture, so that the registers and channels
can be globally shared. We further define the channel and
register allocation problem as a path scheduling problem of
data transfers under the RDR-GRS architecture. Finally, we
formulate and optimally solve the path scheduling problem
by Integer Linear Programming (ILP). The experimental
results demonstrate that significant resource can be saved
by evolving the point-to-point interconnect model into the
globally sharable model used in the proposed RDR-GRS ar-
chitecture.

The rest of this paper is organized as follows. Section II
gives the motivation by examples. Section III describes the
channel and register allocation problem, which is formulated
by ILP in Section IV. Section V gives the experimental
results and Section VI concludes this paper.

II. Motivation

In this section, we focus on the differences among the
RDR-based architectures and their associated resource allo-
cation algorithms.

After operation scheduling, FU binding, and FU-cluster
mapping, the global communication demands among clus-
ters in the predefined architecture become obvious. But
how to fulfill those communication demands varies in dif-
ferent architectures. In [7], RDR/MCAS assigns a dedi-
cated wire connecting a pair of clusters every time a data
transfer between them is initiated. The dedicated wire is
exclusively used by a single transfer and is responsible for
holding the data from the start of the transmission to the
end, usually taking multiple cycles. Therefore, the number
of required wires (and register pairs) in RDR/MCAS is the
number of maximum possible concurrent data transfers in a
cycle. Because of the low utilization of registers and wires,
RDR/MCAS requires a massive amount of resources.

To alleviate this problem, an extension named RDR-pipe/
MCAS-pipe [8] is evolved. RDR-pipe chops a long wire into
segments by inserting extra pipeline registers. Hence a data
transfer no longer occupies the whole wire within a cycle
but uses only a wire segment instead. In other words, at a
single cycle, a long dedicated wire between two clusters can
be shared by several data transfers as long as these transfers
do not use the same segment. In addition, the data transfer
scheduling algorithm exploits the possible slacks between the
actual transfer latency and the arrival-to-deadline interval to
reduce the required registers and wires.

Fig. 1 (a) and (b) show a scheduled and bound data
flow graph (DFG) implemented by RDR/MCAS and RDR-
pipe/MCAS-pipe, respectively. Each small circle with a
number ID on it represents a register in the cluster. The
large circles labeled as opi represent operations. On the left
hand side of (a) and (b) is the DFG, and the right hand side
is the architecture with placed operations in the clusters. As
the figure shows, RDR/MCAS needs four wires to satisfy all
data transfers, while RDR-pipe/MCAS-pipe needs only two
wires with pipeline register insertion. However, the global
communication in RDR-pipe/MCAS-pipe is still in a point-
to-point fashion, and thus the resource sharing is limited to
a local scope where a wire is sharable only for those data
transfers with the identical source-destination cluster pair.

To further reduce the interconnect resource needed, en-
abling global sharing of all wires and pipeline registers among
all data transfer paths is mandatory. Based on the RDR

and RDR-pipe architectures, we propose a new architec-
ture, RDR-GRS, in which a globally sharable interconnect
model is innovated. RGR-GRS divides the chip into arrays
of clusters; every cluster owns a register station. The neigh-
borhood of a register station is defined as the four register
stations in the clusters to its up, down, left and right, re-
spectively. A register residing in a register station can serve
as either an intermediate stop (i.e., a pipeline register) for
global data transfers or an operand register for computation
of local FUs. Then, channels consisting of wires connect ev-
ery two neighboring register stations. A wire can transfer
a datum from a register to its neighboring register station
within a cycle. Hence a global data transfer can be bro-
ken into a series of neighboring register station-to-register
station transfers.

Fig. 2 gives an example of how different architectures can
impose different resource demands. Fig. 2 (a), (b) and (c)
illustrate the implementation results of RDR/MCAS, RDR-
pipe/ MCAS-pipe, and the proposed RDR-GRS architecture
with a good resource allocation algorithm. According to
the results, RDR-pipe saves 5 wire segments compared to
RDR at the cost of adding one extra register as a pipeline
register. It is a reasonable register-wire tradeoff since RDR-
pipe enables local sharing of wires. However, RDR-GRS,
which supports global sharing, outperforms the other two
architectures by saving registers and wires simultaneously.
This example clearly demonstrates the potential of reducing
interconnect resource in the RDR-GRS architecture and the
necessity of a good resource allocation algorithm to explore
that potential. Therefore, we describe and formulate this
allocation problem in the next section, and then present an
optimal ILP solution.

III. Problem Description

The channel and register allocation problem is discussed
in this section. Without losing generality, we assume that
the input to be implemented on the RDR-GRS architecture
is an application represented in the form of DFG.

(a)

(b)

Fig. 1. Different interconnect architectures: (a) RDR/MCAS,
(b) RDR-pipe/MCAS-pipe

1A-3

17

(a)

(b)

(c)

Fig. 2. Examples of different interconnect schemes: (a) RDR,
(b) RDR-pipe, (c) RDR-GRS

Definition 1. Data Flow Graph
The data flow graph is a directed graph, GDFG (Ops, Edep),
in which Ops is the set of operations and the directed edge
set Edep ⊆ Ops × Ops corresponds to the data dependency
between operations. For an operation opi ∈ Ops, d(opi)
represents the number of cycles required to execute opi.

The RDR-GRS architecture is represented as a topology
graph (TG). The TG describes the information about avail-
able logic clusters with register stations and the correspond-
ing connectivity through channels.

Definition 2. Topology Graph
GTOPO (Rst, Ech), Rst is a set of vertices representing reg-
ister stations and Ech ⊆ Rst × Rst is the set of directed
edge corresponding to the available channels between reg-
ister stations. Additionally, ∀i, m, n : rstm, rstn ∈ Rst,
chi = (rstm → rstn) ∈ Ech, •chi denotes for rstm and chi•
for rstn.

Mapping is a task which schedules the operations and
binds, places the FUs to the target architecture. It should
also ensure the arrival-to-deadline interval of each data trans-
fer is longer than the shortest possible travel time on the tar-
get architecture. After that, the information about where
and when the operations are executed can be known.

Definition 3. Feasible Mapping
Given a DFG GDFG (Ops, Edep) and a TG GTOPO(Rst, Ech),

the mapping from GDFG (Ops, Edep) to GTOPO(Rst, Ech) is
represented as two functions t : Ops → T and p : Ops → Rst.
∀i : opi ∈ Ops, ∃j, k : tj ∈ T , rstk ∈ Rst such that
tj = t (opi) and rstk = p (opi), which describes the operation
opi is executed in a cluster with rstk at cycle tj . The map-
ping is feasible if ∀i, m, n : ei = (opm → opn) ∈ Edep, the
constraint t(opn) ≥ t(opm)+d (opm)+sp (p (opm) → p (opn))
is satisfied. Here the data transfer between two neighboring
register stations is assumed to take one cycle. The function
sp (rsti → rstj) represents the minimum possible cycles re-
quired for a transfer from rsti to rstj .

The feasible mapping can be obtained by certain synthe-
sis algorithm such as MCAS. For the rest of the paper, we
assume the initial input contains a DFG, a TG and a feasi-
ble mapping. The goal of our work is to schedule the data
transfer paths (when and through what channels) to achieve
an optimal solution in terms of minimum number of required
wires and registers.

Definition 4. Data Transfer Set
The data transfer set Tr includes all required data transfers.
With the given TG GTOPO (Rst, Ech), there exist four func-
tions: gent : Tr → T , reqt : Tr → T , genr : Tr → Rst and
reqr : Tr → Rst. ∀i : tri ∈ Tr, ∃m, n, x, y : rstm, rstn ∈ Rst,
tx, ty ∈ T , such that tx = gent (tri), ty = reqt (tri), rstm =
genr (tri) and rstn = reqr (tri). That is, tx, ty, rstm and
rstn represents the generated, required cycles and the gen-
erating, requiring register stations of tri, respectively.

With the given DFG GDFG (Ops, Edep) and TG GTOPO(Rst,
Ech), for every edge ei = (opm → opn) ∈ Edep, there exists
the corresponding tri ∈ Tr such that

(gent (tri) , reqt (tri) , genr (tri) , reqr (tri)) =
(t (opm) + d (opm) ,t (opn) , p (opm) , p (opn))

Definition 5. Transfer Path Scheduling
Given a TG GTOPO (Rst, Ech), the data transfer set Tr,
and tri ∈ Tr, a transfer path scheduling σ(tri) is to select
a series of channels to complete the transfer tri. That is,
∀i : tri ∈ Tr, ∃chi,gent(tri), chi,gent(tri)+1, . . . , chi,reqt(tri)−1

∈ Ech, such that σ (tri) = (chi,gent(tri), chi,gent(tri)+1, . . . ,
chi,reqt(tri)−1) and the following constraints are satisfied:

� •chi,gent(tri) = genr (tri) and
chi,reqt(tri)−1 • = reqr (tri)

� chi,j• = •chi,j+1, ∀j : reqt (tri) − 1 > j ≥ gent (tri)

σ (tri) indicates the transferred data use the channel
chi,gent(tri) at cycle gent(tri), then the channel chi,gent(tri)+1

at cycle gent(tri)+1 , and finally the channel chi,reqt(tri)−1

at cycle reqt(tri) − 1.

Given a TG GTOPO(Rst, Ech) and a data transfer set Tr,
the channel and register allocation problem can be inter-
preted as finding a set of transfer path scheduling σ′s that
can minimize the requirements of registers and wires.

IV. Problem Formulation

In this section, we formally model the channel and register
allocation problem using integer linear programming (ILP).

1A-3

18

A. Variables in Formulation

All the variables are classified into two types: the allo-
cation variables and the resource variables. The allocation
variables are used to describe the transfer behaviors, while
the resource variables indicate the quantity of required reg-
isters (wires) in a register station (channel).

Definition 6. Allocation Variables
Given a transferred data set Tr and a TG GTOPO (Rst, Ech),
∀i, j, k : tri ∈ Tr, tj ∈ T , chk ∈ Ech, an allocation variable,
denoted as xi,j,k, has a 1-0 value which indicates whether
the data transfer tri uses the channel chk at cycle tj or not.

Note that not all combinations of index i, j and k of alloca-
tion variable xi,j,k are necessary when considering temporal
and spatial feasibility. At any cycle, a datum is only allowed
to transfer to a neighboring cluster using an available chan-
nel connecting the current and that neighboring cluster, i.e.,
it is impossible for a datum to reach the channels that are
not connecting to the current register station.

At the beginning, for any transfer tri at cycle tj =
gent(tri), the feasible channels within Xi,j are those whose
source is genr (tri). At the next cycle, for continuity, the
channels within Xi,j+1 should be those whose sources be-
long to the union of destinations of the channels within Xi,j .
The same also applies to the following cycles. Therefore, the
forward feasible channel set at any cycle can be recursively
derived from the set at the previous cycle. For tri, the set
CSi,j is the forward feasible channel set of tri at cycle tj

and is recursively defined as:

CSi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀j : reqt (tri) > j > gent (tri) ,{
chk| • chk =

⋃
chn∈CSi,j−1

chn•, chk ∈ Ech

}

j = gent (tri) ,
{chk| • chk = rstgenr(tri), chk ∈ Ech}

Similarly, a transfer can be backtraced from the destina-
tion register station to define the backward feasible chan-
nel set at each cycle. For any transfer tri at cycle tj =
reqt (tri) − 1, the feasible channels within Xi,j are those
whose destination is reqr (tri). At the previous cycle, for
continuity, the channels within Xi,j−1 should be those whose
destinations belong to the union of sources of the channels
within Xi,j . The same also applies to the previous cycles.
Therefore, the backward feasible channel set at any cycle
can be recursively derived from the set at the next cycle.
For tri, the set CDi,j is the backward feasible channel set
of tri at cycle tj and is recursively defined as:

CDi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀j : reqt (tri) − 1 > j ≥ gent (tri) ,{
chk|chk• =

⋃
chn∈CFi,j+1

•chn, chk ∈ Ech

}

j = reqt (tri) − 1,
{chk|chk• = rstreqr(tri), chk ∈ Ech}

For a given transfer and a given cycle, the feasible channel
set is the intersection of the forward and backward feasible
channel sets. As a result, ∀i, j, k : tri ∈ Tr, reqt(tri) >
j ≥ gent(tri) and chk ∈ Ech, {xi,j,k|chk ∈ CFi,j ∩ CDi,j}
is the set which includes all allocation variables required
in the ILP formulation. Obviously, the number of required
variables can be greatly reduced.

Definition 7. Resource Variables
A resource variable represents the quantity of a channel or

register station. ∀i : rsti ∈ Rst, qri is the resource variable
which represents the number of registers allocated in register
station rsti; ∀i : chi ∈ Ech, qwi is the resource variable
which represents the number of wires allocated in channel
chi.

A simple example of a mapped DFG is given in Fig. 3.
The target RDR-GRS architecture contains a 2 × 2 clus-
ter array in which each register station is connected to its
neighbors. A self-loop channel is also present to conceptu-
ally represent that the transfer is held in the register station
for a cycle if the channel is taken; but there is no need to
implement those loops physically. In this example, there are
4 register stations and 12 channels (self-loops are included).
The resultant forward and backward feasible channel set,
CSi,j , CDi,j , as well as the intersection of them are shown
in TABLE I. Then the variables actually used in ILP are
shown below:

Allocation variables:
x7,6,1, x7,6,3, x7,6,6, x7,7,0, x7,7,3, x7,7,4,
x7,7,6, x7,7,9, x7,7,11, x7,8,4, x7,8,9, x7,8,10

Resource variables of register stations:
qr0, qr1, qr2, qr3

Resource variables of channels:
qw0, qw1, qw2, qw3, qw4, qw5,
qw6, qw7, qw8, qw9, qw10, qw11

B. Objective Function

The goal of minimizing the required resources (registers
and wires) can be formulated as the minimization on the

Fig. 3. An example of ILP formulation

TABLE I
Examples of feasible channel sets

j CS7,j CD7,j CS7,j ∩ CD7,j

6 ch1, ch3, ch6 ch0 ∼ ch11 ch1, ch3, ch6

7
ch0,ch1,ch2,
ch3,ch4,ch6,
ch7,ch9,ch11

ch0,ch3,ch4,
ch5,ch6,ch8,
ch9,ch10,ch11

ch0,ch3,ch4,
ch6,ch9,ch11

8 ch0 ∼ ch11 ch4, ch9, ch10 ch4, ch9, ch10

1A-3

19

value of the following objective function:
∑

∀i:rsti∈Rst

αiqri +
∑

∀j:chj∈Ech

βjqwj

where α and β are the tunable weighting factors. The former
summation is the weighted number of used registers, and the
latter is the weighted number of used wires.

C. Constraints in ILP Formulation

There exist three types of constraints in our ILP formu-
lation: uniqueness, continuity and resource constraints.

The uniqueness constraint is imposed to ensure that a
data transfer can only occupy a single channel at any cycle.
That is, in each Xi,j , there is one and only one allocation
variable that is set to 1. This constraint can be written as:

∀i, j : tri ∈ Tr, reqt (tri) > j ≥ gent (tri) ,

∑
∀k:chk∈Xi,j

xi,j,k = 1

The continuity constraint is to ensure the transfer path is
continuous in both time and space domains. That is, for a
data transfer tri, the destination of the adopted channel at
cycle tj must be the source of the adopted channel at cycle
tj+1. This constraint can be written as:

∀i, j, k : tri ∈ Tr, reqt (tri) − 1 > j ≥ gent (tri) , chk ∈ Xi,j ,

−xi,j,k +
∑

∀k′:chk′∈Xi,j+1,
•chk′=chk•

xi,j+1,k′ ≥ 0

There are two types of resource constraints. The first one
is to make sure the interconnect resource is sufficiently allo-
cated in each station, i.e., the number of allocated registers
must be larger than the number of incoming data transfers
at every cycle. This constraint can be written as:

∀y, j : rsty ∈ Rst, tj ∈ T,

qry − ∑
∀i:reqt(tri)>j,
j≥gent(tri)

∑
∀k:chk∈Xi,j ,
chk•=rsty

xi,j,k ≥ 0

The first summation in the formula finds the data trans-
fers that are active at cycle tj , and the second summation
finds the channels whose destination is rsty. Hence the sec-
ond term in the formula indicates how many transfers actu-
ally send the data to rsty at cycle tj . The inequality must
be satisfied to ensure the number of allocated registers qry

can always accommodate the incoming data transfers.
Similarly, the second type of resource constraint ensures

that the number of allocated wires is larger than the number
of transfers using this channel at every cycle. This constraint
can be written as:

∀y, j : chy ∈ Ech, tj ∈ T

qwy − ∑
∀i:reqt(tri)>j,
j≥gent(tri)

∑
∀k:chk∈Xi,j

xi,j,k ≥ 0

Again, the second term in this formula indicates how
many transfers actually use the channel chy at cycle tj . The
number of wires in this channel qwy must be larger than the
number of demanded wires all the time.

Using the same example in Fig. 3, the set of all constraints
is shown below:

Uniqueness constraints:
x7,6,1 + x7,6,3 + x7,6,6 = 1;
x7,7,0 + x7,7,3 + x7,7,4 + x7,7,6 + x7,7,9 + x7,7,11 = 1;
x7,8,4 + x7,8,9 + x7,8,10 = 1;

Continuity constraints:
−x7,6,1 + x7,7,3 + x7,7,6 ≥ 0;
−x7,6,3 + x7,7,0 + x7,7,4 ≥ 0;
−x7,6,6 + x7,7,9 + x7,7,11 ≥ 0;
−x7,7,0 + x7,8,4 ≥ 0; −x7,7,3 + x7,8,4 ≥ 0;
−x7,7,4 + x7,8,10 ≥ 0; −x7,7,6 + x7,8,9 ≥ 0;
−x7,7,9 + x7,8,10 ≥ 0; −x7,7,11 + x7,8,9 ≥ 0;

Resource constraints of register stations:
qr0 − x7,6,3 ≥ 0; qr0 − x7,7,0 − x7,7,3 ≥ 0;
qr1 − x7,6,1 ≥ 0; qr2 − x7,7,4 − x7,7,9 ≥ 0;
qr2 − x7,8,4 − x7,8,9 − x7,8,10 ≥ 0;
qr3 − x7,6,6 ≥ 0; qr3 − x7,7,6 − x7,7,11 ≥ 0;

Resource constraints of channels:
qw0 − x7,7,0 ≥ 0; qw1 − x7,6,1 ≥ 0;
qw3 − x7,6,3 ≥ 0; qw3 − x7,7,3 ≥ 0;
qw4 − x7,7,4 ≥ 0; qw4 − x7,8,4 ≥ 0;
qw6 − x7,6,6 ≥ 0; qw6 − x7,7,6 ≥ 0;
qw9 − x7,7,9 ≥ 0; qw9 − x7,8,9 ≥ 0;
qw10 − x7,8,10 ≥ 0; qw11 − x7,7,11 ≥ 0;

V. Experiments

A. Environment Setup

We have implemented the GRS-ILP synthesis flow in C++
/Linux environment on a workstation with a Xeon 3.2GHz
CPU and 2GB RAM. The initial inputs to our flow are
the data transfer set and the topology graph. To obtain
the inputs, seven pure data flow graphs are first extracted
from mpeg2enc, jpeg and rasta of MediaBench [9]. These
data flow graphs are generated through the SUIF compiler
infrastructure [10] and the Machine SUIF [11]. Then, to
map a data flow graph into the RDR-GRS architecture, a
basic high-level synthesis algorithm, which performs force-
directed scheduling, approximate max-clique based binding,
SA-based FU placement in order, is applied.

Throughout the experiments, the specification of the RDR-
GRS architecture is defined as a 3×3 cluster array in which
each register station is connected to its neighbors and also
itself (i.e., 9 register stations and 33 channels in total). The
objective function is set as:

∑
∀i:rsti∈Rst

1 × qri +
∑

∀j:chj∈Ech,
•chj �=chj•

5 × qwj

The weighting factor for wires is set higher than that for
registers because global wires are scarcer than registers. The
adopted ILP solver is lpsolve 5.5.0.0 [12].

We have also implemented two alternative schemes for
comparison. Method1 uses dedicated non-pipelined inter-
connects as RDR/MCAS; Method2 uses a pipelined point-
to-pint interconnects as RDR-pipe/MCAS-pipe.

1A-3

20

B. Experimental Results

TABLE II gives the information of input DFGs. The num-
ber of operations is listed in Column #node. The numbers
of allocated ALUs and multipliers are reported in Column
FU resource after initial time-constrained scheduling. Fi-
nally, the total elapsed cycle count is obtained and listed
in the table after FU placement followed by rescheduling to
best fit the RDR architecture.

The allocation results of Method1, Method2 and our GRS-
ILP approach are shown in TABLE III. For each method,
the numbers of allocated registers and wires are reported
in two separate columns. For GRS-ILP, the runtime is also
given. As expected, Method1 requires the most wires. This
implies RDR/MCAS could impose a serious burden on phys-
ical routing. Method2, though on average reduces 20% of
wires, uses 42% more registers than Method1. Notice that
the amount of pipeline registers in Method2 increases with
the size of cluster array and usually cannot be eased because
only a very limited set of data transfers (depending heav-
ily on the input) can actually share registers. Whether the
tradeoff between pipeline registers and wires is worthwhile
might be in doubt under different conditions. Meanwhile,
GRS-ILP delivers the best results in both aspects, the num-
ber of registers and wires. GRS-ILP demands 58% (35%)
less wires and 47% (55%) less registers compared to Method1
(Method2). The experimental results clearly demonstrate
the superiority of the proposed architecture and synthesis
flow over the previous two. We attribute this remarkable im-
provement to two indispensable keys, RDR-GRS and GRS-
ILP. It is impossible to drastically minimize the number of
registers and wires without the support of RDR-GRS, which
breaks the limited local sharing scope and provide a glob-
ally sharable platform for interconnect resources. On top
of RDR-GRS, GRS-ILP guarantees to produce optimal syn-
thesis results such that the underlying architecture can be
fully exploited.

VI. Conclusions

A new architecture, RDR-GRS, is proposed in this paper
to enable global interconnect resource sharing for multicy-
cle communication. Under the new architecture, the issue
of data transfer path scheduling is addressed. The channel
and register allocation problem is then defined and modeled
in an ILP formulation. The experimental results show that
the GRS-ILP synthesis flow can obtain the optimal solution
with averagely 35% reduction in registers and 58% reduction
in wires compared to the previous work (Method1). In sum-
mary, the RDR-GRS architecture with GRS-ILP synthesis

TABLE II
Information of input DFGs

#node
FU resource cycle

count#ALU #MUL

mpeg2enc (1) 66 5 2 23

mpeg2enc (2) 101 9 4 23

mpeg2enc (3) 196 18 8 18

jpeg (1) 93 9 2 35

jpeg (2) 109 9 2 33

jpeg (3) 140 11 6 23

rasta 119 7 5 33

TABLE III
Results of resource allocation

Method1 Method2 GRS-ILP

#wire #reg #wire #reg #wire #reg
runtime
(sec)

mpeg2enc(1) 42 28 37 45 25 25 0.2

mpeg2enc(2) 76 53 60 76 42 38 102.6

mpeg2enc(3) 130 92 109 133 68 61 6.3

jpeg(1) 81 50 64 78 24 28 8.9

jpeg(2) 78 44 59 68 28 28 0.9

jpeg(3) 75 72 58 87 24 48 235.5

rasta 74 56 57 75 25 27 340.1

average 79.4 56.4 63.4 80.3 33.7 36.4

Norm. to
Method1

1 1 0.80 1.42 0.42 0.65

1.25 0.70 1 1 0.53 0.45

flow is capable of providing better synthesis outcomes than
the previous RDR-based architectures.

Though the proposed ILP formulation is capable of pro-
viding the desirable optimality, it may run out of steam as
designs are getting larger. Therefore, we are currently con-
centrating on developing an efficient heuristic resource allo-
cation algorithm to fully exploit the RDR-GRS architecture
for large-scale designs.

REFERENCES

[1] International Technology Roadmap for Semiconductor. Semi-
conductor Industry Association, 1999.

[2] Y. Mori, V. Moshnyaga, H. Onodera, and K. Tamaru, “A
performance-driven macro-block placer for architectural evalu-
ation of ASIC designs,” in Proc. Annual IEEE International
ASIC Conference and Exhibit, pp. 233–236, Sep. 1995.

[3] V. Moshnyaga and K. Tamaru, “A placement driven method-
ology for high-level synthesis of sub-micron ASIC’s,” in Proc.
International Symposium on Circuits and Systems, vol. 4, pp.
572–575, May 1996.

[4] P. Prabhakaran and P. Banerjee, “Parallel algorithms for si-
multaneous scheduling, binding and floorplanning in high-level
synthesis,” in Proc. International Symposium on Circuits and
Systems, vol. 6, pp. 372–376, May 1998.

[5] D. Kim, J. Jung, S. Lee, J. Jeon, and K. Choi, “Behavior-to-
placed RTL synthesis with performance-driven placement,” in
Proc. International Conference on Computer Aided Design,
pp. 320–325, Nov. 2001.

[6] J. Jeon, D. Kim, D. Shin, and K. Choi, “High-level synthe-
sis under multi-cycle interconnect delay,” in Proc. Asia and
South Pacific Design Automation Conference, pp. 662–667,
Jan. 2001.

[7] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Archi-
tecture and synthesis for on-chip multicycle communication,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, no. 4, pp. 550–564, Apr. 2004.

[8] J. Cong, Y. Fan, and Z. Zhang, “Architecture-level synthesis for
automatic interconnect pipelining,” in Proc. Design Automa-
tion Conference, pp. 602–607, Jun. 2004.

[9] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a
tool for evaluating and synthesizing multimedia and communica-
tions systems,” in Proc. IEEE/ACM International Symposium
on Microarchitecture, pp. 330–335, Dec. 1997.

[10] SUIF 2 Compiler System. [Online]. Available:
http://suif.stanford.edu/suif/suif2/

[11] M. Smith and G. Holloway, “An introduction to machine suif
and its portable libraries for analysis and optimization,” in Di-
vision of Engineering and Applied Sciences, Harvard Univer-
sity, 2002.

[12] lp solve open source LP and MILP solver. [Online]. Available:
http://groups.yahoo.com/group/lp solve/

1A-3

21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

