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Abstract— Scaling is currently the most popular technique used to
improve performance metrics of CMOS circuits. This cannot go on
forever because the properties that are responsible for the functioning
of MOSFETs no longer hold in nano dimensions. Recent research into
nano devices has shown that nano devices can be an alternative to CMOS
when scaling of CMOS becomes infeasible in the near future. This is
motivating the need for stable and mature design automation techniques
for threshold logic since it is the design abstraction used for most nano-
devices. This paper presents a new decomposition theory that is based
on the properties of threshold functions. The main contributions of this
paper are: (1) A new method of algebraic factorization called the min-max
factorization. (2) A decomposition theory that uses this new factorization
to identify and characterize threshold functions. (3) A new threshold logic
synthesis methodology that uses the decomposition theory. This synthesis
methodology produces circuits that are better than the previous state of
art (27% better gate count and comparable circuit depth).

I. INTRODUCTION

Threshold logic (TL) has long been known as an alternative way

to compute Boolean functions [13], [16], [7]. Much of the earlier

work on TL dates back to the 1960s, which focused primarily on

exploring the theoretical aspects, with little attention being paid to

the synthesis and optimization of large, multi-level TL networks. The

lack of efficient implementations of TL gates, when compared to

static fully complementary MOS transistor networks and the rapid

development of synthesis and optimization tools for Boolean logic

design led to a loss of interest in developing similar infrastructure

for designing TL circuits. The situation is now changing in favor of

threshold logic [17], [10], [6].

The scaling of MOSFETs that has been taking place for over

three decades is expected to continue for at least another decade,

after which we will reach a point where transitioning to non-CMOS

technologies will be necessary [1]. A large amount of research is

currently in progress to find the best alternative. A few examples

of post-CMOS devices are resonant tunneling diodes (RTDs) [15],

single electron transistors (SETs) [14], quantum cellular automata

(QCA) [5] and carbon nano-tube FETs (CNT-FETs) [3]. A common

and important characteristic of these devices is that they can be

used to realize threshold logic very efficiently [17]. Efficient CMOS

implementations of threshold gates are also currently available [6],

[4]. Consequently, there has been a resurgence of interest in threshold

logic and synthesis and verification methods that are applicable to

large, multi-level threshold networks [17], [11], [9], [2], [10].

Salient Features:
(1) In this paper we present a new approach to the synthesis of

multi-level threshold networks. (2) The key feature of the method is

the determination of whether or not a given Boolean function is a

threshold function. The traditional approach of doing this is based

on determining the satisfiability of a large number of integer linear

inequalities. Such a method is only practical for functions with a
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few inputs. (3) The proposed method eliminates the use of linear

programming to determine weights and threshold for a threshold

function. (4) We present a new theory based on a new factorization

of an SOP of a Boolean function. We use the new factorization to

identify sub-functions of a Boolean function that are threshold. This

is used to decompose a Boolean function into its constituent threshold

functions. (5) We apply this decomposition method to the problem

of synthesis of threshold circuits.

II. BACKGROUND

A threshold gate has one or more binary inputs, x1, x2, . . . , xn,

and a single binary output [7]. The gate is characterized by a set of

weights, W = w1, w2, . . . , wn, where wi is the weight associated

with input xi, and a threshold T . The output of a threshold gate is

defined as follows:

y =

j
1 if

Pn
i=0 wixi ≥ T

0 otherwise
(1)

A Boolean function is called a threshold function if it can be

implemented by a single threshold gate. Since the threshold gate

realizing a function f is completely characterized by the set of

weights W and the threshold T , we represent it by f = [W ; T ] =
[w1, w2, . . . , wn; T ]. Figure 1 shows a simple example of a threshold

gate [x = 1, y = −1; T = 1].

Fig. 1. Threshold gate example

Threshold functions are a subset of unate functions [13]. Since the

primitive gates such as OR, AND, NOR and NAND are threshold,

one can view a multi-level logic network composed of such gates

as a special case of a threshold network. However, the advantage of

using threshold logic is that much more complex functions can be

implemented in a single threshold gate. Hence a multi-level threshold

network may be viewed as a generalization of a traditional logic

network using much more complex primitives. This can lead to

significant reduction in gate count and, in many cases, circuit depth.

These reductions translate into area, power and delay reduction. For

example, the function ab(c+d)+cd(a+b) can be implemented by a

single threshold gate. We would need 5 Boolean AND/OR gates in 3
levels to implement this function. Since not all Boolean functions are

threshold, an arbitrary Boolean function will have to be implemented

as a multi-level threshold network.

Determining whether or not a given Boolean function is threshold

is an important problem for synthesis, verification and optimization of

threshold logic networks. Another important problem is to decompose

a Boolean function into sub-functions that are threshold, i.e. to
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determine the parts of the Boolean function that are threshold. After

a function has been identified as threshold it is necessary to assign

weights and a threshold for the gate. As stated earlier, currently the

task of identifying threshold functions and assigning weights is done

using the ILP formulation [16], [17]. In this paper we present an

efficient (non-ILP) method to address all three problems – identifying

functions or sub-functions that are threshold, and assigning weights

and thresholds. Only recently has there been a significant effort in

the area of threshold synthesis [17], [11], [2]. Most of these methods

use the ILP formulation to determine whether or not a function

is a threshold function and for the weight-threshold assignment.

Moreover, these methods use a Boolean circuit and local merging

of Boolean gates to obtain a threshold circuit. Thus the quality of

result depends on the circuit representation used as input.

III. PRELIMINARIES

A. Definitions

Positive Threshold Function: A positive threshold function is one in

which all the variable weights in the weight-threshold assignment

are positive. A positive threshold function also a positive unate

function [13]. For example F = a + bc ≡ [a = 2, b = 1, c = 1; T =
2] is a positive threshold function. Note that it is also positive unate.

Support Set: The set of all variables on which the function depends

is called the support set of the function. The support set of function

F is denoted by Supp(F ). e.g: The support set of F = a + c,

Supp(F ) = {a, c}.

Don’t Care Variable: A variable d is said to be a don’t care variable

of a function F if and only if Fd=0 = Fd=1. Don’t care variables

do not belong to the support set of a function.

Complete Sum: An SOP formula is a complete sum (a sum of all

prime implicants and only prime implicants [12]) if and only if:

1) no term includes any other term,

2) the consensus of any two terms of the formula either does not

exist or is contained in some other term.

The complete sum of function F is denoted by CS(F ). For example,

the complete sum of ab′ + ab + c is a + c.

�-Ordering:
For a function F if Fx=1,y=0 ⊇ Fx=0,y=1, it is denoted as x � y.

x � y is defined similarly. If Fx=1,y=0 ⊃ Fx=0,y=1, it is denoted as

x � y. x ≺ y is defined similarly.

For a pair of variables x and y, if x � y and x � y, it is denoted

as x ≈ y.

For a threshold function, wx > wy implies x � y, and wx = wy

implies x ≈ y [16]. It is also known that for a threshold function

F , Supp(F ) can be totally pseudo-ordered using the �-relation. For

more detals on these operators the reader is referred to [16].

B. Min-Max Literal (MML) Factorization

Factorization of Boolean SOP is done to reduce the number of

literals and thereby obtain more compact representations. Algebraic

factorization is the algebraic division of a Boolean function. If D
is the divisor used to factor F , then F = Q.D + R, where Q
and R are the quotient and remainder obtained by the algebraic

division of F by D. Q and R may be further factored to obtain

a more compact factored form. Many different factoring techniques

have been presented [12]. The main difference between these different

techniques is the way in which the divisors are chosen. One factoring

technique called the best literal factorization uses that literal for

the divisor which occurs in the greatest number of cubes [12]. For

example, for F = ab+ ac+ de = a(b+ c)+ de, a is the best literal
as it occurs in two cubes, which is more than the number of cubes in

which any other literal occurs. Here Q = b+ c, D = a, and R = de
and F = Q.D + R.

We propose a new kind of factorization. As we’ll show later

this is well suited for our decomposition procedure. We call this

factorization the min-max literal factorization. This is very similar to

the best literal factorization in that a single literal is used as a divisor,

but differs slightly in the way the divisor is chosen.

Let Cj represent the set of all cubes in a SOP that contain j literals.

The min-max literal is a literal that occurs in the greatest number of

cubes in Ck, where k is the size of the smallest cube. For example,

in ab + ce + ad + bcd, a is the min-max literal as it occurs more

often in C2 = {ab, ce, ad}, than any other literal.

In case of a tie, the literals that occur in an equal number of cubes

in Ck are then compared to each other using the occurrences of these

literals in Ck+1 and so on, until the tie is resolved. For example, in

abc+ad+ae+de, again a is the min-max literal. Even though a, d
and e all occur in 2 cubes in C2 = {ad, ae, de}, the tie is broken

using C3 = {abc}, since a occurs in one cube of C3, whereas d and

e are not present in any cube in C3.

In case the tie is not broken even after comparing the variable

occurrences in Cl, where l is size of the largest cube, the tie is

broken arbitrarily. In ab + ac + bc, a, b or c can be chosen as the

min-max literal, as they all occur in equal number of cubes in C2

and the largest cube size is 2.

C. The Min-Max Literal Factor Tree (MMLFT)

After repeatedly factoring an SOP using the min-max literal

factorization, we can represent the factored form using a factor tree.

This factor tree is a binary tree which has a labeled left edge. The

leaves of the tree are Boolean AND, Boolean OR, a single literal or

constants 1 and 0. The left edge of any node is labeled using the

min-max literal chosen to be the divisor of the function of the node.

The left child represents the quotient obtained by algebraic division,

and the right child the remainder (see Figure 2).

An example MMLFT for G = a + bc + bd + be + cd + ce =
a + b(c + d + e) + c(d + e) is shown in Figure 3.

Fig. 2. The Min-Max Literal Factor Tree Fig. 3. Example Factor Tree

IV. THRESHOLD LOGIC DECOMPOSITION

A. Identification of Threshold Functions : Overview

Our aim is to identify parts of a Boolean function that are threshold.

The starting point of the decomposition procedure is a min-max

literal factor tree that is constructed from a given SOP [8]. To make

the factor tree more compact, we ensure that the SOP is minimal

with respect to single cube containment. The MML factorization is

crucial for the decomposition procedure. For a threshold function, the

min-max literal represents the variable with the highest weight (see

Lemma 6). Moreover, many of the properties that the decomposition

procedure is based on are valid only for a MML factor tree.
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Without loss of generality, we assume that all literals are positive.

Therefore a and a′ are considered to be two seperate literals. All

weights that are assigned during the decomposition procedure are

thus positive. The exact weights can be easily obtained by the use of

Lemma 7 (also in [16], pg. 58). For example, if the decomposition

procedure yields the following weight-threshold assignment: [a′ =
2, b = 1, c = 1; T = 3], then by Lemma 7, this is equivalent to

[a = −2, b = 1, c = 1; T = 1].

Figure 4 shows the flow of procedure for decomposition of a

threshold function. The procedure traverses the MML factor tree

in a bottom-up fashion. By construction, the leaf nodes (AND/OR
functions, a single literal, or constants 1, 0) of the tree are trivially

threshold. The core of the procedure is to determine whether or not

a node F is a threshold function given that its two children are

threshold functions. If so, the weights are determined; otherwise,

the function F is transformed by reordering the MML factor tree

after decomposing one child of F . We now explain the steps of the

algorithm shown in Figure 4.

Fig. 4. The Threshold Decomposition Flow

In what follows, let A and B be the left and right children of a

node F , with the left edge labeled by the literal x (i.e., F = xA+B).

Suppose A and B are threshold functions. Lemma 5 states that if in

a MML factor tree, the support set of one child is not contained

in the support set of the other child, then F is not a threshold

function. Therefore, step 1 in Figure 4 checks this condition. If it

is not threshold, F is restructured.

Next, if the conditions of Lemma 5 are satisfied, we then check

the conditions of Lemma 4, which states that in a MML factor tree,

if there exists a pair of variables in A and B that have different �-

ordering, then F is not a threshold function. If this test succeeds,

we compare the variable weights of A and B. If they are the same,

then F will be a threshold function (Lemma 1) and we proceed with

assigning the weights (also indicated in Lemma 1). If the weights

are not the same, F may or may not be a threshold function. At this

point we declare F to be a non-threshold function and proceed with

the restructing step.

B. Weight assignment for leaf nodes

In order to increase the chance of identifying threshold functions,

we use the following rules to assign weight to the leaf nodes (note

that we treat all literals as positive literals):

(1) The AND, OR, constants 1 and 0 nodes are assigned the same

weights as the weights assigned to the sister∗ node function. (2) For

∗Two nodes are sister nodes if and only if they have the same parent.

an OR node the exact same weights of the sister node are assigned and

the threshold is set to be equal to the smallest variable weight. This is

a valid weight-threshold assignment as when any one of the inputs is

1, the OR function outputs 1 (Figure 5(a)). (3) For an AND node the

exact same weights of the sister node are assigned and the threshold

is set to be the sum of all weights. This is a valid weight-threshold

assignment, as only when all of the input variables are 1, the AND
function outputs 1 (Figure 5(b)). (4) The weights are similarly made

identical to that of the sister node in case of a constant 1 node. The

threshold is set to 0. This works as we have all our weights > 0
(positive threshold function) and no matter what the state of input

variables are the weighted sum of inputs is always ≥ 0, which is the

threshold (Figure 5(c)). (5) For a constant 0 node after setting the

same weights as that of the sister node, the threshold is set to be one

greater than the sum of all weights (Figure 5(d)). (6) If the leaf node

is AND/OR and the sister node has not been assigned weights and

a threshold, we assign a weight of 1 to all inputs. The threshold is

set to be 1 for an OR node and it is set to be the cardinality of the

support set in case of an AND node.

Fig. 5. Weight-threshold assignment to leaf nodes

Weight Resynthesis: Lemma 2 states that the don’t care variables in

a threshold function must have a weight strictly less than the weights

of all other variables. In the course of assigning weights to the leaf

nodes, this condition may be violated. Figure 6(a) shows an example

of this violation. When assigning weights to the variables of the

right child of node 1, the weight assignment of node 2 is copied.

As a result, e, which is a don’t care variable of the right child of

node 1, violates Lemma 2 (weights of e and d are the same). Weight

resynthesis is performed on the subtree rooted at node 2 with the

constraint that variable e receive a weight strictly less than the weight

of all other variables. This is shown in Figure 6(b). Finally, since such

an assignment is possible, node 1 is determined to be a threshold

function.

C. Weight assignment for non-leaf nodes

Lemma 1: If F = xA+B in a MML factor tree, and A and B are

known to be threshold, with a weight-threshold assignment [W ; TA]
and [W ; TB ] (identical input weights) respectively, and TB > TA,

then F is also a threshold function with wx = TB − TA and F ≡
[W ∪ {TB − TA}; TB ].

Example: Figure 7 shows a MML factor tree of the function a(b +
c) + bc. The leaves are trivial threshold functions whose weight-

threshold pairs can be trivially assigned. Now consider the parent

node. Both children satisfy Lemma 5 and 4, and have the same

weights. Hence weight-threshold assignment for the parent can be

determined by Lemma 1.
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Fig. 6. Resynthesis Example

Fig. 7. Weight Assignment Example

D. Restructuring the MML Factor Tree

The restructuring of the factor tree is done when the node F is

declared to be a non-threshold function, even though its children

are threshold. When we encounter a node that is not threshold but

its children are threshold, we decompose the MML factor tree. We

remove the larger of the two children (one with the bigger support

set) and modify the tree so that we can continue to identify more

threshold functions.

There are two different restructuring rules depending on which

child is eliminated. This is shown in Figure 8. The function of the

child with a larger support set is assigned a single literal (here X) and

the tree is reordered. Reordering is straightforward if the left child is

replaced by a literal. Reordering is more involved if the right child

is replaced by a literal. Note that this reordering does not change the

function represented by the tree. The procedure only helps to identify

sub trees in the MML factor tree that represent threshold functions.

V. APPLICATION TO SYNTHESIS OF THRESHOLD CIRCUITS

A threshold circuit is a directed graph. The nodes in this graph

represent threshold elements and the directed edges represent input-

output interconnection between different gates. Each threshold ele-

ment has a weight-threshold assignment that fully characterizes the

element. The objective of the synthesis procedure is to generate a

threshold circuit that implements the specified function.

The decomposition methodology developed earlier is an integral

part of the synthesis procedure. Note that the decomposition proce-

dure identifies sub functions that are threshold. If we perform repeated

decomposition of the MMLFT until the root node is declared to be

threshold, we get a network of threshold gates that will implement

the required function. Example: Consider the function ab + cd.

Fig. 8. Restructuring Rules

This is a not a threshold function [17]. By using the decomposition

methodology repeatedly we can obtain the threshold circuit shown in

Figure 9 (b).

Fig. 9. Synthesis Example: (a) Synthesis procedure. (b) Synthesized circuit

The Synthesis Flow: To generate threshold circuits that implement

multi-output functions we follow the synthesis flow shown in Fig-

ure 10. We first use SIS [8] to obtain an optimized circuit graph. Each

node in the circuit graph represents a complex Boolean function. For

each node the MML factor tree of the node function is constructed.

Repeated decomposition is performed to obtain a threshold circuit

for the function of the node. Once a threshold circuit is obtained for

all nodes in the circuit graph, we would have generated the required

multi-output threshold circuit.

Fig. 10. The Threshold Synthesis Flow

VI. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in Python and was run

on an Apple iBook G4 with 1 GB RAM. Circuits in the MCNC

benchmark suite were synthesized. The results are reported in Table I.

Gate count and depth are non-technology specific metrics for area

and delay. We report these as they are reported in the previously

published works [17], [2]. Thus we use the same to compare our
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approach against the state-of-art synthesis method. The table lists the

gate count and levels for the benchmark circuits when implemented

as Boolean circuits and as TL circuits by the method described in [17]

(which has a fanin restriction of 6 input). Compared to the method

in [17], our method generates circuits with comparable depth and

27% fewer gates on average (66% at best). Our method does not

have a restriction on the fanin of gates, however such a restriction

can be imposed if needed.

TABLE I

COMPARISON WITH PREVIOUS WORK

Bench- Boolean Circuit Method in [17] Proposed Method
mark Gates Depth Gates Depth Gates Depth

b1 10 4 8 3 6 3
cm42a 13 3 13 3 12 3
decod 24 3 24 3 18 2
cm82a 18 5 12 4 12 6

majority 5 3 1 2 1 1
parity 45 9 45 9 30 8
z4ml 39 8 19 5 16 8
f51m 101 8 82 8 40 5

9symml 141 10 110 9 82 9
alu2 253 27 197 25 152 26
x2 20 5 15 4 15 4

cm152a 13 4 11 4 8 4
cm85a 26 5 14 5 14 7

cm151a 14 6 12 5 17 5
alu4 517 28 410 23 297 33

cm162a 39 7 26 8 18 7
cu 31 6 24 4 16 4

cm163a 40 6 25 6 17 6
cmb 33 7 27 6 14 3
pm1 25 4 23 4 16 3
tcon 32 3 32 3 16 2
pcle 42 6 35 6 26 9
sct 54 6 38 5 33 4
cc 49 6 35 6 23 3

cm150a 25 5 21 4 32 6
cordic 61 9 49 7 52 6

ttt2 127 7 100 6 84 6
pcler8 50 7 47 7 34 9
frg1 97 12 59 9 24 6
c8 109 8 85 7 75 6

comp 89 9 83 8 57 13
my adder 160 34 96 18 33 17

term1 278 11 226 10 102 8
count 91 12 79 12 48 18
unreg 66 4 50 5 48 3

cht 119 5 82 5 73 3
apex7 171 10 118 9 94 9

x1 293 8 203 7 82 6
example2 226 9 182 8 137 8

x4 264 7 189 8 159 5
apex6 543 12 396 12 310 12

x3 660 9 441 7 415 8
pair 1199 14 907 12 609 15

The most important advantage of our method when compared

with these two previous approaches is that it gives a combinatorial

method and a theoretical underpinning for synthesizing TL circuits

as oppposed to the heuristic of localized merging of Boolean gates.

The method in [2] generates feed forward TL networks in which

there is only one gate in each level. This method is extremely

expensive in terms of computation time. It requires more than a

minute even for small circuits of only 2 TL gates. In comparison our

method takes an average of 2 seconds to complete execution. Even

for circuits with a large number of gates (e.g: the pair benchmark

circuit which has over 600 threshold gates) it takes no more than 6

seconds to generate the threshold circuit.

To better compare the results, we use the histogram in Figure 11.

The x-axis of the histogram represents the number of gates in the

Boolean circuit. The y-axis of the histogram plots the average number

of gates in the threshold circuits generated by the two methods to

implement the same benchmarks. Example: Consider the circuits that

needed 200-500 gates in the Boolean implementation. An average of

200 gates were needed by the previous method [17] and our method

needed an average of 126 gates to implement the same circuits. As

seen in the figure the proposed approach needs fewer gates than the

previous approach in every range. The improvement in the gate count

is greater for larger circuits.

The circuits generated by the method are on average 1% worse

than the circuits generated by the method in [17]. The focus of this

method is to reduce the gate count and in this regard the proposed

method does better than the previous method for almost all circuits.

Fig. 11. Comparison of results

VII. CONCLUSION

In this paper a novel theory for decomposition of Boolean functions

into constituent threshold functions is proposed. New properties of

threshold functions are introduced and proved. Using these properties

we develop a decomposition procedure to identify and assign weights

and threshold to a threshold function. A new algebraic factorization

for factoring Boolean functions which is pivotal in making the

proposed procedure work is presented. A new synthesis procedure

is built on top of the decomposition theory. This procedure has

sound theoretical basis as opposed to other heuristic node merging

algorithms. When compared to the most recent synthesis procedure

the proposed method generates threshold circuits that have an average

of 27% fewer gates with comparable circuit depth.

APPENDIX

Lemma 1: If F = xA + B in a MML factor tree, and A and B are

known to be threshold, with a weight-threshold assignment [W ; TA]
and [W ; TB ] (identical input weights) respectively and TB > TA,

then F is also a threshold function with wx = TB − TA and F ≡
[W ∪ {TB − TA}; TB ].

Proof: In [10] it is shown that A = Fx and B = Fx′ .

Therefore, F = x.A + x′.B (Shannon decomposition [12]). To

prove the Lemma we need to show that for every one-point O =
{o1, o2, · · · , on} of F ,

P
oi ε O wioi ≥ T , and for every zero-point

Z = {z1, z2, · · · , zn} of F ,
P

oi ε O wioi < T .

CASE 1 x = 1: x = 1 ⇒ F = A. F (O) = 1

⇒ A(O \ {ox}) = 1 ⇒
X

oi ε (O\{ox})
wioi ≥ TA

⇒
X

oi ε (O\{ox})
wioi + (TB − TA)1 ≥ TA + TB − TA

⇒
X

oi ε O

wioi ≥ TB .

F = 0 ⇒ A = 0. F (Z) = 0 ⇒ A(Z \ {zx}) = 0

⇒
X

zi ε (Z\{zx})
wizi < TA ⇒

X
zi ε (Z\{zx})

wizi < TB

(since TA < TB).
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CASE 2: When x = 0. x = 0 ⇒ F = B. F (O) = 1

⇒ B(O \ {ox}) = 1 ⇒
X

oi ε (O\{ox})
wioi ≥ TB

⇒
X

oi ε (O\{ox})
wioi + (TB − TA)0 ≥ TB

⇒
X

oi ε O

wioi ≥ TB .

F = 0 ⇒ B = 0. F (Z) = 0

⇒ B(Z \ {zx}) = 0 ⇒
X

zi ε (Z\{zx})
wizi < TB

⇒
X

zi ε (Z\{zx})
wizi + (TB − TA)0 < TB

⇒
X

zi ε (Z\{zx})
wizi < TB .

Lemma 2: In all weight-threshold assignments of a positive threshold

function, the don’t care variables have weight strictly less than all

other non-don’t care variables.

Proof: Let d be a don’t care variable of the function F . By

definition the value of F is the same when d = 1 and when d = 0.

Let a, b, c ε Supp(F ). To prove the Lemma we now need to show that

wd < wj , j ε {a, b, c}. Without loss of generality, suppose wd ≥ wa.

Let Pa be a prime implicant of F that contains a. Since F is a

positive threshold function wj > 0, j ε {a, b, c}. Now
P

i ε Pa
wi ≥

T ⇒ P
i ε Pa;i�=a wi + wa ≥ T .

Since wd > wa;
P

i ε Pa;i�=a wi + wd ≥ T . ∴ Paa→d belongs to

the on-set of F . Since d is a don’t care, changing d from 1 to 0 will

not change the output of F . Therefore by setting d = 0 ⇒ Pa \ a is

also in the on-set of F . ∴
P

i ε Pa;i�=a wi ≥ T

This implies that Pa \ a is an implicant of F . If Pa \ a is an

implicant, then Pa is not a prime implicant (by definition of prime

implicant). This is a contradiction. Therefore wd ≥ wa. Similarly

wd ≥ wk, k ε {b, c}. Hence wd < wj , j ε {a, b, c}.
Let Ax + B is the complete sum of a positive threshold function F ,

where x is the variable with the highest weight. Lemma 3, 4 and 5

discuss some properties of this representation of F .

Lemma 3: There exists a weight-threshold assignment of A and B
such that both A and B have the same variable weights.

Proof: In [10] it is shown that if x is the variable with the

highest weight in the threshold function F and CS(F ) = Ax + B,

then A = Fx and B = Fx′ .

Also if F = [W ; T ], then A = [W \ wx; T − wx] and B = [W \
wx; T ] [10]. Notice that variable weights for both A and B are the

same (W ). Therefore there exists weight-threshold assignments in

which both A and B have the same variable weights.

Lemma 4: Both A and B have the same �-ordering of variables.

Proof: From the weight-threshold assignment of a threshold

function, �-ordering can be obtained using the following relationship

between weights and �-ordering [16]:

(1) If wx > wy , then x � y. (2) If wx = wy , then x ≈ y.

Since there exists a weight-threshold assignment for A and B such

that they both have the same variable weights (Lemma 3), both A
and B have the same variable �-ordering.

Lemma 5: If Supp(A)\Supp(B) = φ and Supp(B)\Supp(A) =
φ, then F is not a threshold function.

Proof: Suppose F is a threshold function. Since Supp(A) \
Supp(B) = φ,∃a ε A \ B. Similarly ∃b ε B \ A. If Supp(A) ∩
Supp(B) = φ, ∃c such that c ε Supp(A) ∩ Supp(B).

It can be seen that b is a don’t care variable for function A and a is

a don’t care variable for function B.

From Lemma 2, for function A, wa > wb For function B, wb >
wa. From Lemma 3 we know that there is at least weight-threshold

assignment such that A and B have the same variable weights.

But as shown before wa > wb in A, and wa < wb in B. This is

clearly a contradiction of Lemma 3. Therefore F is not a threshold

function and the lemma is proved.

Lemma 6: In a complete sum of a threshold function, let Ck repre-

sent the cubes with k literals. For any two variables x and y
(1) If wx > wy , then x will appear more often than y in Ck, with

the smallest k among the set of Ck’s. (2) If wx = wy , then x and y
will appear equally often in each Ck.

Proof: Proof follows from Theorem 5.1.6 in [16] (pg. 120).

Lemma 7: If f(X) is a threshold function and has a weight

threshold assignment [{w1, · · ·wa−1, wa, wa+1, · · · , wn}; T ], then

for f(X; a → a′), [{w1, · · ·wa−1,−wa, wa+1, · · · , wn}; T − wa]
is a feasible weight threshold assignment.

Proof: For proof and a detailed discussion refer [16] (pg 58).
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