
Exploration of Low Power Adders for a SIMD Data Path  

Abstract – Hardware for Ambient Intelligence needs to achieve 

extremely high computational efficiency (up to 40GOPS/W). An 

important way for reaching this is exploiting parallelism, and 

more specifically data-level parallelism enabled by SIMD. 

Whereas a large body of research exists on the benefits of, the 

architectural design of and compilation onto SIMD, the design 

of energy-optimal functional units for SIMD has received 

limited attention. It appears that existing SIMD functional 

units are designed in an area optimal, but not energy optimal 

way. By exploiting the difference in critical path length for the 

types of operations (e.g., 4x8/2x16/1x32), SIMD adders can be 

developed that save up to 40% of energy. In this paper, we will 

present these adders, the issues of building them and quantify 

their benefits for different usage scenarios and operating 

frequencies. 

I Introduction 

Ambient intelligence is driven by low power, real-time, 

digital systems. Economics demand that these systems are 

made at a low cost (in terms of NRE and manufacturing) and 

that, even more importantly, they are introduced in due time 

onto the market. Given both constraints, flexibility and 
programmability is key. Unfortunately, these features come 

at an important energy penalty.  

It is well known that parallelism, and in particular SIMD can 

partially recover the loss in energy efficiency due to 

flexibility. Firstly, more parallelism increases performance, 

which can be exchanged for energy savings in many ways 

(e.g., by voltage scaling). Secondly, SIMD reduces the cost 

associated with instruction decoding.  

A SIMD unit is usually derived from an existing data path. 

The data path is basically subdivided in units operating on 

smaller words. This explains the origin of its name: a 
subword parallel data path. 

Whereas many related work exists on the benefits of and 

compilation techniques for subword parallelism, the 
implementation of subword parallel data paths for energy 
has received limited attention.  

Subword parallel data paths require dedicated 
adder/shuffler/multiplier/logic units that process 
heterogeneous operations. E.g., an adder may have to 

operate on 4x8- or 2x16- or 1x32-bit words. For this 
purpose, 4x8-bit adders are usually cascaded with 
multiplexers into a 32-bit unit, which can be programmed 
to perform all three types of operations. During synthesis 

the gates of the design are sized such that the longest 
critical path of the design, in case the critical path through 
all units composing a 32-bit operation, meets the delay 

constraint. As a result, the adder is not energy-efficient 

for performing 8-bit operations, which have a shorter 
critical path. Indeed, for 8-bit operations smaller gates 
suffices and energy can be saved: 4x8-bit operations on 
an 8-bit ripple adder consume 1.8 times less compared 

1x32-bit operation on a 32-bit adder.
1

The contribution of this paper is to increase the energy 
efficiency of SIMD adders by exploiting these differences 

in critical path length. The benefits of combining 
dedicated adders for the different operand lengths into a 
low power subword parallel adder are explored. The 

optimized adder is composed of adders of different types 
(ripple, carry-look-ahead, brent-kung, etc.) and/or having 
different gate sizing. The most energy-efficient SIMD 

adder is identified for different operating frequencies and 
several operating scenarios (how many times each 
operator is used). Experimental results obtained with 
Physical Compiler are used for quantifying the energy 

benefits of this approach and to precisely characterize its 
limitations. The enhanced SIMD adders can save up to 
40% energy. 

This paper is organized as follows: first, the related 
work will be described (see section II. Related Work); 
thereafter, the explored adders will be described in detail 

(see section III. Exploration Space), experimental results 
will be provided for quantifying the energy benefits (see 
section IV Experimental Results) and finally, the main 

conclusions of this paper are summarized. 

II. Related Work 

Historically, SIMD finds its roots in vector processing 
where it was investigated for increasing performance [3].  
The same ideas have been exploited for improving energy 

efficiency on embedded and (VLIW) cores (e.g., [2], 
Trimedia, ASPROCORE, ARM11 SIMD, the cell’s SPE 
cores, …). The key idea behind these extensions is the 

exploitation of subword parallelism in a SIMD fashion. 
Two factors determine the computational efficiency of 
subword parallel units:  
1. the capability of mapping code on the subword 

parallel units. This depends (1) on the instruction set 
and (2) to the extent that the designer can detect 
parallelism inside the application’s code and map that 

1 Assuming a ripple adder operating at 100Mhz. 
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on the available units. Today, SIMD is mainly been 

adopted through the use of assembly libraries and 
compiler intrinsics for media-rich applications (e.g., 
[1]). To reduce the programming effort, research is 

ongoing for developing optimizing compilers that can 
exploit (better) subword parallelism [4] [6]. An 
important part of this work focuses on managing the 

data stream into the SIMD unit [9] [8]. Besides 
optimizing the data layout of the software, hardware 
extensions for alleviating the memory access 
bottleneck have been proposed too (e.g., [7]), but 

they come at the cost of extra hardware, thereby often 
consuming more power too.  

2. the efficiency of the hardware of the subword parallel 

unit. For VLIW architectures, subword parallelism is 
mostly implemented using the same resources as the 
ILP units. m×n-bit functional units are cascaded 

together with multiplexers into a SIMD unit [5]. This 
approach is not optimal for energy. It’s well known 
that depending on the operating frequencies and 

operand lengths, different adder sizes and adder type 
are more energy optimal. 

The contribution of this paper is to reduce the energy cost 
of a sub-word parallel unit, by exploiting the difference in 

critical path for several operands-lengths. In the following 
section, we describe the explored adder types for SIMD 
more in detail. 

III. Exploration Space 
Two templates for SIMD adders are explored throughout this 

paper: (1) we use as a reference a typical SIMD adder, in 

which a k-bit functional unit is split in n×m=k operands and 

(2) we propose our energy-optimized design, a SIMD 

template where multiple adders are combined into a single 

unit. Both templates are discussed in the following 

subsections. 

SIMD Adder By Cascading Smaller Adders 
Typically, SIMD adders are built by cascading subunits for 

the smallest operand length into a larger structure. E.g., k-bit 

adder is composed of k=n×m-units, where the carry output 

of each unit is conditionally fed into the next unit. In case 

that the single units can perform the programmed operation, 

a zero(one)-signal is applied to the carry input of each unit.2

In case that more units are required for computing the sum, 

multiplexers combine two or more adders, feeding the carry 

signal from one unit into the next one. The template of a 

cascaded SIMD adder is shown in Figure 1. It consists of 
three parts: the input control unit, the output control unit and 

the adders themselves. The Input Control Unit (ICU) has 

two functions: (1) It provides support for subtractions (A-B). 

It negates B for this purpose. Moreover, it contains the 

necessary logic for providing the correct carry inputs to each 

adder unit. The user should set the Sub-signal high for 

2  The carry input is set zero (one) for additions 

(subtractions). 

activating subtractions. (2) It joins the adders together based 

on the selected operand length. The user should use the U
signal for this purpose. 

The Output Control Unit (OCU) sets the right carry output 

vector. E.g., if two 16-bit operations are performed and both 
have carry, the 32-bit carry vector will be set as [0x0101]. 

Besides, the OCU supports saturation of the sum vector in 

case of over-flow. This is a useful option for signal 

processing applications. The saturation fixes the result to 

maximum/minimal value in case of over-flow/under-flow. 

 Finally, our design contains the adders units themselves. 

We have explored 4x8-bit cascaded SIMD adders based on 

Brent Kung (bk), carry look ahead (cla), carry look ahead 

select (clsa), ripple carry (rpl) and ripple carry select (rpcs) 

adders. All these adders were realized with the DesignWare 

Synopsys library and were optimized for a range of target 

frequencies. The synthesis was steered to reach the most 
energy-efficient design, satisfying the timing constraints. 

Compared to a simple adder design, there is considerable 

area overhead for providing the SIMD functionality. The 

area breakdown is as follows for a SIMD adder operating at 

300Mhz and based on Brent Kung adders: the ICU, OCU 

and adders occupy respectively 14.7%, 26.7% and 58.4 % of 

the total area. 42.4% of the critical delay is spent in the ICU 

and OCU units. The adders burn 60% of the total power. 

In the next section, we will discuss a more energy-efficient 

SIMD adder. 

SIMD Adder by Combining of Adder Units For 

Different Operand Lengths 
In this section, we first indicate the potential benefits of 

combining several adders optimized for different operand 

lengths. Thereafter, we explain an architectural template for 

exploiting this idea. 

The potential energy benefits 
To analyze the potential energy benefits, we compare the 

power consumption of three usage scenarios of a SIMD 
adder. In the first case, we assume that the SIMD adder 

Figure 1 Classical SIMD Adder: mxn-bit adder units 

are combined into a programmable SIMD unit. 
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Figure 2 The power consumption of adder types for varying operating frequencies: (left) 4x8-bit additions and (right) 

one 32-bit addition. Note that the energy consumption of 4x8bit additions is always cheaper than equivalent 1x32-bit 

addition operated on the same type of adder. Also note that for different operating frequencies, different adder types 

are optimal. For instance, at 100Mhz ripple carry adders are most energy efficient whereas at 700 Mhz bk are the 

best ones. 

performs only 32-bit operations, and thus actually 

corresponds to a normal functional unit. In Figure 2 (right), 

we present the energy consumption of this scenario at 

different operating frequencies. At 100Mhz, a 32-bit 

operation on a ripple carry select adder is the most energy 

efficient It consumes a 160µW per operation. 

In the second case, we assume that the SIMD adder 

performs four 8-bit operations. Hence, the SIMD adder may 

be composed of four, small 8-bit adders, each optimized for 

energy. No support is needed for other types of operations 
such as one 32-bit operation or two 16-bit operations. The 

most energy efficient SIMD adder is now composed of four 

8-bit ripple adders, which together burn 94µW. Hence, 

compared to a single 32-bit operation, this case consumes 

42% less. This difference can be explained by the fact that 

the logic depth of the 8-bit operators is lower. Smaller and 

thus more energy-efficient adders suffice for achieving the 

delay budget.  

As a last scenario, assume that respectively 50% and 50% 

of 8-bit/32-bit operations are performed. Usually, this case is 

supported with a configurable SIMD adder (as discussed in 
the previous subsection). A 32-bit adder (see cascade one) is 

partionned in four 8-bit units and sized such that the path 

delay on the long 32-bit carry path meets the delay budget. 

As a result, the 8-bit operations consume as much power as 

the 32-bit ones, whereas it’s clear from scenario 2 that these 

operations could be performed with 42% less power (when 

operating at 100Mhz).  

To alleviate this power cost, we propose below to 

combine adders optimized for different operand lengths into 

a single SIMD adder. 

Note that at higher operating frequencies, different adders 
are energy-optimal, indicating that different combinations of 

adders are needed for building an energy-efficient SIMD 

adder. E.g., whereas ripple carry adders are most efficient at 

100Mhz, Brent Kung adders for both 8-bit and 32-bit 

operations burn the least power at 700Mhz. However, both 

the 8-bit and 32-bit adders are not the same: they have a 

different gate sizing. The four 8-bit Brent Kung adders 

occupy 27% less area than a 32-bit one. As a result, they 

consume up to 44% less energy at 700Mhz (compare the 

Brent Kung power consumption in both the left and right 

Figure 2 for the 700Mhz operating point). 

An energy-efficient SIMD adder template 
In the next paragraphs, we explain the architecture 

template of the proposed SIMD adders, indicating the 

overhead of combining adders and discussing the 

exploration space in detail. 

Fig. 3. Instance of an energy-efficient SIMD adder 

template. In this case, an energy-optimal 32-bit adder 

is combined with four separate 8-bit adder units. The 

ICU prevents activities on operand inputs A&B from 

propagating to the non-selected adder. The OCU 

selects the result from the correct adder units.

The template for the combined SIMD adders is composed of 

the Input control unit (ICU), one Output control unit (OCU), 

32add 8add 8add 8add 8add 

Input control unit ICU 

Output control unit OCU 

U Sub A B 

U Sat Sum Carry 
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and adders dedicated to each operand length. For instance, 

one 32-bit adder and four 8-bit adders are combined in 

Figure 3.

The ICU controls again the operation mode of each adder 

unit: (1) it selects the set of adders performing the operations. 

This mainly consists of isolating the operands of the 

non-selected units. As the adders are duplicated, the wires of 

the operand signals A&B are forked to respectively 4x8-bit 

units and the 1x32-bit unit. If the operating mode selects one 

set of adders, the activities on the input wires should not 

propagate to the other units. E.g., as 32-bit operations only 
use the 32-bit adder, the inputs to the four 8-bit adders 

should not be active at the same time. Therefore, the ICU 

conditionally latches the inputs to each of the adders, 

isolating their operands. Obviously, a power/area penalty 

needs to be paid for these latches, which we quantify in the 

next section; (2) the ICU differentiates between 

addition/subtraction operations by setting the input carry bit 

and negating the B-signal (if necessary).  

The OCU selects the correct output from the different 

adders and builds up the carry output vector. It also provides 

support for output saturation (see subsection SIMD Adder 
By Cascading Smaller Adders). 

As explained before, depending on the usage conditions 

different adders have to be combined for building a more 

energy efficient SIMD adder. The most important 

combinations that we have tested are indicated in Table 1.  

For the 32-bit adders, the following adders were selected 

Brent Kung (bk), the carry look ahead (cla) and the carry 

look ahead select (clsa). They are the most energy-efficient 

adders over a large frequency range (see also Figure 2). Each 

of these adders is combined with either an 8-bit adder of the 

same type, a 8-bit ripple carry (rpl) and ripple carry select 
(rpcs) adder.  

All the SIMD adders are implemented with the Synopsys 

DesignWare library and synthesized for different frequency 

targets while optimizing for power.  

n° 32bit adder 8bit adder 

1 Bk 

2 Rpl 

3

Bk 

Rpcs 

4 Cla 

5 Rpl 

6

Cla 

Rpcs 

7 Clsa 

8 Rpl 

9

clsa 

Rpcs 

Table 1 Explored Combinations for SIMD adders.  

Compared to a cascaded SIMD adder, the area overhead 

of our novel SIMD adder thus consists of: (1) extra logic 

required for operand isolation; (2) extra logic required for 

output selection and (3) multiple adders rather than a single 

one. The area breakdown for the SIMD adder of Figure 3, 
implemented with Brent Kung adders and running at 

300Mhz, is as follows: the ICU, the OCU, 4 8-bit and 1 

32bit adder occupy respectively 22.9%, 13.0%, 28.2% and 

35.9% of silicon estate. The ICU and OCU burn up to 48,2% 

of the total power. They contribute up to 56.6% of the 

critical path delay of the adder. A more detailed study of the 

overhead is provided in the next section. 

IV Experimental Results

Experimental Setup 
All generated components are built using a UMC High 

Performance 0.13um CMOS standard cell library. The 

designs were synthesized with a maximum fan-out of four, 

an operating voltage of 1.2V, and a temperature of 125 °C. 

Area and delay for various designs are estimated with 

Synopsys Physical Compiler. Every design was synthesized, 

while optimizing for power and constrained to a range of 

target frequencies. Note that Physical Compiler builds a 
provisional placement and uses wire-energy estimates for 

determining the optimal gate-sizes. It reduces the power 

consumption, exploiting information on the typical input 

pattern of the design. We provide the following input 

pattern: both operand inputs A&B toggle at the same rate as 

the frequency (i.e. operating frequency equals activity). Each 

bit of the input pattern has the same probability of being 

zero or one. Similarly, we change the subtraction and 

saturation controls signal every other cycle. 

The inputs controlling the operating mode are set to mimic 

three different operating scenarios: only 8-bit operations (U
signal set zero), only 32-bit operations (U signal set one) and 

scenario in which 8-bit/32-bit have an equal probability of 

occurring. In the latter case, the U signals toggle every 100 

cycles and have the same probability of being one or zero.  

Experiments 

Power vs Area exploration
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Figure 4 A power and area trade-off exists between the 

presented SIMD adder templates: the cascaded adders 

occupy less silicon, but consume more energy than the 

most energy efficient combined ones. Notice that not all 

combinations are energy-optimal. The results shown 

assume an operating frequency of 300Mhz and 

50%/50% occurrence of 8/32-bit operations. 
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In the experimental results, we will first present the trade-off 

between area/power for the explored adders. Thereafter, we 

indicate which adders are best combined for different 

operating frequencies. Then, we explain which are the best 

combinations in terms of the usage conditions (scenarios). 

As expected, a trade-off exists between area and power: the 

cascaded adders are the most area-efficient ones, but 

consume more power than the best ones obtained by 

combining several adders (see Figure 4). Assuming a usage 

scenario of respectively 50%/50% 8/32-bit operations and an 

operating frequency of 300Mhz, combining adders is 18% 
more power efficient, but costs 2.2 more area. Furthermore, 

note that making a combined adder for 8/16/32-bit 

operations is in this case nor energy nor area optimal, due to 

the overhead for combining the different adders. This 

becomes more clear with Table 2. 

cascade bk combined bkbk combined claclalca 

area power area power area power 

adders 2028 914 
3724

(1.84) 

697

(0.76) 

5895

(2.91) 

733

(0.80) 

ICU 508 207 
1327

(2.61) 

259

(1.23) 

2071

(4.07) 

634

(3.06) 

OCU 926 410 
755

(0.82) 

296

(0.72) 

1009

(1.09) 

376

(0.92) 

Total 3462 1531 5806 

(1.68) 

1252

(0.82) 

8975

(2.59) 

1743

(1.14) 

Table 2 Area is in µm² and power is in µW, while 

assuming a 50%/0%/50% between the 8/16/32-bit 

operations and assuming a 300Mhz operating frequency. 

The values between brackets are the relative values 

compared to the data of the cascaded adder. 

The SIMD adder (combined bkbk), combining 8-bit and 
32-bit operations and based on Brent Kung adders is most 

power efficient, despite the fact that there is a significant 

power penalty for the ICU unit (again see Table 2). This 

power penalty becomes a bottleneck for the SIMD adder, 

combining adders for three operand lengths (8-bit, 16-bit 

and 32-bit). The combined adder burns more power than the 

cascaded one, due to the extra power in the ICU unit. The 

extra area required for and the larger logic depth of the ICU 

unit delays the design. Consequently, the synthesis tool uses 

larger gates for closing the timing, and the design becomes 

more power-hungry. From this experiment, we conclude that 
both the area and power overhead of combining adders, or 

more in general, the cost of adding redundant logic is 

significant. When introducing redundant logic, one should 

carefully analyze whether its benefits outweigh the 

area/power overhead. As we will show in the remainder of 

this paper, the outcome of this analysis strongly depends on 

the usage conditions (such as e.g., operating frequency).3

3
The experimental results indicate that a 8/16/32-bit combined 

SIMD adder is not energy-efficient due to the extra power overhead 
of the ICU. Throughout the remainder of the paper we will 
therefore only combine 4x8-bit adders with a 32-bit adder. This 
combined adder thus provides no support for 16-bit operations. If 
16-bit operations are required too, the 32-bit adder should be 
replaced with a 2x16-bit cascaded one. 

A first important parameter that determines the benefits of 

building a combined adder is the operating frequency.  

Figure  5 represents the evolution of the power in function 

of the operating frequency for different SIMD structures and 

for a 50%/50%distribution between 8/32-bit operations. The 

power numbers are expressed relative to the power of the 

most cascaded SIMD adders, which is based on carry look 

ahead select adders as this is the only cascaded SIMD adder 

that can operate up to 500Mhz. The other cascaded adders 

are also shown, named bk and cla in the figure. 

Power vs Frequency relative exploration
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Figure 5 The power of SIMD adders normalized to the 

one of a clsa cascaded SIMD adder are presented for a 

50%/50% 8/32-bit scenario. The cascaded SIMD adders 

are most energy efficient below 300Mhz (cla). Higher 

than 300Mhz, the SIMD adder combining 4x8-bit 

operations with 1x32-bit using Brent Kung units 

becomes most power efficient. 

The cascaded adders are the most energy-efficient for 

performance targets below 300Mhz. Indeed, the experiments 

show that in the operating range all combined adders (bkrpl, 
claclacla, etc.) have a consumption larger than 1. The 

cascaded ones are best because the cla adders can achieve 
even with minimally sized standard cells the target 

frequency for both the 8-bit and 32-bit operations. More 

complex circuits do not provide any benefit, but rather 

increase the power dissipation.  

For frequencies above 300Mhz, the delay target for the 

32-bit operand lengths can no longer be achieved with 

minimally sized cells. Having multiple operand lengths then 

starts paying off. E.g., at 500 Mhz the SIMD adder that 

consists of four small Brent Kung adders combined with a 

large 32-bit Brent Kung one, is the most energy-efficient 

solution. It reduces the power up to 40%. 
Surprisingly, four simple 8-bit ripple carry adders combined 

with a 32-bit Brent Kung adder is never an energy efficient 

solutions for operating frequencies between 50-500Mhz. 

Even though that an 8-bit ripple carry adder is the most 

energy-efficient design for low operating frequencies (see 

Figure 2), its gates are always up sized when integrated in a 

combined SIMD adder where 50% of the critical path delay 
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is spent in ICU and OCU unit.4

A second important parameter that determines the benefits 

of having a combined adder is the activity distribution.  

This is indicated in Figure 6, where the power dissipation of 

the SIMDs for different activity distributions between 

8/32-bit scenarios is presented. For instance, the figure 

shows that the combined 8/32-bit bk SIMD (called in the 

graphs bkbk) is the best solution as long as less than 75% 

32-bit operations occur. Thereafter, the 8/32-bit cla SIMD is 

the most energy efficient one.  

Power vs Scenario exploration (500Mhz)
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Figure 6 Power consumption of SIMD adders at 500Mhz 

is presented for multiple usage scenarios. The optimal 

combination depends on the operating scenario. 

Finally, note that for high frequencies even combining 

adders for three operand lengths becomes more energy 

efficient than building a cascaded one. E.g., bkbkbk and 

claclacla outperform the cascaded clsa option. At these high 

frequencies and for long carry lengths, large and thus 

power-hungry gates are required for achieving the delay 

target. Adding the much smaller 4x8-bit adders  to save 

energy for byte operations then really pays off. In this case, 

combining bkbk can result in the energy savings up to 45% 

compared to the clsa cascaded one. 

V. Summary and Conclusions 
SIMD is becoming more popular for embedded 

systems/DSPs as it is a flexible solution for performing data 

crunching in an energy-efficient way. Despite the fact that 

SIMD architectures have been extensively researched, 

limited work exists on the design of energy efficient 

functional units for SIMD. The common practice of 

partitioning a normal adder in sub-units is not the most 

energy efficient one. A better solution is combining adders 

optimized for each operand length into a single SIMD unit. 

Significant energy savings can be achieved in this way, 
particularly for high operating frequencies. The proposed 

technique should be carefully applied as there is a 

considerable penalty for operand isolation and an extra area 

cost has to be paid compared to existing SIMD adders. In 

4 Note that we assume 50Mhz as the minimal delay target.  

future work, we want to apply the same concepts to an entire 

SIMD data path.  
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