
Exploration of Low Power Adders for a SIMD Data Path

Abstract – Hardware for Ambient Intelligence needs to achieve

extremely high computational efficiency (up to 40GOPS/W). An

important way for reaching this is exploiting parallelism, and

more specifically data-level parallelism enabled by SIMD.

Whereas a large body of research exists on the benefits of, the

architectural design of and compilation onto SIMD, the design

of energy-optimal functional units for SIMD has received

limited attention. It appears that existing SIMD functional

units are designed in an area optimal, but not energy optimal

way. By exploiting the difference in critical path length for the

types of operations (e.g., 4x8/2x16/1x32), SIMD adders can be

developed that save up to 40% of energy. In this paper, we will

present these adders, the issues of building them and quantify

their benefits for different usage scenarios and operating

frequencies.

I Introduction

Ambient intelligence is driven by low power, real-time,

digital systems. Economics demand that these systems are

made at a low cost (in terms of NRE and manufacturing) and

that, even more importantly, they are introduced in due time

onto the market. Given both constraints, flexibility and
programmability is key. Unfortunately, these features come

at an important energy penalty.

It is well known that parallelism, and in particular SIMD can

partially recover the loss in energy efficiency due to

flexibility. Firstly, more parallelism increases performance,

which can be exchanged for energy savings in many ways

(e.g., by voltage scaling). Secondly, SIMD reduces the cost

associated with instruction decoding.

A SIMD unit is usually derived from an existing data path.

The data path is basically subdivided in units operating on

smaller words. This explains the origin of its name: a
subword parallel data path.

Whereas many related work exists on the benefits of and

compilation techniques for subword parallelism, the
implementation of subword parallel data paths for energy
has received limited attention.

Subword parallel data paths require dedicated
adder/shuffler/multiplier/logic units that process
heterogeneous operations. E.g., an adder may have to

operate on 4x8- or 2x16- or 1x32-bit words. For this
purpose, 4x8-bit adders are usually cascaded with
multiplexers into a 32-bit unit, which can be programmed
to perform all three types of operations. During synthesis

the gates of the design are sized such that the longest
critical path of the design, in case the critical path through
all units composing a 32-bit operation, meets the delay

constraint. As a result, the adder is not energy-efficient

for performing 8-bit operations, which have a shorter
critical path. Indeed, for 8-bit operations smaller gates
suffices and energy can be saved: 4x8-bit operations on
an 8-bit ripple adder consume 1.8 times less compared

1x32-bit operation on a 32-bit adder.
1

The contribution of this paper is to increase the energy
efficiency of SIMD adders by exploiting these differences

in critical path length. The benefits of combining
dedicated adders for the different operand lengths into a
low power subword parallel adder are explored. The

optimized adder is composed of adders of different types
(ripple, carry-look-ahead, brent-kung, etc.) and/or having
different gate sizing. The most energy-efficient SIMD

adder is identified for different operating frequencies and
several operating scenarios (how many times each
operator is used). Experimental results obtained with
Physical Compiler are used for quantifying the energy

benefits of this approach and to precisely characterize its
limitations. The enhanced SIMD adders can save up to
40% energy.

This paper is organized as follows: first, the related
work will be described (see section II. Related Work);
thereafter, the explored adders will be described in detail

(see section III. Exploration Space), experimental results
will be provided for quantifying the energy benefits (see
section IV Experimental Results) and finally, the main

conclusions of this paper are summarized.

II. Related Work

Historically, SIMD finds its roots in vector processing
where it was investigated for increasing performance [3].
The same ideas have been exploited for improving energy

efficiency on embedded and (VLIW) cores (e.g., [2],
Trimedia, ASPROCORE, ARM11 SIMD, the cell’s SPE
cores, …). The key idea behind these extensions is the

exploitation of subword parallelism in a SIMD fashion.
Two factors determine the computational efficiency of
subword parallel units:
1. the capability of mapping code on the subword

parallel units. This depends (1) on the instruction set
and (2) to the extent that the designer can detect
parallelism inside the application’s code and map that

1 Assuming a ripple adder operating at 100Mhz.

G. Paci

IMEC and DEIS, U. Bologna

gpaci@deis.unibo.it

L. Benini

DEIS, U. Bologna

lbenini@deis.unibo.it

P. Marchal

IMEC

marchal@imec.be

1-4244-0630-7/07/$20.00 ©2007 IEEE.

9B-4

914

on the available units. Today, SIMD is mainly been

adopted through the use of assembly libraries and
compiler intrinsics for media-rich applications (e.g.,
[1]). To reduce the programming effort, research is

ongoing for developing optimizing compilers that can
exploit (better) subword parallelism [4] [6]. An
important part of this work focuses on managing the

data stream into the SIMD unit [9] [8]. Besides
optimizing the data layout of the software, hardware
extensions for alleviating the memory access
bottleneck have been proposed too (e.g., [7]), but

they come at the cost of extra hardware, thereby often
consuming more power too.

2. the efficiency of the hardware of the subword parallel

unit. For VLIW architectures, subword parallelism is
mostly implemented using the same resources as the
ILP units. m×n-bit functional units are cascaded

together with multiplexers into a SIMD unit [5]. This
approach is not optimal for energy. It’s well known
that depending on the operating frequencies and

operand lengths, different adder sizes and adder type
are more energy optimal.

The contribution of this paper is to reduce the energy cost
of a sub-word parallel unit, by exploiting the difference in

critical path for several operands-lengths. In the following
section, we describe the explored adder types for SIMD
more in detail.

III. Exploration Space
Two templates for SIMD adders are explored throughout this

paper: (1) we use as a reference a typical SIMD adder, in

which a k-bit functional unit is split in n×m=k operands and

(2) we propose our energy-optimized design, a SIMD

template where multiple adders are combined into a single

unit. Both templates are discussed in the following

subsections.

SIMD Adder By Cascading Smaller Adders
Typically, SIMD adders are built by cascading subunits for

the smallest operand length into a larger structure. E.g., k-bit

adder is composed of k=n×m-units, where the carry output

of each unit is conditionally fed into the next unit. In case

that the single units can perform the programmed operation,

a zero(one)-signal is applied to the carry input of each unit.2

In case that more units are required for computing the sum,

multiplexers combine two or more adders, feeding the carry

signal from one unit into the next one. The template of a

cascaded SIMD adder is shown in Figure 1. It consists of
three parts: the input control unit, the output control unit and

the adders themselves. The Input Control Unit (ICU) has

two functions: (1) It provides support for subtractions (A-B).

It negates B for this purpose. Moreover, it contains the

necessary logic for providing the correct carry inputs to each

adder unit. The user should set the Sub-signal high for

2 The carry input is set zero (one) for additions

(subtractions).

activating subtractions. (2) It joins the adders together based

on the selected operand length. The user should use the U
signal for this purpose.

The Output Control Unit (OCU) sets the right carry output

vector. E.g., if two 16-bit operations are performed and both
have carry, the 32-bit carry vector will be set as [0x0101].

Besides, the OCU supports saturation of the sum vector in

case of over-flow. This is a useful option for signal

processing applications. The saturation fixes the result to

maximum/minimal value in case of over-flow/under-flow.

 Finally, our design contains the adders units themselves.

We have explored 4x8-bit cascaded SIMD adders based on

Brent Kung (bk), carry look ahead (cla), carry look ahead

select (clsa), ripple carry (rpl) and ripple carry select (rpcs)

adders. All these adders were realized with the DesignWare

Synopsys library and were optimized for a range of target

frequencies. The synthesis was steered to reach the most
energy-efficient design, satisfying the timing constraints.

Compared to a simple adder design, there is considerable

area overhead for providing the SIMD functionality. The

area breakdown is as follows for a SIMD adder operating at

300Mhz and based on Brent Kung adders: the ICU, OCU

and adders occupy respectively 14.7%, 26.7% and 58.4 % of

the total area. 42.4% of the critical delay is spent in the ICU

and OCU units. The adders burn 60% of the total power.

In the next section, we will discuss a more energy-efficient

SIMD adder.

SIMD Adder by Combining of Adder Units For

Different Operand Lengths
In this section, we first indicate the potential benefits of

combining several adders optimized for different operand

lengths. Thereafter, we explain an architectural template for

exploiting this idea.

The potential energy benefits
To analyze the potential energy benefits, we compare the

power consumption of three usage scenarios of a SIMD
adder. In the first case, we assume that the SIMD adder

Figure 1 Classical SIMD Adder: mxn-bit adder units

are combined into a programmable SIMD unit.

A B Cin

Sum Cout

A B Cin

Sum Cout

A B Cin

Sum Cout

A B Cin

Sum Cout

Input control unit ICU

Output control unit OCU

U Sub A B

Sat Sum Carry

critical path

9B-4

915

4x8Bit Adders

bk

rpl
0

200

400

600

800

1000

1200

1400

50 100 200 300 400 500 600 700

Frequency (Mhz)

D
y

n
a

m
ic

 P
o

w
e

r
(u

W
)

bk

cla

clsa

csm

rpcs

rpl

32Bit Adders

bk

rpcs
0

500

1000

1500

2000

2500

3000

50 100 200 300 400 500 600 700

Frequency (Mhz)

D
y

n
a

m
ic

 P
o

w
e

r
(µ

W
)

bk

cla

clsa

csm

rpcs

rpl

Figure 2 The power consumption of adder types for varying operating frequencies: (left) 4x8-bit additions and (right)

one 32-bit addition. Note that the energy consumption of 4x8bit additions is always cheaper than equivalent 1x32-bit

addition operated on the same type of adder. Also note that for different operating frequencies, different adder types

are optimal. For instance, at 100Mhz ripple carry adders are most energy efficient whereas at 700 Mhz bk are the

best ones.

performs only 32-bit operations, and thus actually

corresponds to a normal functional unit. In Figure 2 (right),

we present the energy consumption of this scenario at

different operating frequencies. At 100Mhz, a 32-bit

operation on a ripple carry select adder is the most energy

efficient It consumes a 160µW per operation.

In the second case, we assume that the SIMD adder

performs four 8-bit operations. Hence, the SIMD adder may

be composed of four, small 8-bit adders, each optimized for

energy. No support is needed for other types of operations
such as one 32-bit operation or two 16-bit operations. The

most energy efficient SIMD adder is now composed of four

8-bit ripple adders, which together burn 94µW. Hence,

compared to a single 32-bit operation, this case consumes

42% less. This difference can be explained by the fact that

the logic depth of the 8-bit operators is lower. Smaller and

thus more energy-efficient adders suffice for achieving the

delay budget.

As a last scenario, assume that respectively 50% and 50%

of 8-bit/32-bit operations are performed. Usually, this case is

supported with a configurable SIMD adder (as discussed in
the previous subsection). A 32-bit adder (see cascade one) is

partionned in four 8-bit units and sized such that the path

delay on the long 32-bit carry path meets the delay budget.

As a result, the 8-bit operations consume as much power as

the 32-bit ones, whereas it’s clear from scenario 2 that these

operations could be performed with 42% less power (when

operating at 100Mhz).

To alleviate this power cost, we propose below to

combine adders optimized for different operand lengths into

a single SIMD adder.

Note that at higher operating frequencies, different adders
are energy-optimal, indicating that different combinations of

adders are needed for building an energy-efficient SIMD

adder. E.g., whereas ripple carry adders are most efficient at

100Mhz, Brent Kung adders for both 8-bit and 32-bit

operations burn the least power at 700Mhz. However, both

the 8-bit and 32-bit adders are not the same: they have a

different gate sizing. The four 8-bit Brent Kung adders

occupy 27% less area than a 32-bit one. As a result, they

consume up to 44% less energy at 700Mhz (compare the

Brent Kung power consumption in both the left and right

Figure 2 for the 700Mhz operating point).

An energy-efficient SIMD adder template
In the next paragraphs, we explain the architecture

template of the proposed SIMD adders, indicating the

overhead of combining adders and discussing the

exploration space in detail.

Fig. 3. Instance of an energy-efficient SIMD adder

template. In this case, an energy-optimal 32-bit adder

is combined with four separate 8-bit adder units. The

ICU prevents activities on operand inputs A&B from

propagating to the non-selected adder. The OCU

selects the result from the correct adder units.

The template for the combined SIMD adders is composed of

the Input control unit (ICU), one Output control unit (OCU),

32add 8add 8add 8add 8add

Input control unit ICU

Output control unit OCU

U Sub A B

U Sat Sum Carry

9B-4

916

and adders dedicated to each operand length. For instance,

one 32-bit adder and four 8-bit adders are combined in

Figure 3.

The ICU controls again the operation mode of each adder

unit: (1) it selects the set of adders performing the operations.

This mainly consists of isolating the operands of the

non-selected units. As the adders are duplicated, the wires of

the operand signals A&B are forked to respectively 4x8-bit

units and the 1x32-bit unit. If the operating mode selects one

set of adders, the activities on the input wires should not

propagate to the other units. E.g., as 32-bit operations only
use the 32-bit adder, the inputs to the four 8-bit adders

should not be active at the same time. Therefore, the ICU

conditionally latches the inputs to each of the adders,

isolating their operands. Obviously, a power/area penalty

needs to be paid for these latches, which we quantify in the

next section; (2) the ICU differentiates between

addition/subtraction operations by setting the input carry bit

and negating the B-signal (if necessary).

The OCU selects the correct output from the different

adders and builds up the carry output vector. It also provides

support for output saturation (see subsection SIMD Adder
By Cascading Smaller Adders).

As explained before, depending on the usage conditions

different adders have to be combined for building a more

energy efficient SIMD adder. The most important

combinations that we have tested are indicated in Table 1.

For the 32-bit adders, the following adders were selected

Brent Kung (bk), the carry look ahead (cla) and the carry

look ahead select (clsa). They are the most energy-efficient

adders over a large frequency range (see also Figure 2). Each

of these adders is combined with either an 8-bit adder of the

same type, a 8-bit ripple carry (rpl) and ripple carry select
(rpcs) adder.

All the SIMD adders are implemented with the Synopsys

DesignWare library and synthesized for different frequency

targets while optimizing for power.

n° 32bit adder 8bit adder

1 Bk

2 Rpl

3

Bk

Rpcs

4 Cla

5 Rpl

6

Cla

Rpcs

7 Clsa

8 Rpl

9

clsa

Rpcs

Table 1 Explored Combinations for SIMD adders.

Compared to a cascaded SIMD adder, the area overhead

of our novel SIMD adder thus consists of: (1) extra logic

required for operand isolation; (2) extra logic required for

output selection and (3) multiple adders rather than a single

one. The area breakdown for the SIMD adder of Figure 3,
implemented with Brent Kung adders and running at

300Mhz, is as follows: the ICU, the OCU, 4 8-bit and 1

32bit adder occupy respectively 22.9%, 13.0%, 28.2% and

35.9% of silicon estate. The ICU and OCU burn up to 48,2%

of the total power. They contribute up to 56.6% of the

critical path delay of the adder. A more detailed study of the

overhead is provided in the next section.

IV Experimental Results

Experimental Setup
All generated components are built using a UMC High

Performance 0.13um CMOS standard cell library. The

designs were synthesized with a maximum fan-out of four,

an operating voltage of 1.2V, and a temperature of 125 °C.

Area and delay for various designs are estimated with

Synopsys Physical Compiler. Every design was synthesized,

while optimizing for power and constrained to a range of

target frequencies. Note that Physical Compiler builds a
provisional placement and uses wire-energy estimates for

determining the optimal gate-sizes. It reduces the power

consumption, exploiting information on the typical input

pattern of the design. We provide the following input

pattern: both operand inputs A&B toggle at the same rate as

the frequency (i.e. operating frequency equals activity). Each

bit of the input pattern has the same probability of being

zero or one. Similarly, we change the subtraction and

saturation controls signal every other cycle.

The inputs controlling the operating mode are set to mimic

three different operating scenarios: only 8-bit operations (U
signal set zero), only 32-bit operations (U signal set one) and

scenario in which 8-bit/32-bit have an equal probability of

occurring. In the latter case, the U signals toggle every 100

cycles and have the same probability of being one or zero.

Experiments

Power vs Area exploration

bk

cla

clsa

clsaclsarpl
clsaclsarpcs

bkbk

bkrpl

bkrpc
clacla

clarpl

clarpcs

clsaclsa

clsarpl

clsarpcs

bkbkbk bkbkrpl
bkbkrpcs

claclacla

claclarpl

claclarpcs

clsaclsaclsa

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000 10000 12000

Area (um²)

D
y
n

a
m

ic
 p

o
w

e
r

(µ
W

)

8-16-32 combined

8-32 combined

cascade

Figure 4 A power and area trade-off exists between the

presented SIMD adder templates: the cascaded adders

occupy less silicon, but consume more energy than the

most energy efficient combined ones. Notice that not all

combinations are energy-optimal. The results shown

assume an operating frequency of 300Mhz and

50%/50% occurrence of 8/32-bit operations.

9B-4

917

In the experimental results, we will first present the trade-off

between area/power for the explored adders. Thereafter, we

indicate which adders are best combined for different

operating frequencies. Then, we explain which are the best

combinations in terms of the usage conditions (scenarios).

As expected, a trade-off exists between area and power: the

cascaded adders are the most area-efficient ones, but

consume more power than the best ones obtained by

combining several adders (see Figure 4). Assuming a usage

scenario of respectively 50%/50% 8/32-bit operations and an

operating frequency of 300Mhz, combining adders is 18%
more power efficient, but costs 2.2 more area. Furthermore,

note that making a combined adder for 8/16/32-bit

operations is in this case nor energy nor area optimal, due to

the overhead for combining the different adders. This

becomes more clear with Table 2.

cascade bk combined bkbk combined claclalca

area power area power area power

adders 2028 914
3724

(1.84)

697

(0.76)

5895

(2.91)

733

(0.80)

ICU 508 207
1327

(2.61)

259

(1.23)

2071

(4.07)

634

(3.06)

OCU 926 410
755

(0.82)

296

(0.72)

1009

(1.09)

376

(0.92)

Total 3462 1531 5806

(1.68)

1252

(0.82)

8975

(2.59)

1743

(1.14)

Table 2 Area is in µm² and power is in µW, while

assuming a 50%/0%/50% between the 8/16/32-bit

operations and assuming a 300Mhz operating frequency.

The values between brackets are the relative values

compared to the data of the cascaded adder.

The SIMD adder (combined bkbk), combining 8-bit and
32-bit operations and based on Brent Kung adders is most

power efficient, despite the fact that there is a significant

power penalty for the ICU unit (again see Table 2). This

power penalty becomes a bottleneck for the SIMD adder,

combining adders for three operand lengths (8-bit, 16-bit

and 32-bit). The combined adder burns more power than the

cascaded one, due to the extra power in the ICU unit. The

extra area required for and the larger logic depth of the ICU

unit delays the design. Consequently, the synthesis tool uses

larger gates for closing the timing, and the design becomes

more power-hungry. From this experiment, we conclude that
both the area and power overhead of combining adders, or

more in general, the cost of adding redundant logic is

significant. When introducing redundant logic, one should

carefully analyze whether its benefits outweigh the

area/power overhead. As we will show in the remainder of

this paper, the outcome of this analysis strongly depends on

the usage conditions (such as e.g., operating frequency).3

3
The experimental results indicate that a 8/16/32-bit combined

SIMD adder is not energy-efficient due to the extra power overhead
of the ICU. Throughout the remainder of the paper we will
therefore only combine 4x8-bit adders with a 32-bit adder. This
combined adder thus provides no support for 16-bit operations. If
16-bit operations are required too, the 32-bit adder should be
replaced with a 2x16-bit cascaded one.

A first important parameter that determines the benefits of

building a combined adder is the operating frequency.

Figure 5 represents the evolution of the power in function

of the operating frequency for different SIMD structures and

for a 50%/50%distribution between 8/32-bit operations. The

power numbers are expressed relative to the power of the

most cascaded SIMD adders, which is based on carry look

ahead select adders as this is the only cascaded SIMD adder

that can operate up to 500Mhz. The other cascaded adders

are also shown, named bk and cla in the figure.

Power vs Frequency relative exploration

bk cla

clsa

bkbk

bkrpl

clacla

bkbkbk

claclacla

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

50 100 200 300 400 500

Frequency (Mhz)
R

e
la

ti
v
e
 d

y
n

a
m

ic
 p

o
w

e
r

Figure 5 The power of SIMD adders normalized to the

one of a clsa cascaded SIMD adder are presented for a

50%/50% 8/32-bit scenario. The cascaded SIMD adders

are most energy efficient below 300Mhz (cla). Higher

than 300Mhz, the SIMD adder combining 4x8-bit

operations with 1x32-bit using Brent Kung units

becomes most power efficient.

The cascaded adders are the most energy-efficient for

performance targets below 300Mhz. Indeed, the experiments

show that in the operating range all combined adders (bkrpl,
claclacla, etc.) have a consumption larger than 1. The

cascaded ones are best because the cla adders can achieve
even with minimally sized standard cells the target

frequency for both the 8-bit and 32-bit operations. More

complex circuits do not provide any benefit, but rather

increase the power dissipation.

For frequencies above 300Mhz, the delay target for the

32-bit operand lengths can no longer be achieved with

minimally sized cells. Having multiple operand lengths then

starts paying off. E.g., at 500 Mhz the SIMD adder that

consists of four small Brent Kung adders combined with a

large 32-bit Brent Kung one, is the most energy-efficient

solution. It reduces the power up to 40%.
Surprisingly, four simple 8-bit ripple carry adders combined

with a 32-bit Brent Kung adder is never an energy efficient

solutions for operating frequencies between 50-500Mhz.

Even though that an 8-bit ripple carry adder is the most

energy-efficient design for low operating frequencies (see

Figure 2), its gates are always up sized when integrated in a

combined SIMD adder where 50% of the critical path delay

9B-4

918

is spent in ICU and OCU unit.4

A second important parameter that determines the benefits

of having a combined adder is the activity distribution.

This is indicated in Figure 6, where the power dissipation of

the SIMDs for different activity distributions between

8/32-bit scenarios is presented. For instance, the figure

shows that the combined 8/32-bit bk SIMD (called in the

graphs bkbk) is the best solution as long as less than 75%

32-bit operations occur. Thereafter, the 8/32-bit cla SIMD is

the most energy efficient one.

Power vs Scenario exploration (500Mhz)

clsa

bkbk
clacla

bkbkbk

claclacla

1000

1500

2000

2500

3000

3500

4000

4500

5000

0% 25% 50% 75% 100%

32bit operation percentage

D
y

n
a

m
ic

 p
o

w
e

r

Figure 6 Power consumption of SIMD adders at 500Mhz

is presented for multiple usage scenarios. The optimal

combination depends on the operating scenario.

Finally, note that for high frequencies even combining

adders for three operand lengths becomes more energy

efficient than building a cascaded one. E.g., bkbkbk and

claclacla outperform the cascaded clsa option. At these high

frequencies and for long carry lengths, large and thus

power-hungry gates are required for achieving the delay

target. Adding the much smaller 4x8-bit adders to save

energy for byte operations then really pays off. In this case,

combining bkbk can result in the energy savings up to 45%

compared to the clsa cascaded one.

V. Summary and Conclusions
SIMD is becoming more popular for embedded

systems/DSPs as it is a flexible solution for performing data

crunching in an energy-efficient way. Despite the fact that

SIMD architectures have been extensively researched,

limited work exists on the design of energy efficient

functional units for SIMD. The common practice of

partitioning a normal adder in sub-units is not the most

energy efficient one. A better solution is combining adders

optimized for each operand length into a single SIMD unit.

Significant energy savings can be achieved in this way,
particularly for high operating frequencies. The proposed

technique should be carefully applied as there is a

considerable penalty for operand isolation and an extra area

cost has to be paid compared to existing SIMD adders. In

4 Note that we assume 50Mhz as the minimal delay target.

future work, we want to apply the same concepts to an entire

SIMD data path.

Acknowledgements

Intra-European Marie Curie Actions funds

References

[1] H. Nguyen and L. John, “Exploiting SIMD Parallelism in
DSP and Multimedia Algorithms Using the AltiVec

Technologies”, Proc. ACM Int. Conf. Supercomputing,
pp.11-20, June 1999

[2] H. Hunter and J. Moreno, “A New Look at Exploiting

Data Parallelism in Embedded Systems”, Proc. ACM CASES,
pp.159-168, Oct. 2003

[3] C. Kozyrakis and D. Patterson, “Overcoming the

limitations of conventional vector processors”, Proc. ACM
ISCA, pp.399-409, Nov. 2003

[4] S. Larsen and S. Amarasinghe, “Exploiting superword

lebel parallelism with multimedia instruction sets”, Proc.
ACM PLDI, pp.145-156, 2000

[5] R. Lee, “Efficiency of microSIMD architectures and

index-mapped data for media processors”, Proc. IS&T/SPIE
Symposium on Electric Imaging, pp 34-36, 1999

[6] R. Lee, “Subword Parallelism with MAX-2”, Proc. IEEE
MICRO, Aug., pp 51-58, 1996

[7] D. Talla et al., “Bottlenecks in Multimedia Processing

with SIMD Style Extensions and Architectural

Enhancements”, Proc. IEEE Trans. Computer, Vol. 52, N. 8,

pp 34-36, 1999

[8] J. Fridman., “Data alignment for sub-word parallelism in

DSP”, Proc. IEEE Workshop on Signal Processing Systems, ,
pp 251-, 1999

[9] K. Masselos, F. Catthoor, C. Goutis and H. De Man,

“Combined Application of Data Transfer and Storage

Optimizing Transformations and Subword Parallelism for

Power Consumption and Execution Time Reduction in

VLIW Multimedia Processors”, J. VLSI Signal Processing
Systems, Vol 32, Nr.1, pp 53-73, 2004

9B-4

919

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

