
A Novel Reconfigurable Low Power Distributed Arithmetic Architecture for
Multimedia Applications

Abstract - The use of reconfigurable cores in system on chip
(SoC) designs is increasingly becoming a trend. Such cores are
being used for their flexibility, powerful functionality and low
power consumption. Distributed Arithmetic (DA) is a powerful
algorithm wildly used in many fields of multimedia for its
efficiency. This paper presents a novel reconfigurable
adder-based architecture for DA to realize the inner product
which is the key computation in many digital signal processing
applications. 1D DCT is mapped onto the architecture.
Compared with some existing ASIC designs, the new
architecture achieves good performance in area, speed and
power.

I. INTRODUCTION

Distributed Arithmetic (DA) has been wildly adopted for
its computational efficiency in many digital signal processing
applications such as DCT (Discrete Cosine Transform), DFT
(Discrete Fourier Transform), FIR (Finite Impulse Response),
and DHT (Discrete Hartley Transform) [1]. These
applications involve the computation of inner products
between two vectors, one of which is a constant.

The general method to generate the products is to use a
MAC (multiply and accumulate) unit, which is fast but has a
high cost in the case of long-length inner-products. In
contrast, DA provides an efficient solution to realize the inner
products by using memory look-up and accumulation
operations. The idea behind the conventional DA, called
ROM-based, is to replace multiplication operations by
pre-computing all possible values and storing these in a
ROM. According to [1], the ROM based DA can reduce the
circuit size by 50-80% on average.

Custom reconfigurable technology emerged to satisfy the
simultaneous demand for flexibility and efficiency.
Custom/domain-specific reconfigurable arrays can be
programmed to adapt for different applications, so the
efficiency of the hardware and flexibility of the whole system
is improved. Earlier works, such as [2-4], show good
performance in area, power consumption and speed. Since a
domain-specific reconfigurable architecture targets few
application fields, it achieves better performance than a
general purpose FPGA device.

In this paper, a novel reconfigurable DA architecture is
presented which can implement inner products with less area
usage and power consumption. The proposed architecture can

implement any algorithm for the inner product computations,
such as DCT, DFT, FIR, and DHT. All these signal
processing algorithms are widely used in various multimedia
standards such as H.261, H.263, MPEG-1, MPEG-2,
MPEG-4, and JPEG2000. An adder-based DA is adopted in
this architecture, which was introduced in [5]. Compared with
a ROM-based DA, the approach needs only 10% of
transistors and 30% of ROM area with comparable
performance [5]. Our new architecture takes the advantage of
the common summation terms when the fixed coefficients are
decomposed into bit level which makes the architecture
maximize the hardware efficiency. Due to its inherent
hardware sharing property, the proposed architecture is very
suitable for multiple inner product computations. The
reconfigurable character of the architecture makes it flexible
to switch form one function to another, which means the
same hardware architecture can perform different algorithms
at different times.

The rest of the paper is organized as follows. In section 2,
we review the related work in the literature. In section 3, a
brief description about the basic definitions of DA is provided
and the reconfigurable DA is introduced. Our architecture is
described in detail in section 4 which includes the overview
of reconfigurable architecture, two-level adder butterfly
structure, the Wallace tree matrix and the trade off between
area and speed. The DCT algorithm and its implementation
with our reconfigurable DA are described in section 5. The
experimental results and performance evaluation are given in
sections 6 and 7. Finally, summary is presented in section 8.

II.RELATED WORK

Over the years, significant research work has been carried
out on DA techniques and its implementation for DCT and
other applications. In [6], a hardwired DA method is
implemented for DCT with radix-2 multibit coding for the
minimum resource and symmetric transpose memory for high
speed. In [5], an adder-based DA is proposed to generate the
inner product of vectors for DCT. The approach reduced 2/3
ROM area and nearly 9/10 transistor count with comparable
performance when compared with ROM-based DA. In [7], a
DA-based algorithm is introduced which can formulate 1-D
any-length DHT as cyclic convolutions. It simplifies the

Zhenyu Liu

School of Engineering
and Electronic, The

University of Edinburgh
Edinburgh, EH9 3JL, UK

e-mail :
zhenyu.liu@ed.ac.uk

Tughrul Arslan

School of Engineering and
Electronic, The University
of Edinburgh Edinburgh,

EH9 3JL, UK
e-mail :

T.Arslan@ed.ac.uk

Ahmet T. Erdogan

School of Engineering and
Electronic, The University
of Edinburgh Edinburgh,

EH9 3JL, UK
e-mail :

Ahmet.Erdogan@ed.ac.uk

1-4244-0630-7/07/$20.00 ©2007 IEEE.

9B-3

908

ROM design process and increases the processing speed for
utilizing identical ROM modules and eliminating the
accumulation loop in the processing elements.

Numerous works has been done on reconfigurable
architectures and their implementations. However, no
architecture has been designed specifically for
reconfigurable DA yet. In [15], a special reconfigurable
architecture for DCT is described. The architecture is
designed especially for implementing DCT with different
algorithms: pure-RAM, mixed-RAM and CORDIC.
However, since this architecture could be used only for DCT
application, its application field is fixed.

III. RECONFIGURABLE DA ALGORITHMS

A. DA Algorithms

DA is a bit-serial operation that computes the inner product
of two vectors without needing to use multiply operations.
Let us consider the computation of the following inner (dot)
product with L-dimensional vectors:

1

0

L

i i

i

Z A X C X
−

=

•= =
(1)

where A = [C0, C1,···, CL-1] is an M bits fixed coefficient
vector and X = [X0, X1,···, XL-1] is an N bits input vector. Ci
and Xi can be expressed in two’s complement binary as
follows:

2-1
, (1) ,

0
2 2

M
j

i i M i j
j

C C C
−Μ

− • •
=

= − +
(2)

2-1
, (1) ,

0
2 2

N
N k

i i N i k
k

X X X
−

−
=

• •= − +
(3)

where Ci,j , Xi,k {0,1} is the jth and kth bit of vector
element Ci and Xi respectively. To realize the inner product
computation, the conventional DA uses a ROM-based
architecture. Another method is to adopt an adder-based
architecture.

B. ROM Based DA

ROM-based DA speeds up the multiplication process by
pre-computing all possible values and storing them in a
ROM. By substituting (3) in (1), the output Z is given by:

1 2-1
, (1) ,

00
(2 2)

L NN k
i i N i k

ki

Z A X C X X
− −

− • •
==

•= = − +

1 2 1-1
, (1) ,

0 00

2 2
L N L

N k
i i N i i k

k ii

C X C X
− − −

− •
= ==

•= − + (4)

By defining the term Rk as
1

,

0

L

k i i k

i

R C X
−

=

= (5)

Then, we can obtain
1

1 , 1
0

L

N i i N

i

R C X
−

− −

=

= (6)

Substituting (5) and (6) in (4), (4) can be written as
2

-1
1

0

1

0

2 2

2

N
N k

N k
k

N
k

k k
k

Z R R

S R

−
− • •

=

−
• •

=

= − +

=

 (7)

where S is defined as the sign of term for k= 0,1,

1 1
1 0 2

k
k N

S
k N

− = −
=

≤ ≤ −
(8)

Since Xi,k {0,1}, Rk has 2L possible values for k=
0,1, , these values can be precomputed and stored in
a ROM. Then, (5) can be implemented with a ROM of size
2L.

The bits of input data ({X0,k, X1,k, Xi,k}) are used to
form the ROM addresses. An arithmetic shifter in the
accumulator feedback path is used to form successive
scalings with powers of two.

The problem with ROM-based DA is that its ROM size
(2L word) grows exponentially as the order L increases. As
the number of inputs and the internal precision becomes
large, the ROM-based DA suffers from extremely large
ROM requirements.

C. Adder-Based DA

From the arithmetic point of view, the adder-based DA has
little difference compared with the ROM-based DA. In
ROM-based DA, (4) is obtained by substituting (3) in (1).
While one of the two factors in (1), Xi, is changed to two’s
complement binary format, the other factor, Ci, is led to
keep its original format. For adder-based DA, the roles of
the two factors are exchanged: Xi keeping its original
format and Ci being changed to two’s complement binary
format.

By substituting (2) in (1), the output Z is given by:
1 2-1

, (1) ,
00

(2 2)
L M

M j
i i M i j

ji

Z A X X C C
− −

− • •
==

•= = − +

1 2 1-1
, (1) ,

0 00
2 2

L M L
M j

i i M i i j
j ii

X C X C
− − −

− •
= ==

•= − + (9)

We define term Tj as
1

,
0

L

j i i j

i

T X C
−

=

= (10)

then, (9) can be written as
2-1

1
0

1

0

2 2

2

M
M j

M j
j

M j
j j

j

Z T T

S T

−
− • •

=

−
• •

=

= − +

=

 (11)

Since Ci,j is fixed and known, Tj can be realized with
adders. Clearly, only the inputs corresponding to nonzero
coefficient bits Ci,j need to be added. This results in reducing
the number of additions in half on average.

The adders with shifts replace the multipliers in the
original DA algorithm. The adoption of adders also makes
the architecture more hardware efficient. However, the
benefits of adoption of adders is not limited to hardware
efficiency, it also achieves N times speed as faster as
ROM-based DA, where N is the bitwidth of the input vectors.
In ROM-based DA, the vectors are imported serially to
generate the ROM addresses for computing Rk terms.
Whereas, in adder-based DA, all inputs are fed parallel to the
adders for computing Tj regardless how long they are. The
time is only consumed in the addition, the longer the inputs
are the more time is taken.

Besides the advantages of adder-based DA described
above, common terms sharing brings additional advantages

9B-3

909

in reducing hardware complexity further.
The ideas behind common term sharing are not new in

two’s complement binary multiplier, which can be found
in [16-20], namely common subexpression sharing or
common subexpression elimination. The purposes of
common term sharing and common subexpression
elimination are to reduce the number of adders. However,
the implementation strategies are greatly different for the
two methods.

Common subexpression elimination is to find multiple
common subexpressions in the coefficient set. These
patterns are used in the way that the input signal
multiplies each signed-powers-of-two pattern only once.
It is also well known that the so-called
canonic-signed-digit (CSD) code is the best
signed-powers-of-two code for its minimal number of
nonzero digits. Obviously, the efficient common
subexpression elimination is based on CSD code. For the
characteristic of CSD code, changes are made to the order
of expression evaluation when common subexpression
elimination is implemented. While common term sharing
is realized by the multi-level adder arrays without any
changes in algorithm expression. The comparison
between the two methods targeting the same application
will be made in section 7.

Fig. 1 shows an example case for common terms sharing.
1

,

0

L

j i i j

i

T X C
−

=

= =
1

0 , 0
0

L

i i

i

T X C
−

=

= = ;;

 X0 (1 1 0 1)
 X1 (1 0 1 1)
 X2 (1 1 1 0)
+) X3 (0 0 1 1)

=
0 0 00X X X
1 1 10 X X X
2 2 2 0 X X X

 3 30 0 X X+
3 2

1 0

0 1 2 0 2

1 2 3 0 1 3

()2 ()2
 ()2 ()2

X X X X X
X X X X X X

= + + + +
+ + + + + +

Fig. 1 Example of adder-based DA

Suppose the input vector and fixed coefficient vector are
 X = [X0, X1, X2, X3]
C00= 1101b, C10= 1011b, C20= 1110b, C30= 0011b;
First, substitute Ci and Xi in (1), and then decompose

fixed coefficients into bit level. After multiplying input
vectors and their corresponding coefficient in bit level,
add all terms with the format of power of two. Notice that
the additions are taken only at the nonzero bits of
coefficients. One finds that there are some common terms
between different bit weights: term X1+X2 between bit
weights 23 and 21, term X1+X3 between bit weights 21 and
20.

Obviously, the sharing common terms can save the
hardware area and reduce the redundant computing to
save power consumption. One finds that the diverse
common term schemes will result in different amount of
resource savings. For the example shown in Fig. 1, seven
two-input adders are needed for accumulation without
sharing common terms. There are three common term

sharing schemes: X0+X1 as the common term, X1+X2 as
the common term, X0+X2 and X1+X3 as the common terms.
In the first two schemes, six two-input adders are needed.
Whereas five two-input adders are needed for the third
scheme. Therefore, the selection of common terms
sharing scheme will determine the final hardware
efficiency in the implementation.

It should be emphasized that the example in Fig. 1 is a
special case. For all possible 4-input, 4-bits coefficient
cases, only few cases have two or more common terms
and the cases having one common term are only the part
of all possible cases. Is the common terms sharing
property available in real cases? Fortunately, the
coefficients in the applicable applications are symmetric
and regular, which will make the application taking full
advantages of common terms. An example for DCT is
introduced in the following section. It will be shown that
the common terms sharing contributes greatly to the
resource savings.

IV. ARCHITECTURE OF RECONFIGURABLE DA

A. Architecture overview

The proposed reconfigurable DA architecture is shown in
Fig. 2.

+

+

+

Wallace Tree
Matrix

Wallace Tree
Matrix

Wallace Tree
Matrix

Inputs

Routing
Matrix

Routing
Matrix

Routing
Matrix

Routing
Matrix

Reconfigurable Bits

+

+

+

Outputs

Two-input
Adder Array

Two-input
Adder Array

Fig. 2 Architecture of the reconfigurable adder-based DA

It consists of two major parts: the first part is the two-input
adder array in two levels which realizes as defined in
(10), and the second part is the parallel Wallace tree matrix
which generates the final result Z. The architecture can cope
with up to 8 inputs with 9 bits width each.

B. Two-level adder structure

In the two-level adder butterfly structure, the first level
consists of up to 12 9-bit adders which work in parallel. The
inputs are fed to this level through a routing matrix. The first
level outputs, determined by the application, are routed to the
next level inputs by another routing matrix. Due to common
terms sharing, two or more adders in the second level can
share one output form the previous level. The second level
adder array consists of up to 24 10-bit adders working in

9B-3

910

parallel. Compared with the first level adder array, each
adder in the second level is followed with a bypass path
which allows the outputs of the first level adder array pass
straight to the Wallace tree matrix when the application can
be implemented with only one level common terms sharing.
The bypass path makes the architecture more flexible by
switching between one or two-level adder structure
depending on the target application.

C. Wallace tree matrix

After one or two-level adder structure, all outputs will be
routed to the parallel Wallace tree matrix to generate the final
outputs. The delay incurred with a serial addition approach
cannot fully satisfy the requirements for some real time
applications. With serial addition, only one input is added
each cycle. Obviously, a serial computing model does not
make full use of the previous level hardware and results.

To avoid timing bottleneck and inefficient use of hardware,
a parallel processing approach is adopted in the second part.
A structure with 8 parallel Wallace tree blocks provides 8
outputs at once. A traditional Wallace tree and 3:2
compressors are used for each accumulation.

D. Balance between area and speed

Different types of addrers are used in different parts of the
architecture. For example, full-adders and RCA (Ripple
Carry Adder) are adopted in the first part and 3:2
compressors are adopted in Wallace tree. The purpose of this
choice is to achieve a balance between area and speed.

There are many different types of adders, but generally
they can be divided into four main classes: RCA, CS (Carry
Select adder), CLA (Carry Look-ahead Adder) and CSA
(Conditional Sum Adder). RCA is the most area efficient but
the slowest among the four types. Compared with RCA,
other three types adopt extra hardware to speed up
processing. In most designs, the use of a parallel architecture
is the straightforward method to solve the timing bottleneck.
The same also applies to 3:2 compressors. Compared with
3:2 compressor, 4:2 compressor is an optimized structure for
speed with the extra hardware cost.

For our architecture, the critical path can be further
shortened with some increase in area. However, this is not
necessary since with the adoption of parallel adders and
Wallace trees in our architecture, the current delay time can
meet the requirements of most real time applications. The
reconfigurable property of the architecture makes the routing
matrix area-consuming. Obviously, the system will become
larger if the speed is optimized further by adopting faster
adders and compressors.

V. DCT ALGORITHM AND ITS IMPLEMENTATION

DCT is one of the most widely used algorithms in digital
signal processing, which removes artificial discontinuities
form highly correlated signals. As one of the major
operations in current image/video compression, it can be
found in JPEG for still picture compression, ITU H.261 and
H.263 for video conferencing standard, and ISO MPEG

(MPEG-1, MPEG-2, and MPEG-4) for audio, visual
compression and communication.

The precision of DCT implementation lies on the
coefficient representation when the input vector is given with
the fixed precision. To fully support international standard
ISO/IEC 14496-2:2004 and IEEE Std 1180–1990, the
coefficient precision in our architecture is chosen to be 12
bits.

0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1
1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

() ()
0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0
1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

F i F i= =

0 1 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1

Fig. 3 0()F i and 1()F i in 2’s complement format

Following the steps of adder-based DA, Eq.(14) can be
represented in 2’s complement format as shown in Fig. 3,
where matrices 0()F i and 1()F i are listed as examples.

In theory, 96 (=12*8) terms, which are the summation of
eight inputs, are needed for 8-point 1D DCT with 12-bit
coefficients based on the adder-based DA. It means that 672
two-input adders are required when implemented directly.
However, because of the periodic conjugate symmetry
inherent in the DCT, the real implementation consumes just a
small part of the theoretic hardware cost. In total, there are
96 terms of eight matrices . Deducting the zero and
duplicate terms which need no further calculation, there are
one term of 8 inputs and 22 terms of 4 inputs, as shown in
Table 1.

Table 1: Unique terms of DCT
 Terms
8

inputs T(01234567)

4
inputs

T(0123),T(4567),T(0124),T(0145),T(0356),T(013
5),

T(0246),T(1247),T(2435),T(1357),T(0257),T(016
7),

T(1346),T(1237),T(3567),T(1457),T(0236),T(125
6),

T(0347),T(2467),T(2367),T(0456),

As an example, T(0356) represents the summation with
inputs X0, X3, X5 and X6.

As described in section 3, sharing common terms can
affect the overall hardware efficiency and power
consumption significantly. While considering all different
available schemes, the frequency of the terms used is one of
the key factors. The scheme with the occurrence of all terms
in the same level will reduce the complexity of the routing
most. The twelve sharing common terms adopted in our
design are:
 T(01), T(23), T(45), T(67), T(06), T(35),

9B-3

911

T(24), T(17), T(07), T(25), T(16), T(34)
For the selection of 2-input sharing common terms, a

selection is made such that each term is used minimum
number of times possible in order to reduce the load
capacitance at the output nodes. Consider T(0167) as an
example. It can be decomposed into T(01)+T(67) or
T(07)+T(16). Considering the overall common terms
occurrence, T(07)+T(16) is used in our design for the reason
that its fan out is lower than the other pair. By sharing
common terms, a total of 35 (12+22+1) two-input adders are
needed for the 1D DCT, which gives 94.8% reduction in the
number of adders compared with the 672 adders required by
the theoretic implementation without optimization.

VI. EXPERIMENTAL RESULTS

To verify the functionality of the reconfigurable
architecture, an 8 X 1D DCT is implemented. In the
realization of DCT, finite accuracy is achieved due to the
fixed DA precision. Obviously, more accurate data can be
obtained through increasing the precision of the coefficients
and the width of the results. This, however, results in larger
area and higher power consumption, and adversely affects
the computing speed in the adder array.

The requirements of DCT and IDCT hardware
implementations are strictly imposed by the various
standards, such as ISO/IEC 14496-2:2004 and IEEE Std
1180–1990. A brief summary is given below:

• Image pixel representation: 8 bits for 8*8 DCT
• Input bits for the forward transform: 9 bits
• Coefficients representation: 12 bits
• 1D DCT outputs: 14 bits
With the common terms discussed in the previous

section, the 8 X 1D DCT was implemented with the
proposed reconfigurable architecture. The architecture
was implemented using the Verilog hardware description
language. A standard-cell based synthesis and layout was
performed with Design Compiler from Synopsys, Inc.,
targeting the UMC 0.18um CMOS technology library, where
the area of a two-input NAND was 12.197 um2. The power
consumption of our reconfigurable architecture was obtained
after post-layout simulation by the Synopsys PrimePower.
The area of the 8 X 1D DCT was 600929 um2 and the power
consumption was 15.2mW with a 20MHz system clock. The
design can run with up to 144MHz (6.93ns) with 112-bits
(=14bits 8) outputs which means our architecture can reach
up to 16.128Gbps for 1D DCT.

VII. PERFORMANCE EVALUATION

To compare with the performance of common
subexpression elimination with CSD code, two
implementations from [19, 20] are taken. All the
implementations are targeted on 8X8 DCT with bitwidth at 8.
The number of required adders is 65 and 130 respectively in
[19] and [20]. For our architecture, a total of 35 adders are
needed in three levels to obtain all the products. This
indicates that our method achieves 46% and 73% reduction
respectively compared with existing CSD common
subexpression elimination implementations. The figures

prove that the adopted strategy is efficient and the scheme
selected is optimal.

To evaluate the performance of our architecture, we need
to make comparisons with alternative solutions. However, no
architecture exists specifically designed for the distributed
arithmetic applications. Therefore, several ASIC solutions
for 1D DCT with the same throughput will be taken as the
reference for evaluating the performance.

As area can often be traded for delay and to eliminate the
impact of different technologies, normalized delay-area
product [8] was adopted to evaluate our architecture. It
defined as the product of the hardware cost (NAND gate
count) and normalized average computation time which is
the consumption time normalized by the delay of a NAND
gate. This is used to evaluate the design performance for area
and speed together. The lower the normalized delay-area
product of a design is the better the performance of that
design. The performances of some existing designs with
12-bit word length of data path are listed in Table 2.

The reconfigurability of proposed architecture is
obtained at the cost of time, area, and power consumption.
The more applications fitted, the higher is the cost. For a
specific function, an ASIC implementation is the most
efficient among all implementations, including FPGAs and
domain specific reconfigurable architectures. Considering
the internal routing network in our design consumes over
80% area of the whole architecture, the normalized
delay-area product of our design in Table 2 was divided by 5.
It should be emphasized that the figure also includes the
impact of routing resource for timing.

Table 2: Performances of some existing designs and ours
Designs Index

[9] 1330855.61
[10] 2223371.27
[11] 1073023.72
[12] 853112.48
[13] 2005223.00
[8] 1033565.85

Average 1419858.66
Proposed
(Scaled) 1241578.80

It can be concluded from the table that our architecture
achieves better performance than the average of 6 selected
reference designs.

To evaluate the power consumption of our architecture, an
ASIC design in [14] was taken as an example, which adopted
similar algorithm with ours. The power consumption in [14]
is 12.45mW for 1D DCT with ST Microelectronics, hcmos9,
0.12µm technology at 1.5V, 50MHz. Considering dissipated
power is approximatively proportional to the square of
supply voltage, the power consumption of the design in [14]
can be scaled to 7.97mW for 1.2V. Our architecture
consumes 7.13mW with UMC 0.13um CMOS technology
library at 1.2V, 50MHz. It means the power consumption of
our reconfigurable architecture is less than the ASIC design.
It should be noted that the power consumption of our
architecture includes the power dissipation caused by
interconnection network which provides the architecture

9B-3

912

powerful reconfigurability.

VIII. SUMMARY

A novel reconfigurable low-power architecture for DA
was introduced in this paper. An adder-based DA was
adopted in the design. It was shown that the adder-based DA
can achieve 94.8% reduction in area in the case of a DCT
implementation. Compared with the common subexpression
elimination with CSD, up to 73% saving is obtained in
hardware resources. The results with the proposed
architecture prove its efficiency in terms of area, power and
speed.

1D DCT was mapped onto the architecture for the
functionality verification and performance evaluation. The
experimental data showed that the proposed architecture
achieved better performance in area and speed than the
average of six selected ASIC designs when the impact of
interconnection resource in our architecture was removed.
The right policy for trading off area and speed made the
architecture consume even less power than the ASIC designs
using a similar algorithm.

Besides the good performance in area, power and delay,
the general purpose of the design, compared with a
domain-specific design, makes the design suitable for inner
product computation targeting different applications, such as
DCT, DFT, FIR, DHT and so on. The experimental results
showed that the proposed reconfigurable architecture could
provide an efficient hardware platform for implement
various multimedia applications.

IX. REFERENCES

[1] S.A. White, “Application of Distributed Arithmetic to Digital
Signal Processing: A Tutorial Review,” IEEE Acoustics,
Speech, and Signal Processing vol. 6, pp. 4-19, July 1989.

[2] Z. Liu, T. Arslan, S. Khawam, I. Lindsay “A High
Performance Synthesisable Unsymmetrical Reconfigurable
Fabric For Heterogeneous Finite State Machines,” ASP-DAC
2005, pp. 639-642

[3] Hartej Singh, Ming-Hau Lee, Guangming Lu et.al.
“MorphoSys: A Reconfigurable Architecture for Multimedia
Applications”. Proceedings of XI Brazilian Symposium on
Integrated Circuit Design, Rio De Janeiro, Oct 98.

[4] Marcos R. Boschetti Alexando et.al. “Techniques and
Mechanisms for Dynamic Reconfiguration in an Image
Processor” Integrated Circuits and Systems Design, 2002
pp.177-182.

[5] Chang, T.-S.; Chen, C.; Jen, C.-W., “New distributed
arithmetic algorithm and its application to IDCT” Volume 146,
Issue 4, Circuits, Devices and Systems, 1999 pp:159 – 163

[6] Dae Won Kim; Taek Won Kwon; Jung Min Seo; Jae Kun Yu
et.al. “A compatible DCT/IDCT architecture using hardwired
distributed arithmetic” ISCAS 2001, pp:457 - 460 vol. 2

[7] Jiun-In Guo, “A new DA-based array for one dimensional
discrete Hartley transform” ISCAS 2001, pp:662 - 665 vol. 4

[8] Jiun-In Guo; Rei-Chin Ju; Jia-Wei Chen, “An efficient 2-D
DCT/IDCT core design using cyclic convolution and
adder-based realization” Circuits and Systems for Video
Technology, Volume 14, Issue 4, 2004 pp:416 – 428

[9] S. F. Haiso, W. R. Shiue, and J. M. Tseng, “Design and
implementation off a novel linear-array DCT/IDCT processor
with complexity of order log2N,” IEE Proc. Visions, Images,
and Signal Processing, vol. 147, no.5, pp. 400–408, Oct. 2000.

[10] A. Madisetti and A. N.Willson, Jr., “A 100 MHz 2-D 8 8
DCT/IDCT processor for HDTV applications,” IEEE Trans.
Circuits Syst. Video Technol., vol. 2, pp. 135–146, Apr. 1995.

[11] M. T. Sun, T. C. Chen, and A. M. Gottlieb, “VLSI
implementation of a 16 X16 discrete cosine transform,” IEEE
Trans. Circuits Syst. II, vol. 36, pp. 610–616, Apr. 1989.

[12] D. Slawecki andW. Li, “DCT/IDCT processor design for high
data rate image coding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 2, pp. 135–146, Apr. 1992.

[13] D. W. Kim et al., “A compatible DCT/IDCT architecture using
hardwired distributed arithmetic,” in Proc. ISCAS, 2001, pp.
II-457–II-460.

[14] Ghosh, S.; Venigalla, S.; Bayoumi, M., “Design and
implementaion of a 2D-DCT architecture using coefficient
distributed arithmetic” VLSI 2005, pp:162 - 166

[15] Pai, A.K.; Benkrid, K.; Crookes, D., “Embedded
reconfigurable DCT architectures using adder-based
distributed arithmetic” CAMP 2005, pp:81-86

[16] R. Pasˇko, P. Schaumont, V. Derudder, S. Vernalde, and D. Dˇ
uracková, A new algorithm for elimination of common
subexpressions,” IEEE Trans. Computer-Aided Design, vol.
18, pp. 58–68, Jan. 1999.

[17] M. Martínez-Peiró, E. I. Boemo, and L. Wahammar, “Design
of highspeed multiplierless filters using a nonrecursive signed
common subexpression algorithm,” IEEE Trans. Circuits Syst.
II, vol. 49, pp. 196–203, Mar. 2002.

[18] O. Gustafsson and L.Wahammar, “ILP modeling of the
common subexpression sharing problem,” in Proc. 9th IEEE
Int. Conf. Electronic Circuits Systems, vol. 3, Dubrovnik,
Croatia, Sept. 2002, pp. 1171–1174.

[19] Macleod, M.D.; Dempster, A.G.,” Common subexpression
elimination algorithm for low-cost multiplierless
implementation of matrix multipliers” Electronics Letters
Volume 40, Issue 11, 27 May 2004 Page(s):651 – 652

[20] Tian-Sheuan Chang; Jiun-In Guo; Chein-Wei Jen,”
Hardware-efficient DFT designs with cyclic convolution and
subexpression sharing” IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, Volume 47,
Issue 9, Sept. 2000 Page(s):886 - 892

9B-3

913

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

