
A Novel Reconfigurable Low Power Distributed Arithmetic Architecture for 
Multimedia Applications 

Abstract - The use of reconfigurable cores in system on chip 
(SoC) designs is increasingly becoming a trend. Such cores are 
being used for their flexibility, powerful functionality and low 
power consumption. Distributed Arithmetic (DA) is a powerful 
algorithm wildly used in many fields of multimedia for its 
efficiency. This paper presents a novel reconfigurable 
adder-based architecture for DA to realize the inner product 
which is the key computation in many digital signal processing 
applications. 1D DCT is mapped onto the architecture. 
Compared with some existing ASIC designs, the new 
architecture achieves good performance in area, speed and 
power. 

I. INTRODUCTION 

Distributed Arithmetic (DA) has been wildly adopted for 
its computational efficiency in many digital signal processing 
applications such as DCT (Discrete Cosine Transform), DFT 
(Discrete Fourier Transform), FIR (Finite Impulse Response), 
and DHT (Discrete Hartley Transform) [1]. These 
applications involve the computation of inner products 
between two vectors, one of which is a constant.  

The general method to generate the products is to use a 
MAC (multiply and accumulate) unit, which is fast but has a 
high cost in the case of long-length inner-products. In 
contrast, DA provides an efficient solution to realize the inner 
products by using memory look-up and accumulation 
operations. The idea behind the conventional DA, called 
ROM-based, is to replace multiplication operations by 
pre-computing all possible values and storing these in a 
ROM. According to [1], the ROM based DA can reduce the 
circuit size by 50-80% on average. 

Custom reconfigurable technology emerged to satisfy the 
simultaneous demand for flexibility and efficiency. 
Custom/domain-specific reconfigurable arrays can be 
programmed to adapt for different applications, so the 
efficiency of the hardware and flexibility of the whole system 
is improved. Earlier works, such as [2-4], show good 
performance in area, power consumption and speed. Since a 
domain-specific reconfigurable architecture targets few 
application fields, it achieves better performance than a 
general purpose FPGA device. 

In this paper, a novel reconfigurable DA architecture is 
presented which can implement inner products with less area 
usage and power consumption. The proposed architecture can 

implement any algorithm for the inner product computations, 
such as DCT, DFT, FIR, and DHT. All these signal 
processing algorithms are widely used in various multimedia 
standards such as H.261, H.263, MPEG-1, MPEG-2, 
MPEG-4, and JPEG2000. An adder-based DA is adopted in 
this architecture, which was introduced in [5]. Compared with 
a ROM-based DA, the approach needs only 10% of 
transistors and 30% of ROM area with comparable 
performance [5]. Our new architecture takes the advantage of 
the common summation terms when the fixed coefficients are 
decomposed into bit level which makes the architecture 
maximize the hardware efficiency. Due to its inherent 
hardware sharing property, the proposed architecture is very 
suitable for multiple inner product computations. The 
reconfigurable character of the architecture makes it flexible 
to switch form one function to another, which means the 
same hardware architecture can perform different algorithms 
at different times.  

The rest of the paper is organized as follows. In section 2, 
we review the related work in the literature. In section 3, a 
brief description about the basic definitions of DA is provided 
and the reconfigurable DA is introduced. Our architecture is 
described in detail in section 4 which includes the overview 
of reconfigurable architecture, two-level adder butterfly 
structure, the Wallace tree matrix and the trade off between 
area and speed. The DCT algorithm and its implementation 
with our reconfigurable DA are described in section 5. The 
experimental results and performance evaluation are given in 
sections 6 and 7. Finally, summary is presented in section 8. 

II.RELATED WORK  

Over the years, significant research work has been carried 
out on DA techniques and its implementation for DCT and 
other applications. In [6], a hardwired DA method is 
implemented for DCT with radix-2 multibit coding for the 
minimum resource and symmetric transpose memory for high 
speed. In [5], an adder-based DA is proposed to generate the 
inner product of vectors for DCT. The approach reduced 2/3 
ROM area and nearly 9/10 transistor count with comparable 
performance when compared with ROM-based DA. In [7], a 
DA-based algorithm is introduced which can formulate 1-D 
any-length DHT as cyclic convolutions. It simplifies the 
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ROM design process and increases the processing speed for 
utilizing identical ROM modules and eliminating the 
accumulation loop in the processing elements. 

Numerous works has been done on reconfigurable 
architectures and their implementations. However, no 
architecture has been designed specifically for 
reconfigurable DA yet. In [15], a special reconfigurable 
architecture for DCT is described. The architecture is 
designed especially for implementing DCT with different 
algorithms: pure-RAM, mixed-RAM and CORDIC. 
However, since this architecture could be used only for DCT 
application, its application field is fixed.  

III. RECONFIGURABLE DA ALGORITHMS 

A. DA Algorithms 

DA is a bit-serial operation that computes the inner product 
of two vectors without needing to use multiply operations. 
Let us consider the computation of the following inner (dot) 
product with L-dimensional vectors: 
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where A = [C0, C1,···, CL-1] is an M bits fixed coefficient 
vector and X = [X0, X1,···, XL-1] is an N bits input vector. Ci
and Xi can be expressed in two’s complement binary as 
follows: 
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where Ci,j , Xi,k {0,1} is the jth and kth bit of vector 
element Ci and Xi respectively. To realize the inner product 
computation, the conventional DA uses a ROM-based 
architecture. Another method is to adopt an adder-based 
architecture. 

B. ROM Based DA 

ROM-based DA speeds up the multiplication process by 
pre-computing all possible values and storing them in a 
ROM. By substituting (3) in (1), the output Z is given by:  
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By defining the term Rk as 
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Substituting (5) and (6) in (4), (4) can be written as 
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where S is defined as the sign of term for k= 0,1,
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Since Xi,k {0,1}, Rk has 2L possible values for k=
0,1, , these values can be precomputed and stored in 
a ROM. Then, (5) can be implemented with a ROM of size 
2L.

The bits of input data ({X0,k, X1,k, Xi,k}) are used to 
form the ROM addresses. An arithmetic shifter in the 
accumulator feedback path is used to form successive 
scalings with powers of two.  

The problem with ROM-based DA is that its ROM size 
(2L word) grows exponentially as the order L increases. As 
the number of inputs and the internal precision becomes 
large, the ROM-based DA suffers from extremely large 
ROM requirements. 

C. Adder-Based DA 

From the arithmetic point of view, the adder-based DA has 
little difference compared with the ROM-based DA. In 
ROM-based DA, (4) is obtained by substituting (3) in (1). 
While one of the two factors in (1), Xi, is changed to two’s 
complement binary format, the other factor, Ci, is led to 
keep its original format. For adder-based DA, the roles of 
the two factors are exchanged: Xi keeping its original 
format and Ci being changed to two’s complement binary 
format. 

By substituting (2) in (1), the output Z is given by:  
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We define term Tj as 
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then, (9) can be written as 
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Since Ci,j is fixed and known, Tj can be realized with 
adders. Clearly, only the inputs corresponding to nonzero 
coefficient bits Ci,j need to be added. This results in reducing 
the number of additions in half on average. 

The adders with shifts replace the multipliers in the 
original DA algorithm. The adoption of adders also makes 
the architecture more hardware efficient. However, the 
benefits of adoption of adders is not limited to hardware 
efficiency, it also achieves N times speed as faster as 
ROM-based DA, where N is the bitwidth of the input vectors. 
In ROM-based DA, the vectors are imported serially to 
generate the ROM addresses for computing Rk terms. 
Whereas, in adder-based DA, all inputs are fed parallel to the 
adders for computing Tj regardless how long they are. The 
time is only consumed in the addition, the longer the inputs 
are the more time is taken.  

Besides the advantages of adder-based DA described 
above, common terms sharing brings additional advantages 
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in reducing hardware complexity further.  
The ideas behind common term sharing are not new in 

two’s complement binary multiplier, which can be found 
in [16-20], namely common subexpression sharing or 
common subexpression elimination. The purposes of 
common term sharing and common subexpression 
elimination are to reduce the number of adders. However, 
the implementation strategies are greatly different for the 
two methods. 

Common subexpression elimination is to find multiple 
common subexpressions in the coefficient set. These 
patterns are used in the way that the input signal 
multiplies each signed-powers-of-two pattern only once. 
It is also well known that the so-called 
canonic-signed-digit (CSD) code is the best 
signed-powers-of-two code for its minimal number of 
nonzero digits. Obviously, the efficient common 
subexpression elimination is based on CSD code. For the 
characteristic of CSD code, changes are made to the order 
of expression evaluation when common subexpression 
elimination is implemented. While common term sharing 
is realized by the multi-level adder arrays without any 
changes in algorithm expression. The comparison 
between the two methods targeting the same application 
will be made in section 7.

Fig. 1 shows an example case for common terms sharing.  
1
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Fig. 1 Example of adder-based DA 

Suppose the input vector and fixed coefficient vector are  
 X = [X0, X1, X2, X3]
C00= 1101b, C10= 1011b, C20= 1110b, C30= 0011b;
First, substitute Ci and Xi in (1), and then decompose 

fixed coefficients into bit level. After multiplying input 
vectors and their corresponding coefficient in bit level, 
add all terms with the format of power of two. Notice that 
the additions are taken only at the nonzero bits of 
coefficients. One finds that there are some common terms 
between different bit weights: term X1+X2 between bit 
weights 23 and 21, term X1+X3 between bit weights 21 and 
20.

Obviously, the sharing common terms can save the 
hardware area and reduce the redundant computing to 
save power consumption. One finds that the diverse 
common term schemes will result in different amount of 
resource savings. For the example shown in Fig. 1, seven 
two-input adders are needed for accumulation without 
sharing common terms. There are three common term 

sharing schemes: X0+X1 as the common term, X1+X2 as 
the common term, X0+X2 and X1+X3 as the common terms. 
In the first two schemes, six two-input adders are needed. 
Whereas five two-input adders are needed for the third 
scheme. Therefore, the selection of common terms 
sharing scheme will determine the final hardware 
efficiency in the implementation.  

It should be emphasized that the example in Fig. 1 is a 
special case. For all possible 4-input, 4-bits coefficient 
cases, only few cases have two or more common terms 
and the cases having one common term are only the part 
of all possible cases. Is the common terms sharing 
property available in real cases? Fortunately, the 
coefficients in the applicable applications are symmetric 
and regular, which will make the application taking full 
advantages of common terms. An example for DCT is 
introduced in the following section. It will be shown that 
the common terms sharing contributes greatly to the 
resource savings. 

IV. ARCHITECTURE OF RECONFIGURABLE DA 

A. Architecture overview 

The proposed reconfigurable DA architecture is shown in 
Fig. 2.  

+
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Two-input
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Fig. 2 Architecture of the reconfigurable adder-based DA 

It consists of two major parts: the first part is the two-input 
adder array in two levels which realizes as defined in 
(10), and the second part is the parallel Wallace tree matrix 
which generates the final result Z. The architecture can cope 
with up to 8 inputs with 9 bits width each.  

B. Two-level adder structure 

In the two-level adder butterfly structure, the first level 
consists of up to 12 9-bit adders which work in parallel. The 
inputs are fed to this level through a routing matrix. The first 
level outputs, determined by the application, are routed to the 
next level inputs by another routing matrix. Due to common 
terms sharing, two or more adders in the second level can 
share one output form the previous level. The second level 
adder array consists of up to 24 10-bit adders working in 
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parallel. Compared with the first level adder array, each 
adder in the second level is followed with a bypass path 
which allows the outputs of the first level adder array pass 
straight to the Wallace tree matrix when the application can 
be implemented with only one level common terms sharing. 
The bypass path makes the architecture more flexible by 
switching between one or two-level adder structure 
depending on the target application.  

C. Wallace tree matrix 

After one or two-level adder structure, all outputs will be 
routed to the parallel Wallace tree matrix to generate the final 
outputs. The delay incurred with a serial addition approach 
cannot fully satisfy the requirements for some real time 
applications. With serial addition, only one input is added 
each cycle. Obviously, a serial computing model does not 
make full use of the previous level hardware and results.  

To avoid timing bottleneck and inefficient use of hardware, 
a parallel processing approach is adopted in the second part. 
A structure with 8 parallel Wallace tree blocks provides 8 
outputs at once. A traditional Wallace tree and 3:2 
compressors are used for each accumulation.  

D. Balance between area and speed 

Different types of addrers are used in different parts of the 
architecture. For example, full-adders and RCA (Ripple 
Carry Adder) are adopted in the first part and 3:2 
compressors are adopted in Wallace tree. The purpose of this 
choice is to achieve a balance between area and speed. 

There are many different types of adders, but generally 
they can be divided into four main classes: RCA, CS (Carry 
Select adder), CLA (Carry Look-ahead Adder) and CSA 
(Conditional Sum Adder). RCA is the most area efficient but 
the slowest among the four types. Compared with RCA, 
other three types adopt extra hardware to speed up 
processing. In most designs, the use of a parallel architecture 
is the straightforward method to solve the timing bottleneck. 
The same also applies to 3:2 compressors. Compared with 
3:2 compressor, 4:2 compressor is an optimized structure for 
speed with the extra hardware cost.  

For our architecture, the critical path can be further 
shortened with some increase in area. However, this is not 
necessary since with the adoption of parallel adders and 
Wallace trees in our architecture, the current delay time can 
meet the requirements of most real time applications. The 
reconfigurable property of the architecture makes the routing 
matrix area-consuming. Obviously, the system will become 
larger if the speed is optimized further by adopting faster 
adders and compressors.  

V. DCT ALGORITHM AND ITS IMPLEMENTATION 

DCT is one of the most widely used algorithms in digital 
signal processing, which removes artificial discontinuities 
form highly correlated signals. As one of the major 
operations in current image/video compression, it can be 
found in JPEG for still picture compression, ITU H.261 and 
H.263 for video conferencing standard, and ISO MPEG 

(MPEG-1, MPEG-2, and MPEG-4) for audio, visual 
compression and communication. 

The precision of DCT implementation lies on the 
coefficient representation when the input vector is given with 
the fixed precision. To fully support international standard 
ISO/IEC 14496-2:2004 and IEEE Std 1180–1990, the 
coefficient precision in our architecture is chosen to be 12 
bits.  

0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1
1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

( )                  ( )
0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0
1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

F i F i= =

0 1 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1

Fig. 3 0( )F i  and 1( )F i  in 2’s complement format 

Following the steps of adder-based DA, Eq.(14) can be 
represented in 2’s complement format as shown in Fig. 3, 
where matrices 0( )F i  and 1( )F i  are listed as examples.  

In theory, 96 (=12*8) terms, which are the summation of 
eight inputs, are needed for 8-point 1D DCT with 12-bit 
coefficients based on the adder-based DA. It means that 672 
two-input adders are required when implemented directly. 
However, because of the periodic conjugate symmetry 
inherent in the DCT, the real implementation consumes just a 
small part of the theoretic hardware cost. In total, there are 
96 terms of eight matrices . Deducting the zero and 
duplicate terms which need no further calculation, there are 
one term of 8 inputs and 22 terms of 4 inputs, as shown in 
Table 1. 

Table 1: Unique terms of DCT 
 Terms 
8

inputs T(01234567) 

4
inputs 

T(0123),T(4567),T(0124),T(0145),T(0356),T(013
5), 

T(0246),T(1247),T(2435),T(1357),T(0257),T(016
7), 

T(1346),T(1237),T(3567),T(1457),T(0236),T(125
6), 

T(0347),T(2467),T(2367),T(0456), 

As an example, T(0356) represents the summation with 
inputs X0, X3, X5 and X6.

As described in section 3, sharing common terms can 
affect the overall hardware efficiency and power 
consumption significantly. While considering all different 
available schemes, the frequency of the terms used is one of 
the key factors. The scheme with the occurrence of all terms 
in the same level will reduce the complexity of the routing 
most. The twelve sharing common terms adopted in our 
design are: 
     T(01), T(23), T(45), T(67), T(06), T(35),  
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T(24), T(17), T(07), T(25), T(16), T(34) 
For the selection of 2-input sharing common terms, a 

selection is made such that each term is used minimum 
number of times possible in order to reduce the load 
capacitance at the output nodes. Consider T(0167) as an 
example. It can be decomposed into T(01)+T(67) or 
T(07)+T(16). Considering the overall common terms 
occurrence, T(07)+T(16) is used in our design for the reason 
that its fan out is lower than the other pair. By sharing 
common terms, a total of 35 (12+22+1) two-input adders are 
needed for the 1D DCT, which gives 94.8% reduction in the 
number of adders compared with the 672 adders required by 
the theoretic implementation without optimization. 

VI. EXPERIMENTAL RESULTS 

To verify the functionality of the reconfigurable 
architecture, an 8 X 1D DCT is implemented. In the 
realization of DCT, finite accuracy is achieved due to the 
fixed DA precision. Obviously, more accurate data can be 
obtained through increasing the precision of the coefficients 
and the width of the results. This, however, results in larger 
area and higher power consumption, and adversely affects 
the computing speed in the adder array. 

The requirements of DCT and IDCT hardware 
implementations are strictly imposed by the various 
standards, such as ISO/IEC 14496-2:2004 and IEEE Std 
1180–1990. A brief summary is given below: 

•  Image pixel representation: 8 bits for 8*8 DCT 
•  Input bits for the forward transform: 9 bits 
•  Coefficients representation: 12 bits 
•  1D DCT outputs: 14 bits 
With the common terms discussed in the previous 

section, the 8 X 1D DCT was implemented with the 
proposed reconfigurable architecture. The architecture 
was implemented using the Verilog hardware description 
language. A standard-cell based synthesis and layout was 
performed with Design Compiler from Synopsys, Inc., 
targeting the UMC 0.18um CMOS technology library, where 
the area of a two-input NAND was 12.197 um2. The power 
consumption of our reconfigurable architecture was obtained 
after post-layout simulation by the Synopsys PrimePower. 
The area of the 8 X 1D DCT was 600929 um2 and the power 
consumption was 15.2mW with a 20MHz system clock. The 
design can run with up to 144MHz (6.93ns) with 112-bits 
(=14bits 8) outputs which means our architecture can reach 
up to 16.128Gbps for 1D DCT. 

VII. PERFORMANCE EVALUATION 

To compare with the performance of common 
subexpression elimination with CSD code, two 
implementations from [19, 20] are taken. All the 
implementations are targeted on 8X8 DCT with bitwidth at 8. 
The number of required adders is 65 and 130 respectively in 
[19] and [20]. For our architecture, a total of 35 adders are 
needed in three levels to obtain all the products. This 
indicates that our method achieves 46% and 73% reduction 
respectively compared with existing CSD common 
subexpression elimination implementations. The figures 

prove that the adopted strategy is efficient and the scheme 
selected is optimal.  

To evaluate the performance of our architecture, we need 
to make comparisons with alternative solutions. However, no 
architecture exists specifically designed for the distributed 
arithmetic applications. Therefore, several ASIC solutions 
for 1D DCT with the same throughput will be taken as the 
reference for evaluating the performance. 

As area can often be traded for delay and to eliminate the 
impact of different technologies, normalized delay-area 
product [8] was adopted to evaluate our architecture. It 
defined as the product of the hardware cost (NAND gate 
count) and normalized average computation time which is 
the consumption time normalized by the delay of a NAND 
gate. This is used to evaluate the design performance for area 
and speed together. The lower the normalized delay-area 
product of a design is the better the performance of that 
design. The performances of some existing designs with 
12-bit word length of data path are listed in Table 2.  

The reconfigurability of proposed architecture is 
obtained at the cost of time, area, and power consumption. 
The more applications fitted, the higher is the cost. For a 
specific function, an ASIC implementation is the most 
efficient among all implementations, including FPGAs and 
domain specific reconfigurable architectures. Considering 
the internal routing network in our design consumes over 
80% area of the whole architecture, the normalized 
delay-area product of our design in Table 2 was divided by 5. 
It should be emphasized that the figure also includes the 
impact of routing resource for timing.  

Table 2: Performances of some existing designs and ours 
Designs Index 

[9] 1330855.61  
[10] 2223371.27  
[11] 1073023.72  
[12] 853112.48  
[13] 2005223.00  
[8] 1033565.85 

Average 1419858.66  
Proposed 
(Scaled) 1241578.80  

It can be concluded from the table that our architecture 
achieves better performance than the average of 6 selected 
reference designs. 

To evaluate the power consumption of our architecture, an 
ASIC design in [14] was taken as an example, which adopted 
similar algorithm with ours. The power consumption in [14] 
is 12.45mW for 1D DCT with ST Microelectronics, hcmos9, 
0.12µm technology at 1.5V, 50MHz. Considering dissipated 
power is approximatively proportional to the square of 
supply voltage, the power consumption of the design in [14] 
can be scaled to 7.97mW for 1.2V. Our architecture 
consumes 7.13mW with UMC 0.13um CMOS technology 
library at 1.2V, 50MHz. It means the power consumption of 
our reconfigurable architecture is less than the ASIC design. 
It should be noted that the power consumption of our 
architecture includes the power dissipation caused by 
interconnection network which provides the architecture 
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powerful reconfigurability.  

VIII. SUMMARY 

A novel reconfigurable low-power architecture for DA 
was introduced in this paper. An adder-based DA was 
adopted in the design. It was shown that the adder-based DA 
can achieve 94.8% reduction in area in the case of a DCT 
implementation. Compared with the common subexpression 
elimination with CSD, up to 73% saving is obtained in 
hardware resources. The results with the proposed 
architecture prove its efficiency in terms of area, power and 
speed.  

1D DCT was mapped onto the architecture for the 
functionality verification and performance evaluation. The 
experimental data showed that the proposed architecture 
achieved better performance in area and speed than the 
average of six selected ASIC designs when the impact of 
interconnection resource in our architecture was removed. 
The right policy for trading off area and speed made the 
architecture consume even less power than the ASIC designs 
using a similar algorithm. 

Besides the good performance in area, power and delay, 
the general purpose of the design, compared with a 
domain-specific design, makes the design suitable for inner 
product computation targeting different applications, such as 
DCT, DFT, FIR, DHT and so on. The experimental results 
showed that the proposed reconfigurable architecture could 
provide an efficient hardware platform for implement 
various multimedia applications. 
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