
Design Methodology for 2.4GHz Dual-Core Microprocessor
Noriyuki Ito, Hiroaki Komatsu, Akira Kanuma, Akihiro Yoshitake,
Yoshiyasu Tanamura, Hiroyuki Sugiyama, Ryoichi Yamashita,

Ken-ichi Nabeya, Hironobu Yoshino, Hitoshi Yamanaka, Masahiro Yanagida,
Yoshitomo Ozeki, Kinya Ishizaka, Takeshi Kono, Yutaka Isoda

Fujitsu Limited
4-1-1 Kamikodanaka, Nakahara-ku,

Kawasaki, 211-8588, Japan
ito.noriyuki@jp.fujitsu.com

ABSTRACT
This paper presents a design methodology that was applied to
the design of a 2.4GHz dual-core SPARC64

TM
 microprocessor

with 90nm CMOS technology. It focuses on the newly adopted
techniques, such as efficient data management in dual-core
design, fast delay calculation of the noise-immune clock
distribution circuit, enhanced signal integrity analysis of a
large-scale custom macro design, and enhanced diagnosis
capability using a logic BIST circuit.

Keywords: Microprocessor, dual-core, clock, custom macro,
signal integrity, test, BIST

1. Introduction
As a successor of a 2.16GHz single-core microprocessor [1]

with 90nm CMOS technology, a dual-core SPARC64
microprocessor [2] achieves 2.4GHz using the enhanced 90nm
CMOS technology. The CAD system [3], which has supported the
high performance microprocessor design, is enhanced especially
in data management, timing analysis, custom macro design, and
test. In data management, design of identical dual cores is made
efficient. In timing analysis, delay calculation of a clock
distribution circuit with split and shielded wires to reduce noise is
sped up. In custom macro design, signal integrity analysis related
to coupling noise and Tr/Tf analysis is enhanced. In test, not only
good/no-good can be determined separately in each core, but also
capability of fault diagnosis is available even if a logic BIST
circuit is used. By these enhancements, we completed the
2.4GHz dual-core microprocessor in a short time of about one
year.

The paper is organized as follows. Section 2 presents an
overview of the microprocessor to which our design methodology
is applied. Section 3 presents our concepts when we constructed
our CAD system. In Sections 4 through 7, we describe the newly
adopted techniques, namely physical hierarchy for dual-core
design, clock design, custom macro design, and testing. Finally,
we conclude the paper in Section 8, with directions for future
work.

2. Overview of dual-core microprocessor
The specification of the 2.4GHz SPARC64 microprocessor is

as follows:

Process: 90nm, Cu metallization, 10 metal layers
Frequency: 2.4GHz
Die size: 20.38mm x 20.67mm
Transistor count: 540M
Level 2 on-chip cache: 6MB

I/O signals count: 412
Power dissipation: less than 120W

Figure 1. Dual-core microprocessor [2]

3. CAD system
 In the dual-core microprocessor design, two kinds of CAD

systems are used: one for chip design based on standard cells and
macros, and the other for custom macro design based on
transistors. For logic design and verification, EDA vendor tools as
well as in-house tools are used. On the other hand, for timing
analysis and chip layout, in-house tools are used. In Table 1, we
show design steps for which tools from EDA vendors are used.
Since EDA vendor tools related to logic design are now mature,
we use logic simulator and emulator from EDA vendors as well as
an in-house logic simulator. Gradually EDA vendor tools are
replacing our in-house logic simulator. As for transistor-level
noise analysis, we think that it should be developed as an in-house
tool to ensure correct margins. However, we could not afford to
develop it due to limited manpower and were forced to use an
EDA vendor tool. In Table 2, we show design steps for which in-
house tools are used. A high performance microprocessor uses
latest cutting-edge circuit and CMOS technologies, which
necessitate enhancements in CAD tools such as design rule
checkers, placement, routing, and timing/noise analysis. These
enhancements are usually not available in vendor tools at the time.
So in-house tools are developed to support the state-of-the-art
technology.

One extremely important issue is that of the continuity of each
CAD tool with technology and over time. In each in-house CAD
tool, numerous user requirements and know-how are incorporated.
Each of them constructs the originality of our own design
methodology. An EDA vendor tool that has been used for a long
time may be replaced suddenly with a new tool. If this happens,
all of user requirements and know-how are not necessarily carried

1-4244-0630-7/07/$20.00 ©2007 IEEE.

9B-1

896

over to the new CAD tool. Therefore, it is important to set stable
in-house CAD tools in the core of design methodology. Indeed
our CAD system uses a suite of stable in-house CAD tools, which
inherit relevant user requirements and know-how from the era
when mainframe computers were developed.

Table 1. Design steps for which EDA vendor tools are used

 Typical cases Why?

1 Logic simulator, emulator Tools are mature

2
Editors for cell/macro

design, circuit simulator

No competitive advantage

with in-house development

3
Noise analysis based on

transistors

In-house development is not

in time

4 DRC, LVS Specified as a sign-off tool

Table 2. Design steps for which in-house tools are used

 Typical cases Why?

1
Logical and physical design

rule checkers

Support our original design

rules

2
Layout, timing analysis Tools influence design

methodology

3

Routing Need extensive tuning for

the state-of-the-art CMOS

process

4
Placement, routing Essential for high perfor-

mance

5
Noise analysis based on

standard cells/macros

Need to ensure correct

margins

6
Clock design, Power grid

design

Capability of EDA vendor

tools are insufficient

4. Physical hierarchy for dual-core design
In our conventional design methodology for a single-core

microprocessor, a chip is divided into sub-chips, each of which is
further sub-divided into blocks. One sub-chip corresponds to a
unit such as execution unit, instruction unit, or storage unit. In the
dual-core microprocessor design, there are three different
approaches to represent a core in timing and physical views. The
first approach is to design the core as a large macro such as IP or
RAM. The second approach is to introduce a new physical
hierarchy between a chip and a sub-chip. Finally, the third
approach is to place the sub-chips of the core directly at the chip-
level. The difference between the first and second approaches is
that in the first the core is treated as a macro till the final stage,
whereas in the second the new hierarchy is expanded as and when
necessary (such as when some analysis is performed on the entire
chip). Since logically and physically a core is designed separately
from others in the first approach, it is easily handled during chip
design. However, it is difficult to ensure the accuracy of analysis
at the core boundary when the core is treated as a macro.
Although there is a merit of easy handling in both first and second
approaches, some modifications to the CAD system are needed to
handle the new physical hierarchy. Designers also have to run
additional CAD tools in the new hierarchy of the core and have to
manage its data. In the third approach, conventional hierarchical
structures such as chip, sub-chip, and block are not changed.

Therefore, no modification to the conventional CAD system is
needed and very little additional work is imposed on designers.
We selected the third approach, since the CAD and design
overhead is the least as compared to others. We implemented a
function that groups sub-chips in the core and places them at
another location on the chip as a group with arbitrary flip and
rotation. Here, the designer needs to manage only one core data.
When timing or noise analysis is performed on the chip, all
boundaries of sub-chips and groups are removed and flattened to
cells and macros within the CAD tool. In this process, all layout
data of the original core is copied to another instantiation of the
core according to its flip and rotation. Global wires that pass over
cores are designed and routed at the chip-level so that they use
exactly the same channel in each core. Since logic outside the
cores is not always symmetric, connections from the two cores to
other sub-chips are not always the same. Therefore, the cores are
expanded into cells and macros during chip analysis to accurately
analyze a path from latches outside cores to latches in the cores.

5. Clock design

Figure 2. H-shaped clock routing

To reduce clock skew, mesh-shaped layout may be better than
H-shaped layout. However, mesh-shaped layout consumes more
routing channels and power. Further, delay calculation of a clock
net with mesh-shaped layout takes more time. Therefore, we
adopt a tree structure with H-shaped layout in the clock
distribution circuit, as shown in Figure 2. An H-tree is a regular
structure, with symmetric routing patterns, and is easy to
construct and route. For all clock nets except connections to
latches, split wires with shields in between are used to reduce
inductance noise. A wide clock wire is split into several wires,
which are shielded by GND wires not only in between, but also at
two layers below. Clock nets connected to latches are routed by
an automatic router. Other clock nets are routed manually with an
in-house interactive P&R editor. When a clock net that is split
with shields is routed from one layer to another, routed wires
become very complicated due to generated vias, as shown in
Figure 3.

9B-1

897

Figure 3. Changing wiring layers in a clock net

Due to this complexity, modification of a clock net takes time
if it consists of split and shielded wires. Also, split and shielded
wires may have loops due to vias that are generated when the
routing layer is changed. These loops make it impossible to
calculate delay using simple models such as Elmore delay [4].
This means that the delay of the clock distribution circuit must be
calculated by a circuit simulator such as SPICE. However, then
the turn-around-time for any clock net modifications becomes
large. To solve this problem, clock nets are routed manually as
one wire instead of split and shielded wires. Considering the
complete design flow, it is only in the final design phase that the
designers improve delay by pico-seconds in critical paths. So a
SPICE-accurate delay calculation is necessary only in the final
phase. In this final phase, each clock net represented by single
wires is converted by a CAD tool into split and shielded wires
according to the clock design rules. Thus, a clock net is treated as
one wire till the final design phase, and its delay is calculated by
the conventional Elmore delay model. This achieves the short
turn-around-time when the clock distribution circuit is modified.
It is also important to minimize the error in the delay calculated
when the clock net is treated as one wire, as compared to SPICE
simulation results for a split wire. For this purpose, a new
dedicated RC table is prepared for extraction in clock nets routed
as one wire. During the SPICE simulation of the clock
distribution circuit at the final design phase, the clock circuit is
divided into three groups from its root to leaves (as explained
later). Table 3 shows the results and the errors of three paths for
the two calculation methods: 1) each clock wire is treated as one
wire and its delay is calculated by Elmore delay model, 2) RC
parasitics are extracted after one wire is split and shielded, then its
delay is calculated by SPICE.

We first calculate delay based on a Steiner tree constructed for
each clock net. The maximum error of delays calculated by
Elmore delay model is 10.4% when compared to the results of
SPICE simulation. When clock nets are actually routed as one
wire, the error becomes less than 3%. When the clock wire is
treated as one wire and its delay is calculated by Elmore delay
model, no inductance is considered. When the delay is calculated
by SPICE, however, we include inductance in the model. Since
inductance is not considered in calculation by Elmore delay
model, delay is calculated 2-4% larger compared to SPICE
simulation with inductance. To speed up SPICE simulation, we
divide the clock distribution circuit from the root to leaves into
three groups. SPICE simulation begins from the first group and
proceeds to the third group. In order to accelerate the simulation,
the second group is further divided into 7 sub-groups based on the
sub-trees in the second group. Similarly, the third group is divided
into 450 sub-groups. This is done for both model size reduction
and higher parallelism. SPICE simulation takes about 5 hours on a
1.3GHz UNIX server with 5 jobs running in parallel. We estimate
power dissipation of clock distribution circuit to be about 11%

(excluding power consumed by clock circuits within latches and
custom macros) of the chip total power dissipation.

Table 3. Errors in delay calculation

By SPICE

for split
By Elmore for one wire

Routing Steiner error Routing error

Path1 246.5ps 272.1ps 10.4% 255.1ps 3.5%

Path2 144.2ps 148.8ps 3.2% 138.9ps -3.7%

Path3 181.6ps 183.0ps 0.8% 176.7ps -2.7%

6. Custom macro design
Custom macro design is a key in implementing our 2.4GHz

dual-core microprocessor, since only it can yield the required high
performance and density for a large fraction of the microprocessor.
In this section, we describe the CAD flow and techniques
especially for timing and Tr/Tf analysis in the custom macro
design.

6.1 CAD flow

Figure 4. CAD flow for custom macro design

Figure 4 shows the CAD flow of our custom macro design.
After schematic entry, logic simulation and logical DRC are
performed. Then, the transistor-level netlist is converted to a gate-
level netlist G by a CAD tool. This gate-level netlist G is
compared to the reference gate-level design prepared by designers.
Test vectors are generated by an ATPG tool and are applied on G
to check whether undetected faults remain or not. After modifying
logic so that all faults are detected, the final schematic design is
obtained. This is then laid out by a polygon editor and checked by
DRC and physical design rule check tools. The physical design
rule check tools check for rules such as routability from each
terminal, maximum parallel length of two wire segments (for
crosstalk noise), etc. After both schematic and layout are
completed, a netlist is extracted from the layout by performing
LVS (Layout versus Schematic) and LPE (Layout Parasitic
Extraction). Signal integrity, timing, and Tr/Tf analyses are
performed on this extracted netlist. Each box of Figure 4 is
annotated with the information whether that step is performed by
an EDA vendor tool or by an in-house tool. In-house tools mainly
cover logical/physical design rule checks, conversion of a netlist
from transistors to gates, static timing analysis, and Tr/Tf analysis.

9B-1

898

If a custom macro is large (i.e., more than 100K transistors), leaf
cells are first developed and characterized as a library in the
custom macro design CAD environment. Then, the custom macro
is laid out in the chip design CAD environment using these leaf
cells. Timing and other analyses are also done in the chip design
CAD environment.

6.2 Signal Integrity
In the custom macro design, noise analysis is carried out by an

EDA vendor tool. However, the in-house physical design rule
checker checks for additional violations. During chip-level
routing, routing channel between the wires of an already-placed
custom macro can be used. To check a possible noise error due to
two parallel wires, one of which is from the chip and the other
from the custom macro, we do the following. After layout of the
custom macro, chip-level wires are assumed to be virtually
present in the unused routing channels in the custom macro. Then,
based on the length of parallel wires, it is checked whether the
noise exceeds the limit assuming that the virtual wire from the
chip is an aggressor and the wire from the custom macro is a
victim. This check is done within the custom macro. Drivability
of the wire from the chip is assumed to be N times stronger than a
normal driver. If the noise exceeds the limit, the unused channel is
prohibited to have a chip-level wire. For the case that the chip-
level wire is a victim and that the wire in the custom macro is an
aggressor, noise is checked during chip-level analysis. Even when
the noise does not exceed the limit, parallel wires can delay the
signal transition due to coupling capacitance. A procedure similar
to the aforementioned procedure is used in this case as well.

6.3 Timing analysis
When the number of transistors in a custom macro exceeds a

few hundreds, it becomes impractical to simulate the whole macro
with SPICE. The reason is that a large number of simulation
vectors are needed to cover the critical paths, and circuit
simulation for each vector takes time. To solve this problem, a
custom macro is divided into sub-circuits. Each sub-circuit is
characterized as a library cell. Then, the custom macro timing
analysis problem can be solved by using a conventional gate-level
static timing analysis tool [5]. A sub-circuit is a channel-
connected component (CCC). A CCC is the set of all transistors
and nodes reachable from the drain or the source of a transistor
and surrounded by power and ground lines, gate inputs of
transistors and inputs/outputs of the custom macro cell. The
timing model of each CCC is determined using SPICE simulation.

To further speed up the timing analysis, we constrain our
custom macro to use only a limited number of pre-characterized
latches. This is because latch characterization is CPU-intensive.
So during transistor-level timing analysis, before dividing the
macro into CCCs, we perform library matching to detect latches
in the macro. Another technique is used to improve the accuracy
and ease of chip-level path timing analysis. The structure of
timing library is different for a custom macro without latches and
that with latches. The timing library for a custom macro without
latches is generated in the same format as regular standard cells.
For a custom macro consisting of CCCs/latches, delays calculated
for CCCs are saved in the same format as a sub-chip. Since the
latches of the custom macro are visible at the chip-level, chip-
level timing analysis can analyze a path from or to a latch in the
macro. During the analysis, CCCs of the custom macro are treated
as regular library cells.

6.4 Tr/Tf analysis
Tr/Tf analysis is used to calculate Tr (rise time) and Tf (fall

time) of a signal transition, and to check whether both Tr and Tf
are within the limit. The reason why this check is needed is that
large Tr/Tf values can cause excessive delay and power
dissipation, and can also deteriorate reliability due to hot carrier,
etc [6]. Furthermore, errors in the timing values computed by
static timing analysis increase if Tr/Tf are outside the limits. In
static timing analysis, the cell delay is calculated by interpolating
graphs in a timing library using fan-out load, Tr/Tf, etc. If these
values exceed the assumed range, the error increases. For these
reasons, it is necessary to check Tr/Tf values at each node of
CCCs.

Tr/Tf analysis begins with dividing a custom macro into CCCs,
as explained in Section 6.3. The CCCs are traversed in a
topological order, starting from the macro inputs and proceeding
towards the outputs. At a CCC, output transitions are calculated
using the values of input transitions generated from fanin CCCs.
The calculated transitions are then propagated to fanout CCCs. To
calculate output transition for a given input transition in a CCC,
all transistors in the netlist are modeled as a table. In this table,
the current Ids between a drain and a source depends on Vs, Vd,
and Vg, which are source, drain, and gate voltages respectively.
Cs, Cd, and Cg, which are source, drain, and gate capacitances
respectively, are modeled independently of their voltages. Figure
5 shows how an inverter is modeled.

Figure 5. Representation of Tr. by table model

By applying Kirchhoff's laws, a CCC circuit consisting of Rs,
Cs, and transistors is represented by expression (1):

0))(1),(0()(1)(1 tvtvIdstvGtvC (1)

Here, v0(t) is voltage vector of nodes whose voltages are
known. Examples of such nodes are Vdd, Vss, and input nodes of
the CCC. v1(t) is voltage vector of nodes whose voltages are
unknown. These are internal nodes in the CCC. Ids(vo(t), v1(t))
represents current between the drain and source of a transistor. C
and G represent capacitance and conductance respectively.

Expression (1) is a 1st order differential equation. Assuming
that initial voltage of each internal node is 0V at time t=0 when Tr
is calculated, and Vdd at time t=0 when Tf is calculated,
expression (1) can be solved by applying iteration methods such
as Euler method. With this method, the voltage transitions of
output nodes in the CCC are calculated. After Tr/Tf values are
calculated and checked, fanout CCCs are analyzed. The accuracy
of this method is measured using sample circuits in which four
stages of cells are connected in series. Seven different kinds of
cells are used, e.g., inverter, nand, nor, etc. The transistor width
and the length of a net between cells are varied. In all, 105 sample

9B-1

899

circuits were used. We compare our method with the SPICE
simulation. Figure 6 shows the resulting scatter diagram, where
X-axis shows SPICE Tr/Tf values and Y-axis, the percentage
error of our method with respect to SPICE. When the Tr/Tf values
exceed the limit (shown as TfTf NG), the error is within 10%.
Even inside the limit, the error is within -15% and +10% above 20
ps, as measured by SPICE. This is a tolerable error range. Our
method is very fast and is applicable to large-scale custom macros
such as RAMs. The CPU time for the actual analysis is shown in
Table 4. The first two macros are logic custom macros, and the
last three macros are RAMs. It takes more than one day for the
large RAM 5 in Table 4.

Figure 6. Scatter diagram of Tr/Tf analysis results

Table 4. Execution time in Tr/Tf analysis

Macro # of Tr # of R # of C
CPU

time(H)

No.1 12,054 190,740 409,582 0.3

No.2 22,304 319,780 837,945 2.3

No.3 2,056,140 6,421,074 4,777,646 14.5

No.4 1,109,245 3,479,851 2,014,669 10.5

No.5 291,288 3,461,953 8,047,243 27.7

7. Test

7.1 Logic BIST
Since the chip has dual cores, it is necessary to reduce time

required in chip test. For this purpose, we adopted a logic BIST
circuit to reduce the number of test vectors. Our experiments with
the test vector generation based on the in-house ATPG tool show
that the number of care bits that the ATPG sets in the first few
vectors reaches about 80% of the total latches. But it decreases to
about 15% in the 100th test vector. This ratio decreases further
with the number of test vectors. The average of care bits in all test
vectors is 1-5%. The don’t care bits are randomly set to 0 or 1.
Our logic BIST circuit [7] uses the fact that the number of care
bits is small. In each test vector, the random values that are
assigned by ATPG to don’t care bits are internally generated by a

random vector generator. Therefore a large part of the test data
can be omitted from the tester storage. The remaining specified
values are encoded to apply from outside the chip through the
tester. General logic BIST architecture has Pseudo-Random
Pattern Generator (PRGP) and Multiple-Input Signature Register
(MISR). In our logic BIST architecture, an inverter block is
inserted between the PRGP and scan chains. The inverter block is
a circuit to invert a bit generated by the PRPG when it is different
from the care bit and to supply it to the scan chain. An X-masking
block is placed between the scan chain and the MISR. It protects
values in the MISR by masking the value X. A decoder block
controls the inverter block and the X-masking block by decoding
test vectors supplied from ATE (Automatic Test Equipment). To
enable the logic BIST circuit to distinguish good/no-good for each
core, MISR is assigned to each core as shown in Figure 7. Due to
this structure, MISR corresponding to each core can be read
independently.

Figure 7. Logic BIST modified for a dual-core chip

When we think of fault diagnosis in a chip, we cannot know
which scan cell fails in the structure in Figure 7. In this type of a
logic BIST circuit, a MISR compresses the values as a signature.
Therefore, it is very difficult to diagnose a fault as it is. In the test
of a microprocessor, fault diagnosis is very important to
investigate the root cause of a fault. Therefore, we adopted a
circuit to switch logic BIST and conventional parallel scan chains.
In logic BIST mode, there are 128 scan chains. In the
conventional scan chain mode, those scan chains are
reconstructed to form 7 scan chains corresponding to 7 sets of
SDI/SDO external pins in the chip. Switching circuits are inserted
between SDI/SDO external scan pins and scan chains. This
reconfiguration is controlled by test port control machine (TPCM).

7.2 Test generation and verification
In the test generation of the microprocessor with dual cores, the

number of test vectors is reduced by 87% by the logic BIST
circuit as compared to the conventional scan chains. After test
vector generation, we run timing simulation using delay
information from static timing analysis. The strobe time, when the
simulation results are compared to expected values described in
the test vectors, is set to the actual tester strobe time. In the
function test, outputs are strobed at a low frequency. In the delay
test, outputs are strobed at a high frequency. As for the test vector

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 50 100 150 200 250 300

SPICE Tr/Tf [ps]

E
rr

o
r

[%
] TrTf NG Range

TrTf OK Range

9B-1

900

verification, there are various opinions about its necessity [8]. In
our microprocessor design, we perform test vector verification.
This vector verification is not pure logic simulation; it includes
timing simulation. Delay values are passed from static timing
analysis to the test vector verification to cover the verification of
cell libraries, design-for-testability circuits, and a timing analysis
tool besides test vectors. In timing analysis, a designer can specify
constraints such as false path elimination. Usually, these
constraints cannot be checked by any CAD tools in the design
flow. In our flow, mistakes in these constraints can be detected in
this final test vector verification. In fact, this test vector
verification detected several problems in our case. We summarize
statistics about test vector generation and its verification in Tables
5 and 6 respectively. In test vector generation, the coverage of the
function test is 99.7%, and that of the delay test is 91%. It takes
one week to generate test vectors. In test vector verification, test
vectors for the RAM BIST circuit are generated first, and the
verification starts concurrently with the test generation for the
remaining test items. Test vector verification was performed using
5 CPUs. It took 3 weeks from the test vector generation to its
verification.

Table 5. Test Items

Test # Faults
#

Vectors
Coverage

Time

(Hours)

SCAN 17,216,718 0.6

FUNCTION 26,877,639
3,343 99.7%

40.8

RAM BIST N/A N/A N/A 0.1

DELAY 19,705,662 3,971 91.0% 110.0

Table 6. Time Required for Verification and Test

Test
Verification

(Hours)

Relative

Verification Time

SCAN 402.2 21.1%

FUNCTION 12.6 0.7%

RBIST 1452.5 76.3%

DELAY 35.8 1.9%

Total 1903.1 100.0%

8. Conclusion
In this paper, we presented new techniques used to design a

2.4GHz dual-core microprocessor. Data management for dual
cores is improved. In timing analysis, turn-around-time for
modification of the clock distribution circuit is reduced by
treating split and shielded wires as one wire. In custom macro
design, signal integrity analysis is enhanced. In test vector
generation and its verification, a new logic BIST circuit is
introduced. This reduces the number of test vectors by 87%, and
enhances the capability of a fault diagnosis. Together, all these
techniques enabled us to design the 2.4GHz dual-core
microprocessor in a short time.

We will continue to improve this system so that it can support
the development of much higher performance microprocessors
with 4 or more cores in future. In particular, we will focus on
statistical timing analysis, power grid analysis, and delay test and
diagnosis to improve yield and reliability.

9. ACKNOWLEDGMENTS
We would like to thank the technology and CAD development

teams for their significant effort in developing the tools. We wish
to acknowledge Yuji Yoshida and Aiichiro Inoue for their several
ideas and suggestions for our CAD development. Finally we also
thank Kaoru Kawamura and other members of CAD group at
Fujitsu Labs. Ltd. as well as the members of Advanced CAD
Technology group at Fujitsu Labs. of America for their helpful
suggestions.

10. REFERENCES
[1] A. Inoue, "SPARC64TM V/VI for Mission-Critical Servers",

presented at Fall Processor Forum, 2004.

[2] A. Inoue, "Fujitsu SPARC64 VI: A State of the Art Dual-

Core Processor", presented at the Fall Processor Forum, 2006.

[3] N. Ito, H. Komatsu, et al, “A Physical Design Methodology

for 1.3GHz SPARC64 Microprocessor”, Proc. ICCD, pp.

204-210, 2003.

[4] W. C. Elmore, “The Transient Response of Damped Linear

Networks”, Journal of Applied Physics, Vol. 19, pp. 55 - 63,

January 1948.

[5] P. Kulshreshtha, R. Palermo, et al, “Transistor-Level Timing

Analysis Using Embedded Simulation”, Proc. ICCAD, pp.

344-348, 2000.

[6] C. Alpert, A. B. Kahng, et al, “Minimum-Buffered Routing

of Non-Critical Nets for Slew Rate and Reliability Control”,

Proc. ICCAD, pp. 408-415, 2001.

[7] T. Hiraide, K. O. Boateng, et al, “BIST-Aided Scan Test - A

New Method for Test Cost Reduction”, Proc. VTS, pp. 359-

364, 2003.

[8] R. Raghuraman, "Simulation Requirements for Vectors in

ATE Formats", Proc. International Test Conference,

pp.1100-1107, 2004.

9B-1

901

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

