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ABSTRACT
This paper presents a design methodology that was applied to 
the design of a 2.4GHz dual-core SPARC64

TM
 microprocessor 

with 90nm CMOS technology. It focuses on the newly adopted 
techniques, such as efficient data management in dual-core 
design, fast delay calculation of the noise-immune clock 
distribution circuit, enhanced signal integrity analysis of a 
large-scale custom macro design, and enhanced diagnosis 
capability using a logic BIST circuit. 

Keywords: Microprocessor, dual-core, clock, custom macro, 
signal integrity, test, BIST 

1. Introduction
As a successor of a 2.16GHz single-core microprocessor [1] 

with 90nm CMOS technology, a dual-core SPARC64 
microprocessor [2] achieves 2.4GHz using the enhanced 90nm 
CMOS technology. The CAD system [3], which has supported the 
high performance microprocessor design, is enhanced especially 
in data management, timing analysis, custom macro design, and 
test. In data management, design of identical dual cores is made 
efficient. In timing analysis, delay calculation of a clock 
distribution circuit with split and shielded wires to reduce noise is 
sped up. In custom macro design, signal integrity analysis related 
to coupling noise and Tr/Tf analysis is enhanced. In test, not only 
good/no-good can be determined separately in each core, but also 
capability of fault diagnosis is available even if a logic BIST 
circuit is used.  By these enhancements, we completed the 
2.4GHz dual-core microprocessor in a short time of about one 
year. 

The paper is organized as follows. Section 2 presents an 
overview of the microprocessor to which our design methodology 
is applied. Section 3 presents our concepts when we constructed 
our CAD system. In Sections 4 through 7, we describe the newly 
adopted techniques, namely physical hierarchy for dual-core 
design, clock design, custom macro design, and testing. Finally, 
we conclude the paper in Section 8, with directions for future 
work. 

2. Overview of dual-core microprocessor 
The specification of the 2.4GHz SPARC64 microprocessor is 

as follows: 

Process:  90nm, Cu metallization, 10 metal layers 
Frequency: 2.4GHz 
Die size: 20.38mm x 20.67mm 
Transistor count: 540M 
Level 2 on-chip cache: 6MB 

I/O signals count: 412 
Power dissipation: less than 120W 

Figure 1. Dual-core microprocessor [2] 

3. CAD system 
 In the dual-core microprocessor design, two kinds of CAD 

systems are used: one for chip design based on standard cells and 
macros, and the other for custom macro design based on 
transistors. For logic design and verification, EDA vendor tools as 
well as in-house tools are used. On the other hand, for timing 
analysis and chip layout, in-house tools are used. In Table 1, we 
show design steps for which tools from EDA vendors are used. 
Since EDA vendor tools related to logic design are now mature, 
we use logic simulator and emulator from EDA vendors as well as 
an in-house logic simulator. Gradually EDA vendor tools are 
replacing our in-house logic simulator. As for transistor-level 
noise analysis, we think that it should be developed as an in-house 
tool to ensure correct margins. However, we could not afford to 
develop it due to limited manpower and were forced to use an 
EDA vendor tool. In Table 2, we show design steps for which in-
house tools are used. A high performance microprocessor uses 
latest cutting-edge circuit and CMOS technologies, which 
necessitate enhancements in CAD tools such as design rule 
checkers, placement, routing, and timing/noise analysis. These 
enhancements are usually not available in vendor tools at the time. 
So in-house tools are developed to support the state-of-the-art 
technology. 

One extremely important issue is that of the continuity of each 
CAD tool with technology and over time. In each in-house CAD 
tool, numerous user requirements and know-how are incorporated. 
Each of them constructs the originality of our own design 
methodology. An EDA vendor tool that has been used for a long 
time may be replaced suddenly with a new tool. If this happens, 
all of user requirements and know-how are not necessarily carried 
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over to the new CAD tool. Therefore, it is important to set stable 
in-house CAD tools in the core of design methodology. Indeed 
our CAD system uses a suite of stable in-house CAD tools, which 
inherit relevant user requirements and know-how from the era 
when mainframe computers were developed. 

Table 1. Design steps for which EDA vendor tools are used 

 Typical cases Why? 

1 Logic simulator, emulator Tools are mature 

2
Editors for cell/macro 

design, circuit simulator 

No competitive advantage 

with in-house development 

3
Noise analysis based on 

transistors 

In-house development is not 

in time 

4 DRC, LVS Specified as a sign-off tool 

Table 2. Design steps for which in-house tools are used 

 Typical cases Why? 

1
Logical and physical design 

rule checkers 

Support our original design 

rules  

2
Layout, timing analysis Tools influence design 

methodology 

3

Routing Need extensive tuning for 

the state-of-the-art CMOS 

process 

4
Placement, routing Essential for high perfor-

mance  

5
Noise analysis based on 

standard cells/macros 

Need to ensure correct 

margins 

6
Clock design, Power grid 

design 

Capability of EDA vendor 

tools are insufficient 

4. Physical hierarchy for dual-core design 
In our conventional design methodology for a single-core 

microprocessor, a chip is divided into sub-chips, each of which is 
further sub-divided into blocks. One sub-chip corresponds to a 
unit such as execution unit, instruction unit, or storage unit. In the 
dual-core microprocessor design, there are three different 
approaches to represent a core in timing and physical views. The 
first approach is to design the core as a large macro such as IP or 
RAM. The second approach is to introduce a new physical 
hierarchy between a chip and a sub-chip. Finally, the third 
approach is to place the sub-chips of the core directly at the chip-
level. The difference between the first and second approaches is 
that in the first the core is treated as a macro till the final stage, 
whereas in the second the new hierarchy is expanded as and when 
necessary (such as when some analysis is performed on the entire 
chip). Since logically and physically a core is designed separately 
from others in the first approach, it is easily handled during chip 
design. However, it is difficult to ensure the accuracy of analysis 
at the core boundary when the core is treated as a macro. 
Although there is a merit of easy handling in both first and second 
approaches, some modifications to the CAD system are needed to 
handle the new physical hierarchy. Designers also have to run 
additional CAD tools in the new hierarchy of the core and have to 
manage its data. In the third approach, conventional hierarchical 
structures such as chip, sub-chip, and block are not changed. 

Therefore, no modification to the conventional CAD system is 
needed and very little additional work is imposed on designers. 
We selected the third approach, since the CAD and design 
overhead is the least as compared to others. We implemented a 
function that groups sub-chips in the core and places them at 
another location on the chip as a group with arbitrary flip and 
rotation. Here, the designer needs to manage only one core data. 
When timing or noise analysis is performed on the chip, all 
boundaries of sub-chips and groups are removed and flattened to 
cells and macros within the CAD tool. In this process, all layout 
data of the original core is copied to another instantiation of the 
core according to its flip and rotation. Global wires that pass over 
cores are designed and routed at the chip-level so that they use 
exactly the same channel in each core. Since logic outside the 
cores is not always symmetric, connections from the two cores to 
other sub-chips are not always the same. Therefore, the cores are 
expanded into cells and macros during chip analysis to accurately 
analyze a path from latches outside cores to latches in the cores. 

5. Clock design 

Figure 2. H-shaped clock routing 

To reduce clock skew, mesh-shaped layout may be better than 
H-shaped layout. However, mesh-shaped layout consumes more 
routing channels and power. Further, delay calculation of a clock 
net with mesh-shaped layout takes more time. Therefore, we 
adopt a tree structure with H-shaped layout in the clock 
distribution circuit, as shown in Figure 2. An H-tree is a regular 
structure, with symmetric routing patterns, and is easy to 
construct and route. For all clock nets except connections to 
latches, split wires with shields in between are used to reduce 
inductance noise. A wide clock wire is split into several wires, 
which are shielded by GND wires not only in between, but also at 
two layers below. Clock nets connected to latches are routed by 
an automatic router. Other clock nets are routed manually with an 
in-house interactive P&R editor. When a clock net that is split 
with shields is routed from one layer to another, routed wires 
become very complicated due to generated vias, as shown in 
Figure 3.  
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Figure 3. Changing wiring layers in a clock net 

Due to this complexity, modification of a clock net takes time 
if it consists of split and shielded wires. Also, split and shielded 
wires may have loops due to vias that are generated when the 
routing layer is changed. These loops make it impossible to 
calculate delay using simple models such as Elmore delay [4]. 
This means that the delay of the clock distribution circuit must be 
calculated by a circuit simulator such as SPICE. However, then 
the turn-around-time for any clock net modifications becomes 
large. To solve this problem, clock nets are routed manually as 
one wire instead of split and shielded wires. Considering the 
complete design flow, it is only in the final design phase that the 
designers improve delay by pico-seconds in critical paths. So a 
SPICE-accurate delay calculation is necessary only in the final 
phase. In this final phase, each clock net represented by single 
wires is converted by a CAD tool into split and shielded wires 
according to the clock design rules. Thus, a clock net is treated as 
one wire till the final design phase, and its delay is calculated by 
the conventional Elmore delay model. This achieves the short 
turn-around-time when the clock distribution circuit is modified. 
It is also important to minimize the error in the delay calculated 
when the clock net is treated as one wire, as compared to SPICE 
simulation results for a split wire. For this purpose, a new 
dedicated RC table is prepared for extraction in clock nets routed 
as one wire. During the SPICE simulation of the clock 
distribution circuit at the final design phase, the clock circuit is 
divided into three groups from its root to leaves (as explained 
later). Table 3 shows the results and the errors of three paths for 
the two calculation methods: 1) each clock wire is treated as one 
wire and its delay is calculated by Elmore delay model, 2) RC 
parasitics are extracted after one wire is split and shielded, then its 
delay is calculated by SPICE. 

We first calculate delay based on a Steiner tree constructed for 
each clock net. The maximum error of delays calculated by 
Elmore delay model is 10.4% when compared to the results of 
SPICE simulation. When clock nets are actually routed as one 
wire, the error becomes less than 3%. When the clock wire is 
treated as one wire and its delay is calculated by Elmore delay 
model, no inductance is considered. When the delay is calculated 
by SPICE, however, we include inductance in the model. Since 
inductance is not considered in calculation by Elmore delay 
model, delay is calculated 2-4% larger compared to SPICE 
simulation with inductance. To speed up SPICE simulation, we 
divide the clock distribution circuit from the root to leaves into 
three groups. SPICE simulation begins from the first group and 
proceeds to the third group. In order to accelerate the simulation, 
the second group is further divided into 7 sub-groups based on the 
sub-trees in the second group. Similarly, the third group is divided 
into 450 sub-groups. This is done for both model size reduction 
and higher parallelism. SPICE simulation takes about 5 hours on a 
1.3GHz UNIX server with 5 jobs running in parallel. We estimate 
power dissipation of clock distribution circuit to be about 11% 

(excluding power consumed by clock circuits within latches and 
custom macros) of the chip total power dissipation. 

Table 3. Errors in delay calculation

By SPICE 

for split 
By Elmore for one wire 

Routing Steiner error Routing error

Path1 246.5ps 272.1ps 10.4% 255.1ps  3.5%

Path2 144.2ps 148.8ps  3.2% 138.9ps -3.7%

Path3 181.6ps 183.0ps  0.8% 176.7ps -2.7%

6. Custom macro design 
Custom macro design is a key in implementing our 2.4GHz 

dual-core microprocessor, since only it can yield the required high 
performance and density for a large fraction of the microprocessor. 
In this section, we describe the CAD flow and techniques 
especially for timing and Tr/Tf analysis in the custom macro 
design.

6.1 CAD flow 

Figure 4. CAD flow for custom macro design 

Figure 4 shows the CAD flow of our custom macro design. 
After schematic entry, logic simulation and logical DRC are 
performed. Then, the transistor-level netlist is converted to a gate-
level netlist G by a CAD tool. This gate-level netlist G is 
compared to the reference gate-level design prepared by designers. 
Test vectors are generated by an ATPG tool and are applied on G 
to check whether undetected faults remain or not. After modifying 
logic so that all faults are detected, the final schematic design is 
obtained. This is then laid out by a polygon editor and checked by 
DRC and physical design rule check tools. The physical design 
rule check tools check for rules such as routability from each 
terminal, maximum parallel length of two wire segments (for 
crosstalk noise), etc. After both schematic and layout are 
completed, a netlist is extracted from the layout by performing 
LVS (Layout versus Schematic) and LPE (Layout Parasitic 
Extraction). Signal integrity, timing, and Tr/Tf analyses are 
performed on this extracted netlist. Each box of Figure 4 is 
annotated with the information whether that step is performed by 
an EDA vendor tool or by an in-house tool. In-house tools mainly 
cover logical/physical design rule checks, conversion of a netlist 
from transistors to gates, static timing analysis, and Tr/Tf analysis. 
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If a custom macro is large (i.e., more than 100K transistors), leaf 
cells are first developed and characterized as a library in the 
custom macro design CAD environment. Then, the custom macro 
is laid out in the chip design CAD environment using these leaf 
cells. Timing and other analyses are also done in the chip design 
CAD environment.

6.2 Signal Integrity 
In the custom macro design, noise analysis is carried out by an 

EDA vendor tool. However, the in-house physical design rule 
checker checks for additional violations. During chip-level 
routing, routing channel between the wires of an already-placed 
custom macro can be used. To check a possible noise error due to 
two parallel wires, one of  which is from the chip and the other 
from the custom macro, we do the following. After layout of the 
custom macro, chip-level wires are assumed to be virtually 
present in the unused routing channels in the custom macro. Then, 
based on the length of parallel wires, it is checked whether the 
noise exceeds the limit assuming that the virtual wire from the 
chip is an aggressor and the wire from the custom macro is a 
victim. This check is done within the custom macro. Drivability 
of the wire from the chip is assumed to be N times stronger than a 
normal driver. If the noise exceeds the limit, the unused channel is 
prohibited to have a chip-level wire. For the case that the chip-
level wire is a victim and that the wire in the custom macro is an 
aggressor, noise is checked during chip-level analysis. Even when 
the noise does not exceed the limit, parallel wires can delay the 
signal transition due to coupling capacitance. A procedure similar 
to the aforementioned procedure is used in this case as well. 

6.3 Timing analysis 
When the number of transistors in a custom macro exceeds a 

few hundreds, it becomes impractical to simulate the whole macro 
with SPICE. The reason is that a large number of simulation 
vectors are needed to cover the critical paths, and circuit 
simulation for each vector takes time. To solve this problem, a 
custom macro is divided into sub-circuits. Each sub-circuit is 
characterized as a library cell. Then, the custom macro timing 
analysis problem can be solved by using a conventional gate-level 
static timing analysis tool [5]. A sub-circuit is a channel-
connected component (CCC). A CCC is the set of all transistors 
and nodes reachable from the drain or the source of a transistor 
and surrounded by power and ground lines, gate inputs of 
transistors and inputs/outputs of the custom macro cell. The 
timing model of each CCC is determined using SPICE simulation. 

To further speed up the timing analysis, we constrain our 
custom macro to use only a limited number of pre-characterized 
latches. This is because latch characterization is CPU-intensive. 
So during transistor-level timing analysis, before dividing the 
macro into CCCs, we perform library matching to detect latches 
in the macro. Another technique is used to improve the accuracy 
and ease of chip-level path timing analysis. The structure of 
timing library is different for a custom macro without latches and 
that with latches. The timing library for a custom macro without 
latches is generated in the same format as regular standard cells. 
For a custom macro consisting of CCCs/latches, delays calculated 
for CCCs are saved in the same format as a sub-chip. Since the 
latches of the custom macro are visible at the chip-level, chip-
level timing analysis can analyze a path from or to a latch in the 
macro. During the analysis, CCCs of the custom macro are treated 
as regular library cells. 

6.4 Tr/Tf analysis 
Tr/Tf analysis is used to calculate Tr (rise time) and Tf (fall 

time) of a signal transition, and to check whether both Tr and Tf 
are within the limit. The reason why this check is needed is that 
large Tr/Tf values can cause excessive delay and power 
dissipation, and can also deteriorate reliability due to hot carrier, 
etc [6]. Furthermore, errors in the timing values computed by 
static timing analysis increase if Tr/Tf are outside the limits. In 
static timing analysis, the cell delay is calculated by interpolating 
graphs in a timing library using fan-out load, Tr/Tf, etc. If these 
values exceed the assumed range, the error increases. For these 
reasons, it is necessary to check Tr/Tf values at each node of 
CCCs. 

Tr/Tf analysis begins with dividing a custom macro into CCCs, 
as explained in Section 6.3. The CCCs are traversed in a 
topological order, starting from the macro inputs and proceeding 
towards the outputs. At a CCC, output transitions are calculated 
using the values of input transitions generated from fanin CCCs. 
The calculated transitions are then propagated to fanout CCCs. To 
calculate output transition for a given input transition in a CCC, 
all transistors in the netlist are modeled as a table. In this table, 
the current Ids between a drain and a source depends on Vs, Vd,
and Vg, which are source, drain, and gate voltages respectively. 
Cs, Cd, and Cg, which are source, drain, and gate capacitances 
respectively, are modeled independently of their voltages. Figure 
5 shows how an inverter is modeled. 

Figure 5. Representation of Tr. by table model 

By applying Kirchhoff's laws, a CCC circuit consisting of Rs,
Cs, and transistors is represented by expression (1): 

0))(1),(0()(1)(1 tvtvIdstvGtvC  (1) 

Here, v0(t) is voltage vector of nodes whose voltages are 
known. Examples of such nodes are Vdd, Vss, and input nodes of 
the CCC. v1(t) is voltage vector of nodes whose voltages are 
unknown. These are internal nodes in the CCC. Ids(vo(t), v1(t))
represents current between the drain and source of a transistor. C
and G represent capacitance and conductance respectively.  

Expression (1) is a 1st order differential equation. Assuming 
that initial voltage of each internal node is 0V at time t=0 when Tr 
is calculated, and Vdd at time t=0 when Tf is calculated, 
expression (1) can be solved by applying iteration methods such 
as Euler method. With this method, the voltage transitions of 
output nodes in the CCC are calculated. After Tr/Tf values are 
calculated and checked, fanout CCCs are analyzed. The accuracy 
of this method is measured using sample circuits in which four 
stages of cells are connected in series. Seven different kinds of 
cells are used, e.g., inverter, nand, nor, etc. The transistor width 
and the length of a net between cells are varied. In all, 105 sample 
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circuits were used. We compare our method with the SPICE 
simulation. Figure 6 shows the resulting scatter diagram, where 
X-axis shows SPICE Tr/Tf values and Y-axis, the percentage 
error of our method with respect to SPICE. When the Tr/Tf values 
exceed the limit (shown as TfTf NG), the error is within 10%. 
Even inside the limit, the error is within -15% and +10% above 20 
ps, as measured by SPICE. This is a tolerable error range. Our 
method is very fast and is applicable to large-scale custom macros 
such as RAMs. The CPU time for the actual analysis is shown in 
Table 4.  The first two macros are logic custom macros, and the 
last three macros are RAMs. It takes more than one day for the 
large RAM 5 in Table 4. 

Figure 6. Scatter diagram of Tr/Tf analysis results 

Table 4. Execution time in Tr/Tf analysis 

Macro # of Tr # of R # of C 
CPU

time(H) 

No.1 12,054 190,740 409,582 0.3

No.2 22,304 319,780 837,945 2.3

No.3 2,056,140 6,421,074 4,777,646 14.5

No.4 1,109,245 3,479,851 2,014,669 10.5

No.5 291,288 3,461,953 8,047,243 27.7

7. Test 

7.1 Logic BIST 
Since the chip has dual cores, it is necessary to reduce time 

required in chip test. For this purpose, we adopted a logic BIST 
circuit to reduce the number of test vectors. Our experiments with 
the test vector generation based on the in-house ATPG tool show 
that the number of care bits that the ATPG sets in the first few 
vectors reaches about 80% of the total latches. But it decreases to 
about 15% in the 100th test vector. This ratio decreases further 
with the number of test vectors. The average of care bits in all test 
vectors is 1-5%. The don’t care bits are randomly set to 0 or 1. 
Our logic BIST circuit [7] uses the fact that the number of care 
bits is small. In each test vector, the random values that are 
assigned by ATPG to don’t care bits are internally generated by a 

random vector generator. Therefore a large part of the test data 
can be omitted from the tester storage. The remaining specified 
values are encoded to apply from outside the chip through the 
tester. General logic BIST architecture has Pseudo-Random 
Pattern Generator (PRGP) and Multiple-Input Signature Register 
(MISR). In our logic BIST architecture, an inverter block is 
inserted between the PRGP and scan chains. The inverter block is 
a circuit to invert a bit generated by the PRPG when it is different 
from the care bit and to supply it to the scan chain. An X-masking 
block is placed between the scan chain and the MISR. It protects 
values in the MISR by masking the value X. A decoder block 
controls the inverter block and the X-masking block by decoding 
test vectors supplied from ATE (Automatic Test Equipment). To 
enable the logic BIST circuit to distinguish good/no-good for each 
core, MISR is assigned to each core as shown in Figure 7. Due to 
this structure, MISR corresponding to each core can be read 
independently. 

Figure 7. Logic BIST modified for a dual-core chip 

When we think of fault diagnosis in a chip, we cannot know 
which scan cell fails in the structure in Figure 7. In this type of a 
logic BIST circuit, a MISR compresses the values as a signature. 
Therefore, it is very difficult to diagnose a fault as it is. In the test 
of a microprocessor, fault diagnosis is very important to 
investigate the root cause of a fault. Therefore, we adopted a 
circuit to switch logic BIST and conventional parallel scan chains. 
In logic BIST mode, there are 128 scan chains. In the 
conventional scan chain mode, those scan chains are 
reconstructed to form 7 scan chains corresponding to 7 sets of 
SDI/SDO external pins in the chip. Switching circuits are inserted 
between SDI/SDO external scan pins and scan chains. This 
reconfiguration is controlled by test port control machine (TPCM). 

7.2 Test generation and verification 
In the test generation of the microprocessor with dual cores, the 

number of test vectors is reduced by 87% by the logic BIST 
circuit as compared to the conventional scan chains. After test 
vector generation, we run timing simulation using delay 
information from static timing analysis. The strobe time, when the 
simulation results are compared to expected values described in 
the test vectors, is set to the actual tester strobe time. In the 
function test, outputs are strobed at a low frequency. In the delay 
test, outputs are strobed at a high frequency. As for the test vector 
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verification, there are various opinions about its necessity [8]. In 
our microprocessor design, we perform test vector verification. 
This vector verification is not pure logic simulation; it includes 
timing simulation. Delay values are passed from static timing 
analysis to the test vector verification to cover the verification of 
cell libraries, design-for-testability circuits, and a timing analysis 
tool besides test vectors. In timing analysis, a designer can specify 
constraints such as false path elimination. Usually, these 
constraints cannot be checked by any CAD tools in the design 
flow. In our flow, mistakes in these constraints can be detected in 
this final test vector verification. In fact, this test vector 
verification detected several problems in our case. We summarize 
statistics about test vector generation and its verification in Tables 
5 and 6 respectively. In test vector generation, the coverage of the 
function test is 99.7%, and that of the delay test is 91%. It takes 
one week to generate test vectors. In test vector verification, test 
vectors for the RAM BIST circuit are generated first, and the 
verification starts concurrently with the test generation for the 
remaining test items. Test vector verification was performed using 
5 CPUs. It took 3 weeks from the test vector generation to its 
verification. 

Table 5. Test Items 

Test # Faults 
#

Vectors
Coverage

Time 

(Hours)

SCAN 17,216,718 0.6  

FUNCTION 26,877,639 
3,343 99.7%   

40.8  

RAM BIST N/A N/A N/A 0.1  

DELAY 19,705,662 3,971 91.0% 110.0

Table 6. Time Required for Verification and Test 

Test 
Verification

(Hours)

Relative 

Verification Time 

SCAN 402.2   21.1%   

FUNCTION 12.6   0.7%   

RBIST 1452.5   76.3%   

DELAY 35.8   1.9%   

Total 1903.1 100.0% 

8. Conclusion 
In this paper, we presented new techniques used to design a 

2.4GHz dual-core microprocessor. Data management for dual 
cores is improved. In timing analysis, turn-around-time for 
modification of the clock distribution circuit is reduced by 
treating split and shielded wires as one wire. In custom macro 
design, signal integrity analysis is enhanced. In test vector 
generation and its verification, a new logic BIST circuit is 
introduced. This reduces the number of test vectors by 87%, and 
enhances the capability of a fault diagnosis. Together, all these 
techniques enabled us to design the 2.4GHz dual-core 
microprocessor in a short time. 

We will continue to improve this system so that it can support 
the development of much higher performance microprocessors 
with 4 or more cores in future. In particular, we will focus on 
statistical timing analysis, power grid analysis, and delay test and 
diagnosis to improve yield and reliability.  
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