
A Software Technique to Improve Yield of Processor Chips 
in Presence of Ultra-Leaky SRAM Cells Caused by Process Variation

Abstract - Exceptionally leaky transistors are increasingly more 
frequent in nano-scale technologies due to lower threshold 
voltage and its increased variation. Such leaky transistors may 
even change position with changes in the operating voltage and 
temperature, and hence, redundancy at circuit-level is not 
sufficient to tolerate such threats to yield. We show that in 
SRAM cells this leakage depends on the cell value and propose 
a first software-based runtime technique that suppresses such 
abnormal leakages by storing safe values in the corresponding 
cache lines before going to standby mode. Analysis shows the 
performance penalty is, in the worst case, linearly dependent to 
the number of so-cured cache lines while the energy saving 
linearly increases by the time spent in standby mode. Analysis 
and experimental results on commercial processors confirm 
that the technique is viable if the standby duration is more than 
a small fraction of a second.

I Introduction 

Supply voltages (VDD) as well as transistor threshold 
voltages (Vth) have been scaled down, although at different 
rates, along with the manufacturing technology scaling. This 
reduced Vth, however, exponentially increases subthreshold 
current (Ioff) [1]. Furthermore, when approaching atomic 
scales, dopant fluctuation causes higher statistical intra-die 
as well as inter-die Vth variations such that increasingly more 
transistors have very low Vth and correspondingly very high 
Ioff which in turn means power consumptions much higher 
than normal in standby mode. This makes increasingly more 
chips unsuitable for low-power long-standby embedded 
applications [2], and hence decreases yield, while also results 
in a small number of transistors being responsible for most 
of the standby power consumed in a chip. SRAM cells are 
even more susceptible to this effect since they are typically 
designed with minimum transistor sizes (Vth variation is 
inversely proportional to transistor channel length [1]) and 
they take up most of the area of today processors (e.g. 70% 
of StrongARM110 [3]). Thus yield of microprocessors with 
on-chip caches can be improved for low-power long-standby 
embedded applications if caches containing ultra leaky 
SRAM cells can be tolerated without noticeable performance 
degradation. Such ultra leaky cells can be simply viewed as 
faulty cells and several fault-tolerant techniques for 
memories can be applied to replace [2, 4] or tolerate them 
with negligible performance degradation [5]. However, since 

Vth is also a function of VDD and temperature, the failure map 
of such chips changes if the operating conditions are altered. 
This renders static redundancy techniques [2] inapplicable 
and makes dynamic ones very expensive.  

In this paper, we focus on the effect of ultra leaky 
transistors during standby mode in long-standby applications 
(e.g. security cameras, PDAs, etc. that spend most of their 
time in standby mode) and propose a software-based runtime 
technique that cures the leaky cache lines during this standby 
mode. We show in Section II that normally the value stored 
in an SRAM cell determines its leakage power. Our approach 
is to store the leakage-safe value in the cell when the system 
is going to enter standby mode. To the best of our knowledge 
this is the first software-based technique that addresses 
leakage power issue. 

The rest of the paper is organized as follows. In Section II, 
we summarize previous work and our observation and 
approach. The definition of the problem, our algorithm for 
detecting leaky cache lines, and the procedure to handle 
them in standby mode is given in Section III. Analysis and 
experimental results are presented in Section IV and finally, 
the paper is concluded in Section V.  

II. Related Works and Our Approach

A. Related Works 

Power gating [6] removes the power of a circuit or block 
to reduce leakage, but this cannot be applied to cache 
memories since valuable information will be lost and the 
processor needs a cold start from an empty cache when 
waking up, resulting in high performance loss. Turning off 
only parts of the cache [7], [8] or putting them in a 
low-energy “drowsy” mode using  two different supply 
voltages [9] involve this issue, but they require circuit-level 
techniques, and moreover, cannot handle ultra leaky 
transistors caused by process variation.  

Reverse body biasing [10], forward body biasing [11] and 
dynamic Vth control [12] can also be used to reduce leakage 
power. These techniques, however, require device-level 
modification of the system and use sophisticated techniques 
to control body bias while we use the chip as is and propose 
a software-level remedy for ultra leaky cells. Moreover, 
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although body biasing techniques can effectively address 
die-to-die Vth variations and tune the Vth of all chips to near 
ideal value, to handle within-die variation (which is the focus 
of this work) different bias voltages need to be applied at 
several places in the same chip, which makes it very 
expensive and impractical to implement. 

Abdollahi et al. [13] use the fact that the standby power 
consumption of a circuit is a function of its inputs and 
formulate the problem of finding the minimum leakage 
vector (MLV) using a series of Boolean Satisfiability 
problems. While their technique is aimed at logic circuits but 
not cache memories, we use the same fact of 
value-dependence of leakage power so as to find a 
leakage-safe value (see next section) for leaky cache lines.  

The need for low-standby-current SRAMs in presence of 
defects caused by process fluctuation and/or dust has 
motivated design of cache architectures that can selectively 
cut off the leakage path of abnormally leaky cells and 
replace corresponding rows and columns with spare ones [2]. 
We achieve the same goal, without modifying the cache 
architecture and without the associated overhead, by storing 
leakage-safe values in the abnormally leaky cells during 
standby mode. We actually replace the static fuse-blowing 
operation in [2] with a software-level dynamic leakage 
suppression technique that we show in Section IV to impose 
negligible performance overhead. This dynamic nature of 
our technique helps to adapt to changing leakage patterns 
while static techniques inherently cannot. 

B. Observation 

Two main observations motivate our approach: firstly, an 
increasingly bigger portion of leakage power consumption is 
dissipated by only a few transistors in sub-90 nm 
technologies; and secondly, this leakage power in SRAM 
cells can be cancelled by carefully storing values there.  

Process variation in sub-90 nm technologies is a 
well-known phenomenon that causes variations in the Vth of 
transistors. Since subthreshold current is exponentially 
dependent to Vth, the transistors with very low Vth will 
dissipate very high leakage power. The Vth value is believed 
to follow Gaussian distribution [14]. We ran a set of Monte 
Carlo simulations using extrapolated Vth standard deviation 
( Vth) values to assess the effects of this variation on Ioff.
Table I summarizes the input data and results. As the basis 
for the extrapolation, we used the values reported by Toyoda 
et al. [15] from physical implementation of several nMOS 
transistors in 130 nm technology. Physical gate lengths and 
average Vth values (second and third row of the table) are 
ITRS estimations [16] for low-power processes. The fourth 
row contains extrapolated Vth values considering that Vth 
variation is proportional to WL1 , where L and W are 
respectively effective channel length and width. ITRS 
roadmap also shows similar prospects [16]. 

Assuming that a transistor with Vth below 100mv is 
considered ultra leaky (this is debatable; see Section IV-B), 
last two rows of Table I show that a very small fraction of 
transistors dissipate a high portion of the leakage power. 
Moreover, not only the number of such leaky transistors is 
increasing in finer technologies, but also their share in total 
leakage power is increasingly more significant. Consequently, 

it is necessary to address such higly leaky transistors in 
current and future technologies. A more detailed analysis in 
90nm is presented in Section IV.  

As the second basis for our work, we take advantage of 
this observation that actual occurrence of abnormal leakage 
current in a SRAM cell depends on the value stored in it. 
Fig. 1 shows a 6-trnasistor SRAM cell storing a logic 1 value. 
Now, assuming one leaky transistor per cell, even if M4 is 
actually leaky (it has an abnormally low Vth), the cell shall 
not be leaky since Vds for M4 is zero. On the contrary, if the 
cell contains a 0 logic value, M4 will be in the off state with 
Vds=VDD and the cell shall be leaky accordingly. The same 
holds for all other 5 transistors in the cell. Abnormally low 
Vth in either M1, M2, or M5 results in a cell that is leaky if 
storing a 1 (called a 1-leaky cell), and such Vth in M3, M4, or 
M6 causes high leakage in the cell only if it is storing a 0 
(called a 0-leaky cell). (To justify M1 and M6 leakage cases, 
note that bit lines are precharged to VDD in SRAM cells [1].) 
Consequently, assuming that at most one of the 6 transistors 
in a cell are leaky, the cell will be either 0-leaky or 1-leaky 
depending on which transistor leaks. Thus there is a 
leakage-safe value for each leaky cell: 0 for 1-leaky cells and 
1 for 0-leaky cells.

A cache line containing one or more leaky cells is called a 
leaky cache line. The leakage-safe value for a cache line is 
simply any value with a leakage-safe bit value at leaky bit 
positions. For example, if an 8-bit cache line has a 1-leaky 
cell at its least significant bit, any even value (i.e., 
xxxxxxx0) will be a leakage-safe value for that line. 

C. Our Approach  

Fig. 2 gives a big picture of our technique. The gray parts 
are those introduced by our technique. A testing procedure 
(see Section III-B) determines the leaky cache lines along 
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Fig. 1. A 6-transistor SRAM cell storing a logic 1 value.

TABLE I 
Share of leaky transistors in total leakage in sub-90 nm processes. 

Technology Node 130 nm 90 nm 80 nm 70 nm 

Physical gate length (nm) 100* 37** 32** 28**

Average Vth (mv) 308.3* 320** 330** 340**

Vth std. dev. ( Vth, mv) 22.1* 59.7 69.1 78.9 

Leaky transistors (%) 0 0.01 0.04 0.12 

Share in total leakage (%) 0.0 3.0 10.8 27.7 
* Values taken from physical implementation in [15] 
** Values from ITRS forecast [16]
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Offline detection of leaky 
lines and determining 
leakage-safe values 

Store leakage-safe values 
in leaky cache lines 

Enter standby mode

Fig. 2. Leakage reduction flow. 

RTOS starts and schedules 
applications as usual

RTOS decides (or is instructed) 
to enter standby mode 

Exit standby mode

with their leakage-safe values and stores this information for 
later use when entering standby mode. At such time, all 
leaky cache lines are filled with their corresponding leakage 
safe values so that they do not consume abnormally high 
leakage power while in standby mode (the same technique 
can be employed when the ultra leaky cell resides in the tag 
area of the cache). When the processor wakes up, it 
continues as usual. Consequently, the cache capacity is not 
reduced by our technique, and hence, the processor 
performance is not affected apart from a few mandatory 
cache misses caused by invalidated contents of leaky cache 
lines. 

Obviously, the amount of energy saving directly depends 
on the time spent in standby mode. The upper gray box in 
Fig. 2 is an offline operation and does not impact system 
power consumption. The energy leaked through leaky 
transistors is saved in return for some energy to fill cache 
lines with leakage-safe values, and some other energy to 
later fetch valid data from next-level memory hierarchy to 
invalidated (leaky) cache lines. This introduces a viability 
threshold for our technique which is defined as “the 
minimum standby time beyond which this technique can 
actually save energy”.  

The main advantage of our technique is its fully 
software-based nature which requires no change in the 
processor architecture or at circuit-level. Consequently, not 
only it can adapt to changing leakage patterns, but also it 
introduces no area overhead and furthermore, it does not 
even need a change in the object code software. Entering 
standby mode is usually managed by a Real-Time OS 
(RTOS) that monitors system status; thus, once this RTOS is 
modified, the application object code remains unchanged. 
Consequently, for a negligible performance loss (see Section 
IV), chips with any number of such ultra leaky cache cells 
can be salvaged. This software-based nature still helps when 
leaky cells are increased due to aging and electromigration 
while circuit-level techniques cannot. It also reduces 
production time and cost spent on fuse cutting operations. 

III. Problem Definition 

A. Problem formulation 

Using the following notation, 
N: The number of cured leaky cache lines, 
Pleak: Average leakage power in every leaky cache line,  
the problem can be formally defined as follows: 
“For a given processor and Pleak, (i) find the viability 

threshold (tviable) beyond which the technique will be useful, 
and (ii) maximize N for a given maximum acceptable 
performance loss.” 

Note that Pleak differs among leaky cache lines depending 
on the number and actual Vth of their leaky transistors, but an 
average, or even the worst case, can be used here without 
loss of generality. 

B. Leaky-cell detection algorithm 

Since ultra leaky transistors are a result of process 
variation, which is random in nature, such transistors are 

expected to be distributed allover the cache, and hence, it is 
very unlikely that more than one such transistors reside on 
the same cache line if only a few of them exist. The 
following algorithm, with O(n) time complexity where n 
represens the number of cache lines, can detect all leaky 
cache lines in this case: 
Procedure Detect_Leaky_Cache_Lines 
Outputs: List of all leaky cache lines and their leakage-safe values 

Start with arbitrary contents in the cache. 
0_leaky_lines_list = 1_leaky_lines_list = empty list; 
For each cache line k do 
  Write all 0’s to the line. Measure the quiescent current (I0)
  Write all 1’s to the line. Measure the quiescent current (I1)
  If I1>>I0 then add k to 1_leaky_lines_list 
  If I0>>I1 then add k to 0_leaky_lines_list
Leakage-safe value = all 1’s for 0_leaky_lines 
Leakage-safe value = all 0’s for 1_leaky_lines 
This approach is indeed similar to IDDQ testing [17]. The 

idea is that if there is a leaky cell inside the line under test, 
the measured IDDQ with all 0’s in the line will be 
meaningfully different from that of all 1’s. Although initially 
proposed for single leakage case, this algorithm can actually 
detect multiple leaky cells in the same line provided that they 
are all of the same type. It, however, may be misled if 
multiple leaky cells of different types exist in the same cache 
line. For such case, we extend the algorithm as follows: 
Procedure Detect_Multiple_Leakage_Cache_Lines 
Outputs: List of all leaky cache lines and their leakage-safe values 

Start with arbitrary contents in the cache. 
leaky_lines_list = empty list 
For each cache line k do 
  For each bit position j do 
    Set bit j of line k to 0. Measure the quiescent current (I0)
    Set bit j of line k to 1. Measure the quiescent current (I1)
    If I1>>I0 then mark the bit as 1_leaky, safe_value[j]=0 
    else if I0>>I1 then mark the bit as 0_leaky, safe_value[j]=1 
    else safe_value[j]=x 
  If a leaky bit is in the line, then add k and safe_value to 

leaky_lines_list 
Here, leaky_lines_list keeps a list of cache lines 

containing one or more leaky cells along with their 
corresponding leakage-safe values. An x in a bit position 
means don’t care since that bit is not leaky. The idea of the 
algorithm is the same as the previous one, but now applied to 
bit positions as well.  

The amount of difference between I1 and I0 corresponds to 
the definition of ultra leaky transistor. Note that this 
difference must be detectable using current measurement 
equipment, which in our case can measure down to100nA. 
(Even on-chip current sensors, such as [1,2], can be used 
here, but elaborating this is out of scope of this paper.) We 
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show in Section IV-B that “ultra leaky” can be reasonably 
defined as “leaking more than 500 times higher current than 
average”. While other ratios can be applied if appropriate, 
we use 500 in our experiments. Noting that the average Ioff is 
around 345pA in the 90 nm process available to us, the I1 to 
I0 difference would be above 172.5 nA which is well 
detectable by our available equipment. 

C. Leakage reduction procedure 

The above leakage-detection procedure is performed 
offline before the system starts normal operation. This may 
be just once after manufacturing, or whenever the operating 
conditions change (e.g. VDD, temperature, or aging) such that 
the leakage pattern may change. The list of leaky cache lines 
and their corresponding leakage-safe values are stored 
somewhere accessible to the RTOS controlling the system 
(or to the application itself if no RTOS is used). When going 
to enter standby mode (e.g. when OSTaskIdleHook()
function is called in case of uC OS [18]), this list is consulted 
to store safe values in leaky cache lines (Fig. 2).  

This gives a power saving proportional to total number of 
leaky cells cured, in return for an additional energy 
consumed to store leakage-safe values in the leaky lines 
(denoted by Elock). Further extra power, and performance, 
must also be paid if the content of the leaky cache line was 
valid before entering standby mode and is accessed again 
just after exiting this mode. In such case, since the valid and 
later-accessed data is overwritten by a leakage-safe value, it 
will need to be re-fetched to the cache when accessed 
resulting in an extra energy Efetch. The values of Elock and 
Efetch are application-independent and only depend on the 
processor used and its architecture. Thus the worst-case price 
paid per cured cache line is constant, and hence, the achieved 
energy saving only depends on the time spent in standby 
mode. As long as this energy saving surpasses the cost, the 
technique becomes viable. Section IV-A presents an analysis 
to formulate answers to problems presented in Section A 
above.

IV. Analysis and Experimental Results 

A. Analysis

Without loss of generality, we assume a unified data and 
instruction cache. We define the following additional 
symbols for one cycle of running a program and going to 
standby mode: 

Esg(t): Gross energy saving per cured cache line after 
spending t time units in standby mode. 

Elock: Energy consumed by a cache lock instruction, 
Efetch: Energy consumed to re-fetch data to a cache line, 
Esn(t): Net energy saving in the entire cache after spending 

t time units in standby mode. 
Tc: Access time of the cache. 
TM: Access time of next memory hierarchy beyond cache. 
m, m’: Total program cache misses before (m) and after 

(m’) applying our technique. 
Te, T’e: Total execution time before (Te) and after (T’e)

applying our technique. 

Net energy saving after t time units spent in standby mode 
can be given by subtracting energy consumed by extra 
operations from the gross energy saving: 

fetchlocksgsn EEtENtE )()(  (1) 
Assuming the same Pleak for all leaky cache lines1 gives: 

tPtE leaksg )(  (2) 
The viability threshold is the minimum time beyond 

which Esn(t) is positive, which means: 

leakfetchlockviable PEEt  (3) 
Now to formulate performance penalty, note that our 

technique can be viewed as inserting some mandatory cache 
misses (equal to the number of cache lines cured) into the 
original hit-miss pattern of the running program. However 
further note that such misses do not necessarily replace a hit
of the original pattern, but may even fall on an original miss.
The following two examples illustrate these two cases. 

Example 1: Assume that the cache line corresponding to 
memory address 1000 is leaky. Further assume that the 
system enters standby mode just between executing the 
following two instructions: 
mov r1, Mem[1000] 
mov r2, Mem[1000] 
Clearly, a hit occurs for the memory access of the second 

instruction in the original trace, while after applying our 
technique, a miss happens there. 

Example 2: Now assume that the cache structure is such 
that addresses 1000 and 1128 share the same cache line. If 
the system enters standby mode just between the following 
two instructions: 
mov r1, Mem[1128] 
mov r2, Mem[1000] 

a miss occurs for the second instruction even in the original 
trace.

In other words, our technique adds some misses to the 
access pattern of the program running on the processor such 
that the number of these misses is at most equal to N.

Total execution time before and after applying our 
technique is: 

CTmmTT cMe )1(  (4) 

CTmTmT cMe )1(  (5) 
where C represents a constant time spent in all operations 

other than memory accesses; this is invariant since our 
technique only affects some of memory access operations 
and has no side effect on other operations of the processor. 
Thus the performance loss is: 

)())(( cMcMee TTNTTmmTT  (6) 
where m’-m actually represents the number of cache 

misses caused by our technique which is, in the worst case, 
equal to N for each entry to standby mode. Further note that 
the value of (6) is in the order of nano-seconds unless N is 
very high which corresponds to an extremely leaky chip. 

Equations (1) and (6) clearly demonstrate that both energy 
saving and maximum performance loss are ascending linear 
functions of N for a given t bigger than tviable. Depending on 
the acceptable performance loss or the desired energy saving, 

                                                       
1 This can be easily relaxed in which case only the formula gets 
more complicated without gaining any more insight. 
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it is possible to choose corresponding number of leaky cache 
lines to be treated in this way.  

B. Experimental results 

We ran Monte Carlo simulations of 1000 cache memory 
chips in 90nm technology with Vth=320mv and Vth=59.7mv 
to evaluate the scheme. Each cache has 512 lines with 256 
bits of data and 20 bits of tag per line (=847872 transistors). 
The value of transistor Vth is the determining factor for its 
becoming ultra leaky (defined below). Assuming various 
upper limits for Vth of ultra leaky transistors, we analyzed 
each cache instance and measured the following items that 
are respectively given in the columns of Table II: the ratio of 
Ioff of leaky transistors to the average one, the number of 
leaky transistors, leaky SRAM cells, leaky cache lines, the 
amount of power leakage per leaky cache line (the Pleak

parameter in Section III-A), and also the yield. Table II gives 
the average values obtained over the 1000 chips. When 
generating random Vth values for the simulations, we set the 
minimum Vth to 5mv to avoid abnormally low and negative 
values. Thus, there is artificially no leaky transistor with Vth

below 5mv. Table II shows that with lower Vth limits, the 
leakage per transistor increases (columns 2 and 6) but the 
number of leaky transistors decreases (columns 3 to 5), and 
hence yield increases. 

A point to discuss here is the definition of ultra high 
leakage. In [2], 1uA (in 0.6u technology) is suggested which 
corresponds to 2900 times average Ioff (=345pA) in the 90nm 
technology available to us. Given that the smallest current 
that our equipment can detect is 100nA, a per transistor 
leakage above 290 times the average will be detectable. Any 
value above 290 will be detectable and reasonable here. 
Choosing higher ratios results in detecting fewer, but leakier, 
transistors while also detectability is increased due to higher 
difference between I1 and I0 (see Section III-B). On the other 
hand, lower ratios result in higher number of leaky cache 
lines, suggesting that the cache had better be entirely turned 
off instead. Thus, as a tentative definition of ultra leaky
transistor we suggest “those that leak more than 500 times 
higher than average”. Note that having a yield of zero in 
Table II means that none of the cache instances are suitable 
for long-standby low-power applications; however, they may 
still be suitable for other applications. Our technique can 
make even such chips suitable for long-standby low-power 
applications, resulting in a yield of 100%. 
To assess the costs vs. benefits in a real-life environment, 

practical values for the problem parameters are given here. 
Our implementation of M32R processor on a 0.18u process 
typically consumes 200mW at 50MHz, resulting in 4nJ per 
clock cycle. Assuming one instruction to store a leakage-safe 
value in a cache line, Elock and Efetch are less than 20nJ each. 
Note that this is an overestimate for Elock and Efetch since 
M32R has a 5-stage pipeline, and hence, the per clock 
energy consumption corresponds to multiple instructions 
being executed in the pipeline. For TM and Tc typical values 
can be 10 and 1ns respectively in 0.18u [19]. Although 
practical values for 90nm implementations were not 
available to us to use here, all these values are conservatively 
higher than 90nm so that benefits are not overestimated. Fig. 
3 shows the energy-performance tradeoff curves for varying 
number of cured cache lines, and for varying Vth limits 
defining leaky transistors. The number of data points for 
each Vth-limit corresponds to maximum number of leaky 
cache lines per chip obtained by Monte Carlo simulation of 
1000 chips. Note that power saving as well as performance 
loss are application-independent and only depend on the 
number of cured cache lines and the choice of Vth limit (or 
equivalently, the Ioff ratio). 

Different processors exhibit different savings in this 
scheme due to their different power consumption per 
instruction. Fig. 4 compares M32R and ARM920 both 
implemented in 0.18u technology. Power savings are 
reported for 80mv Vth limit. ARM920 implementation can 
save more due to less power consumption per instruction 
(800uW/MHz with cache [20]). We assumed the same cache 
and memory configurations for both processors, resulting in 
the same performance loss for a given number of cured 
cache lines irrespective of the processor used. The viability 
threshold (tviable) also changes by the processor, as Table III 
shows, but it is always just a fraction of a second, proving 

TABLE II 
Monte Carlo simulation results for 1000 chips of 128Kb cache. 

Vth limit 
(mv)

Ioff
ratio

#leaky 
trans.

#leaky 
cells 

#leaky 
lines

Pleak
(nW)

Yield 
(%)

100 379 103.697 103.664 93.868 144.1 0 

80 602 26.572 26.572 25.918 212.6 0 

50 1205 3.037 3.037 3.029 416.5 6.20 

20 2260 1.123 1.123 1.118 782.6 78.8 

10 2566 1.030 1.030 1.030 884.9 90.1 

5 2627 1.014 1.014 1.014 906.0 92.9 
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the usefulness of the technique for long-standby applications. 
Here, Pleak is taken from simulation results in Table II. 

Comparing 3rd and 4th columns of Table II, it can be seen 
that more than one leaky transistor may exist in the same 
SRAM cell when the Vth limit is set to 100mv or higher. This 
violates our initial assumption and suggests 100mv as the 
upper bound of applicability of our technique. However note 
that although our technique is not specifically designed for 
such multiple-leaky cases, it can still be helpful here by 
finding less leaky values for such cells (see Section III-B). 

V. Summary and Conclusions 

In this paper, we presented a first software technique to 
improve yield by suppressing leakage current of ultra leaky 
transistors of cache in standby mode. One major advantage 
of the technique is its dynamic nature which enables it to 
handle dynamic effects, such as increased leakage due to 
aging, that cannot be addressed by static techniques such as 
fuse cutting and spare replacement as part of manufacturing 
process. Consequently, it addresses leaky cells caused by 
aging, it reduces production time and cost by eliminating 
fuse-cutting, and it can also be used for suppressing 
abnormal leakages due to any other causes (e.g. dust or 
electromigration) and then replacing the leaky cache line 
with spare ones (using programmable address decoders) 
without the expensive and slow fuse-blowing circuit-level 
techniques.  

The applicability limits of the technique were presented 
and it was shown that the significance of the technique will 
even increase in future technologies. If the standby mode is 
longer than a tiny fraction of a second (depending on the 
chip manufacturing process and the processor used), our 
technique becomes viable with negligible performance 
penalty. We characterized the power saving and performance 
penalty of our technique with respect to number of leaky 
cache lines cured, so that it is possible to tune the number of 
cured cache lines versus maximum desired performance loss. 
We are developing leakage-aware compiler techniques so as 
to reduce leakage even in the active mode of system 
operation. Elaborating the test techniques for diagnosing 
ultra leaky cells is another part of our future work. 
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TABLE III 
Viability threshold for ARM920 and M32R processors 

Vth limit (mv) Viability 
threshold (s) 

10 20 50 80 

M32R 0.0452 0.0513 0.0963 0.1929 

ARM920 0.0090 0.0103 0.0193 0.0386 
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