
A Software Technique to Improve Yield of Processor Chips
in Presence of Ultra-Leaky SRAM Cells Caused by Process Variation

Abstract - Exceptionally leaky transistors are increasingly more
frequent in nano-scale technologies due to lower threshold
voltage and its increased variation. Such leaky transistors may
even change position with changes in the operating voltage and
temperature, and hence, redundancy at circuit-level is not
sufficient to tolerate such threats to yield. We show that in
SRAM cells this leakage depends on the cell value and propose
a first software-based runtime technique that suppresses such
abnormal leakages by storing safe values in the corresponding
cache lines before going to standby mode. Analysis shows the
performance penalty is, in the worst case, linearly dependent to
the number of so-cured cache lines while the energy saving
linearly increases by the time spent in standby mode. Analysis
and experimental results on commercial processors confirm
that the technique is viable if the standby duration is more than
a small fraction of a second.

I Introduction

Supply voltages (VDD) as well as transistor threshold
voltages (Vth) have been scaled down, although at different
rates, along with the manufacturing technology scaling. This
reduced Vth, however, exponentially increases subthreshold
current (Ioff) [1]. Furthermore, when approaching atomic
scales, dopant fluctuation causes higher statistical intra-die
as well as inter-die Vth variations such that increasingly more
transistors have very low Vth and correspondingly very high
Ioff which in turn means power consumptions much higher
than normal in standby mode. This makes increasingly more
chips unsuitable for low-power long-standby embedded
applications [2], and hence decreases yield, while also results
in a small number of transistors being responsible for most
of the standby power consumed in a chip. SRAM cells are
even more susceptible to this effect since they are typically
designed with minimum transistor sizes (Vth variation is
inversely proportional to transistor channel length [1]) and
they take up most of the area of today processors (e.g. 70%
of StrongARM110 [3]). Thus yield of microprocessors with
on-chip caches can be improved for low-power long-standby
embedded applications if caches containing ultra leaky
SRAM cells can be tolerated without noticeable performance
degradation. Such ultra leaky cells can be simply viewed as
faulty cells and several fault-tolerant techniques for
memories can be applied to replace [2, 4] or tolerate them
with negligible performance degradation [5]. However, since

Vth is also a function of VDD and temperature, the failure map
of such chips changes if the operating conditions are altered.
This renders static redundancy techniques [2] inapplicable
and makes dynamic ones very expensive.

In this paper, we focus on the effect of ultra leaky
transistors during standby mode in long-standby applications
(e.g. security cameras, PDAs, etc. that spend most of their
time in standby mode) and propose a software-based runtime
technique that cures the leaky cache lines during this standby
mode. We show in Section II that normally the value stored
in an SRAM cell determines its leakage power. Our approach
is to store the leakage-safe value in the cell when the system
is going to enter standby mode. To the best of our knowledge
this is the first software-based technique that addresses
leakage power issue.

The rest of the paper is organized as follows. In Section II,
we summarize previous work and our observation and
approach. The definition of the problem, our algorithm for
detecting leaky cache lines, and the procedure to handle
them in standby mode is given in Section III. Analysis and
experimental results are presented in Section IV and finally,
the paper is concluded in Section V.

II. Related Works and Our Approach

A. Related Works

Power gating [6] removes the power of a circuit or block
to reduce leakage, but this cannot be applied to cache
memories since valuable information will be lost and the
processor needs a cold start from an empty cache when
waking up, resulting in high performance loss. Turning off
only parts of the cache [7], [8] or putting them in a
low-energy “drowsy” mode using two different supply
voltages [9] involve this issue, but they require circuit-level
techniques, and moreover, cannot handle ultra leaky
transistors caused by process variation.

Reverse body biasing [10], forward body biasing [11] and
dynamic Vth control [12] can also be used to reduce leakage
power. These techniques, however, require device-level
modification of the system and use sophisticated techniques
to control body bias while we use the chip as is and propose
a software-level remedy for ultra leaky cells. Moreover,

Maziar Goudarzi, Tohru Ishihara, Hiroto Yasuura

System LSI Research Center
Kyushu University

Fukuoka, Japan
Tel: +81-92-847-5193
Fax: +81-92-847-5190

e-mail: {goudarzi, ishihara, yasuura}@slrc.kyushu-u.ac.jp

1-4244-0630-7/07/$20.00 ©2007 IEEE.

9A-3

878

9A-3

although body biasing techniques can effectively address
die-to-die Vth variations and tune the Vth of all chips to near
ideal value, to handle within-die variation (which is the focus
of this work) different bias voltages need to be applied at
several places in the same chip, which makes it very
expensive and impractical to implement.

Abdollahi et al. [13] use the fact that the standby power
consumption of a circuit is a function of its inputs and
formulate the problem of finding the minimum leakage
vector (MLV) using a series of Boolean Satisfiability
problems. While their technique is aimed at logic circuits but
not cache memories, we use the same fact of
value-dependence of leakage power so as to find a
leakage-safe value (see next section) for leaky cache lines.

The need for low-standby-current SRAMs in presence of
defects caused by process fluctuation and/or dust has
motivated design of cache architectures that can selectively
cut off the leakage path of abnormally leaky cells and
replace corresponding rows and columns with spare ones [2].
We achieve the same goal, without modifying the cache
architecture and without the associated overhead, by storing
leakage-safe values in the abnormally leaky cells during
standby mode. We actually replace the static fuse-blowing
operation in [2] with a software-level dynamic leakage
suppression technique that we show in Section IV to impose
negligible performance overhead. This dynamic nature of
our technique helps to adapt to changing leakage patterns
while static techniques inherently cannot.

B. Observation

Two main observations motivate our approach: firstly, an
increasingly bigger portion of leakage power consumption is
dissipated by only a few transistors in sub-90 nm
technologies; and secondly, this leakage power in SRAM
cells can be cancelled by carefully storing values there.

Process variation in sub-90 nm technologies is a
well-known phenomenon that causes variations in the Vth of
transistors. Since subthreshold current is exponentially
dependent to Vth, the transistors with very low Vth will
dissipate very high leakage power. The Vth value is believed
to follow Gaussian distribution [14]. We ran a set of Monte
Carlo simulations using extrapolated Vth standard deviation
(Vth) values to assess the effects of this variation on Ioff.
Table I summarizes the input data and results. As the basis
for the extrapolation, we used the values reported by Toyoda
et al. [15] from physical implementation of several nMOS
transistors in 130 nm technology. Physical gate lengths and
average Vth values (second and third row of the table) are
ITRS estimations [16] for low-power processes. The fourth
row contains extrapolated Vth values considering that Vth
variation is proportional to WL1 , where L and W are
respectively effective channel length and width. ITRS
roadmap also shows similar prospects [16].

Assuming that a transistor with Vth below 100mv is
considered ultra leaky (this is debatable; see Section IV-B),
last two rows of Table I show that a very small fraction of
transistors dissipate a high portion of the leakage power.
Moreover, not only the number of such leaky transistors is
increasing in finer technologies, but also their share in total
leakage power is increasingly more significant. Consequently,

it is necessary to address such higly leaky transistors in
current and future technologies. A more detailed analysis in
90nm is presented in Section IV.

As the second basis for our work, we take advantage of
this observation that actual occurrence of abnormal leakage
current in a SRAM cell depends on the value stored in it.
Fig. 1 shows a 6-trnasistor SRAM cell storing a logic 1 value.
Now, assuming one leaky transistor per cell, even if M4 is
actually leaky (it has an abnormally low Vth), the cell shall
not be leaky since Vds for M4 is zero. On the contrary, if the
cell contains a 0 logic value, M4 will be in the off state with
Vds=VDD and the cell shall be leaky accordingly. The same
holds for all other 5 transistors in the cell. Abnormally low
Vth in either M1, M2, or M5 results in a cell that is leaky if
storing a 1 (called a 1-leaky cell), and such Vth in M3, M4, or
M6 causes high leakage in the cell only if it is storing a 0
(called a 0-leaky cell). (To justify M1 and M6 leakage cases,
note that bit lines are precharged to VDD in SRAM cells [1].)
Consequently, assuming that at most one of the 6 transistors
in a cell are leaky, the cell will be either 0-leaky or 1-leaky
depending on which transistor leaks. Thus there is a
leakage-safe value for each leaky cell: 0 for 1-leaky cells and
1 for 0-leaky cells.

A cache line containing one or more leaky cells is called a
leaky cache line. The leakage-safe value for a cache line is
simply any value with a leakage-safe bit value at leaky bit
positions. For example, if an 8-bit cache line has a 1-leaky
cell at its least significant bit, any even value (i.e.,
xxxxxxx0) will be a leakage-safe value for that line.

C. Our Approach

Fig. 2 gives a big picture of our technique. The gray parts
are those introduced by our technique. A testing procedure
(see Section III-B) determines the leaky cache lines along

M6
0

1

M3

M2
M1

M4

M5
word line

word line
bit line ! bit line

Fig. 1. A 6-transistor SRAM cell storing a logic 1 value.

TABLE I
Share of leaky transistors in total leakage in sub-90 nm processes.

Technology Node 130 nm 90 nm 80 nm 70 nm

Physical gate length (nm) 100* 37** 32** 28**

Average Vth (mv) 308.3* 320** 330** 340**

Vth std. dev. (Vth, mv) 22.1* 59.7 69.1 78.9

Leaky transistors (%) 0 0.01 0.04 0.12

Share in total leakage (%) 0.0 3.0 10.8 27.7
* Values taken from physical implementation in [15]
** Values from ITRS forecast [16]

9A-3

879

9A-3

Offline detection of leaky
lines and determining
leakage-safe values

Store leakage-safe values
in leaky cache lines

Enter standby mode

Fig. 2. Leakage reduction flow.

RTOS starts and schedules
applications as usual

RTOS decides (or is instructed)
to enter standby mode

Exit standby mode

with their leakage-safe values and stores this information for
later use when entering standby mode. At such time, all
leaky cache lines are filled with their corresponding leakage
safe values so that they do not consume abnormally high
leakage power while in standby mode (the same technique
can be employed when the ultra leaky cell resides in the tag
area of the cache). When the processor wakes up, it
continues as usual. Consequently, the cache capacity is not
reduced by our technique, and hence, the processor
performance is not affected apart from a few mandatory
cache misses caused by invalidated contents of leaky cache
lines.

Obviously, the amount of energy saving directly depends
on the time spent in standby mode. The upper gray box in
Fig. 2 is an offline operation and does not impact system
power consumption. The energy leaked through leaky
transistors is saved in return for some energy to fill cache
lines with leakage-safe values, and some other energy to
later fetch valid data from next-level memory hierarchy to
invalidated (leaky) cache lines. This introduces a viability
threshold for our technique which is defined as “the
minimum standby time beyond which this technique can
actually save energy”.

The main advantage of our technique is its fully
software-based nature which requires no change in the
processor architecture or at circuit-level. Consequently, not
only it can adapt to changing leakage patterns, but also it
introduces no area overhead and furthermore, it does not
even need a change in the object code software. Entering
standby mode is usually managed by a Real-Time OS
(RTOS) that monitors system status; thus, once this RTOS is
modified, the application object code remains unchanged.
Consequently, for a negligible performance loss (see Section
IV), chips with any number of such ultra leaky cache cells
can be salvaged. This software-based nature still helps when
leaky cells are increased due to aging and electromigration
while circuit-level techniques cannot. It also reduces
production time and cost spent on fuse cutting operations.

III. Problem Definition

A. Problem formulation

Using the following notation,
N: The number of cured leaky cache lines,
Pleak: Average leakage power in every leaky cache line,
the problem can be formally defined as follows:
“For a given processor and Pleak, (i) find the viability

threshold (tviable) beyond which the technique will be useful,
and (ii) maximize N for a given maximum acceptable
performance loss.”

Note that Pleak differs among leaky cache lines depending
on the number and actual Vth of their leaky transistors, but an
average, or even the worst case, can be used here without
loss of generality.

B. Leaky-cell detection algorithm

Since ultra leaky transistors are a result of process
variation, which is random in nature, such transistors are

expected to be distributed allover the cache, and hence, it is
very unlikely that more than one such transistors reside on
the same cache line if only a few of them exist. The
following algorithm, with O(n) time complexity where n
represens the number of cache lines, can detect all leaky
cache lines in this case:
Procedure Detect_Leaky_Cache_Lines
Outputs: List of all leaky cache lines and their leakage-safe values

Start with arbitrary contents in the cache.
0_leaky_lines_list = 1_leaky_lines_list = empty list;
For each cache line k do
 Write all 0’s to the line. Measure the quiescent current (I0)
 Write all 1’s to the line. Measure the quiescent current (I1)
 If I1>>I0 then add k to 1_leaky_lines_list
 If I0>>I1 then add k to 0_leaky_lines_list
Leakage-safe value = all 1’s for 0_leaky_lines
Leakage-safe value = all 0’s for 1_leaky_lines
This approach is indeed similar to IDDQ testing [17]. The

idea is that if there is a leaky cell inside the line under test,
the measured IDDQ with all 0’s in the line will be
meaningfully different from that of all 1’s. Although initially
proposed for single leakage case, this algorithm can actually
detect multiple leaky cells in the same line provided that they
are all of the same type. It, however, may be misled if
multiple leaky cells of different types exist in the same cache
line. For such case, we extend the algorithm as follows:
Procedure Detect_Multiple_Leakage_Cache_Lines
Outputs: List of all leaky cache lines and their leakage-safe values

Start with arbitrary contents in the cache.
leaky_lines_list = empty list
For each cache line k do
 For each bit position j do
 Set bit j of line k to 0. Measure the quiescent current (I0)
 Set bit j of line k to 1. Measure the quiescent current (I1)
 If I1>>I0 then mark the bit as 1_leaky, safe_value[j]=0
 else if I0>>I1 then mark the bit as 0_leaky, safe_value[j]=1
 else safe_value[j]=x
 If a leaky bit is in the line, then add k and safe_value to

leaky_lines_list
Here, leaky_lines_list keeps a list of cache lines

containing one or more leaky cells along with their
corresponding leakage-safe values. An x in a bit position
means don’t care since that bit is not leaky. The idea of the
algorithm is the same as the previous one, but now applied to
bit positions as well.

The amount of difference between I1 and I0 corresponds to
the definition of ultra leaky transistor. Note that this
difference must be detectable using current measurement
equipment, which in our case can measure down to100nA.
(Even on-chip current sensors, such as [1,2], can be used
here, but elaborating this is out of scope of this paper.) We

9A-3

880

9A-3

show in Section IV-B that “ultra leaky” can be reasonably
defined as “leaking more than 500 times higher current than
average”. While other ratios can be applied if appropriate,
we use 500 in our experiments. Noting that the average Ioff is
around 345pA in the 90 nm process available to us, the I1 to
I0 difference would be above 172.5 nA which is well
detectable by our available equipment.

C. Leakage reduction procedure

The above leakage-detection procedure is performed
offline before the system starts normal operation. This may
be just once after manufacturing, or whenever the operating
conditions change (e.g. VDD, temperature, or aging) such that
the leakage pattern may change. The list of leaky cache lines
and their corresponding leakage-safe values are stored
somewhere accessible to the RTOS controlling the system
(or to the application itself if no RTOS is used). When going
to enter standby mode (e.g. when OSTaskIdleHook()
function is called in case of uC OS [18]), this list is consulted
to store safe values in leaky cache lines (Fig. 2).

This gives a power saving proportional to total number of
leaky cells cured, in return for an additional energy
consumed to store leakage-safe values in the leaky lines
(denoted by Elock). Further extra power, and performance,
must also be paid if the content of the leaky cache line was
valid before entering standby mode and is accessed again
just after exiting this mode. In such case, since the valid and
later-accessed data is overwritten by a leakage-safe value, it
will need to be re-fetched to the cache when accessed
resulting in an extra energy Efetch. The values of Elock and
Efetch are application-independent and only depend on the
processor used and its architecture. Thus the worst-case price
paid per cured cache line is constant, and hence, the achieved
energy saving only depends on the time spent in standby
mode. As long as this energy saving surpasses the cost, the
technique becomes viable. Section IV-A presents an analysis
to formulate answers to problems presented in Section A
above.

IV. Analysis and Experimental Results

A. Analysis

Without loss of generality, we assume a unified data and
instruction cache. We define the following additional
symbols for one cycle of running a program and going to
standby mode:

Esg(t): Gross energy saving per cured cache line after
spending t time units in standby mode.

Elock: Energy consumed by a cache lock instruction,
Efetch: Energy consumed to re-fetch data to a cache line,
Esn(t): Net energy saving in the entire cache after spending

t time units in standby mode.
Tc: Access time of the cache.
TM: Access time of next memory hierarchy beyond cache.
m, m’: Total program cache misses before (m) and after

(m’) applying our technique.
Te, T’e: Total execution time before (Te) and after (T’e)

applying our technique.

Net energy saving after t time units spent in standby mode
can be given by subtracting energy consumed by extra
operations from the gross energy saving:

fetchlocksgsn EEtENtE)()((1)
Assuming the same Pleak for all leaky cache lines1 gives:

tPtE leaksg)((2)
The viability threshold is the minimum time beyond

which Esn(t) is positive, which means:

leakfetchlockviable PEEt (3)
Now to formulate performance penalty, note that our

technique can be viewed as inserting some mandatory cache
misses (equal to the number of cache lines cured) into the
original hit-miss pattern of the running program. However
further note that such misses do not necessarily replace a hit
of the original pattern, but may even fall on an original miss.
The following two examples illustrate these two cases.

Example 1: Assume that the cache line corresponding to
memory address 1000 is leaky. Further assume that the
system enters standby mode just between executing the
following two instructions:
mov r1, Mem[1000]
mov r2, Mem[1000]
Clearly, a hit occurs for the memory access of the second

instruction in the original trace, while after applying our
technique, a miss happens there.

Example 2: Now assume that the cache structure is such
that addresses 1000 and 1128 share the same cache line. If
the system enters standby mode just between the following
two instructions:
mov r1, Mem[1128]
mov r2, Mem[1000]

a miss occurs for the second instruction even in the original
trace.

In other words, our technique adds some misses to the
access pattern of the program running on the processor such
that the number of these misses is at most equal to N.

Total execution time before and after applying our
technique is:

CTmmTT cMe)1((4)

CTmTmT cMe)1((5)
where C represents a constant time spent in all operations

other than memory accesses; this is invariant since our
technique only affects some of memory access operations
and has no side effect on other operations of the processor.
Thus the performance loss is:

)())((cMcMee TTNTTmmTT (6)
where m’-m actually represents the number of cache

misses caused by our technique which is, in the worst case,
equal to N for each entry to standby mode. Further note that
the value of (6) is in the order of nano-seconds unless N is
very high which corresponds to an extremely leaky chip.

Equations (1) and (6) clearly demonstrate that both energy
saving and maximum performance loss are ascending linear
functions of N for a given t bigger than tviable. Depending on
the acceptable performance loss or the desired energy saving,

1 This can be easily relaxed in which case only the formula gets
more complicated without gaining any more insight.

9A-3

881

9A-3

it is possible to choose corresponding number of leaky cache
lines to be treated in this way.

B. Experimental results

We ran Monte Carlo simulations of 1000 cache memory
chips in 90nm technology with Vth=320mv and Vth=59.7mv
to evaluate the scheme. Each cache has 512 lines with 256
bits of data and 20 bits of tag per line (=847872 transistors).
The value of transistor Vth is the determining factor for its
becoming ultra leaky (defined below). Assuming various
upper limits for Vth of ultra leaky transistors, we analyzed
each cache instance and measured the following items that
are respectively given in the columns of Table II: the ratio of
Ioff of leaky transistors to the average one, the number of
leaky transistors, leaky SRAM cells, leaky cache lines, the
amount of power leakage per leaky cache line (the Pleak

parameter in Section III-A), and also the yield. Table II gives
the average values obtained over the 1000 chips. When
generating random Vth values for the simulations, we set the
minimum Vth to 5mv to avoid abnormally low and negative
values. Thus, there is artificially no leaky transistor with Vth

below 5mv. Table II shows that with lower Vth limits, the
leakage per transistor increases (columns 2 and 6) but the
number of leaky transistors decreases (columns 3 to 5), and
hence yield increases.

A point to discuss here is the definition of ultra high
leakage. In [2], 1uA (in 0.6u technology) is suggested which
corresponds to 2900 times average Ioff (=345pA) in the 90nm
technology available to us. Given that the smallest current
that our equipment can detect is 100nA, a per transistor
leakage above 290 times the average will be detectable. Any
value above 290 will be detectable and reasonable here.
Choosing higher ratios results in detecting fewer, but leakier,
transistors while also detectability is increased due to higher
difference between I1 and I0 (see Section III-B). On the other
hand, lower ratios result in higher number of leaky cache
lines, suggesting that the cache had better be entirely turned
off instead. Thus, as a tentative definition of ultra leaky
transistor we suggest “those that leak more than 500 times
higher than average”. Note that having a yield of zero in
Table II means that none of the cache instances are suitable
for long-standby low-power applications; however, they may
still be suitable for other applications. Our technique can
make even such chips suitable for long-standby low-power
applications, resulting in a yield of 100%.
To assess the costs vs. benefits in a real-life environment,

practical values for the problem parameters are given here.
Our implementation of M32R processor on a 0.18u process
typically consumes 200mW at 50MHz, resulting in 4nJ per
clock cycle. Assuming one instruction to store a leakage-safe
value in a cache line, Elock and Efetch are less than 20nJ each.
Note that this is an overestimate for Elock and Efetch since
M32R has a 5-stage pipeline, and hence, the per clock
energy consumption corresponds to multiple instructions
being executed in the pipeline. For TM and Tc typical values
can be 10 and 1ns respectively in 0.18u [19]. Although
practical values for 90nm implementations were not
available to us to use here, all these values are conservatively
higher than 90nm so that benefits are not overestimated. Fig.
3 shows the energy-performance tradeoff curves for varying
number of cured cache lines, and for varying Vth limits
defining leaky transistors. The number of data points for
each Vth-limit corresponds to maximum number of leaky
cache lines per chip obtained by Monte Carlo simulation of
1000 chips. Note that power saving as well as performance
loss are application-independent and only depend on the
number of cured cache lines and the choice of Vth limit (or
equivalently, the Ioff ratio).

Different processors exhibit different savings in this
scheme due to their different power consumption per
instruction. Fig. 4 compares M32R and ARM920 both
implemented in 0.18u technology. Power savings are
reported for 80mv Vth limit. ARM920 implementation can
save more due to less power consumption per instruction
(800uW/MHz with cache [20]). We assumed the same cache
and memory configurations for both processors, resulting in
the same performance loss for a given number of cured
cache lines irrespective of the processor used. The viability
threshold (tviable) also changes by the processor, as Table III
shows, but it is always just a fraction of a second, proving

TABLE II
Monte Carlo simulation results for 1000 chips of 128Kb cache.

Vth limit
(mv)

Ioff
ratio

#leaky
trans.

#leaky
cells

#leaky
lines

Pleak
(nW)

Yield
(%)

100 379 103.697 103.664 93.868 144.1 0

80 602 26.572 26.572 25.918 212.6 0

50 1205 3.037 3.037 3.029 416.5 6.20

20 2260 1.123 1.123 1.118 782.6 78.8

10 2566 1.030 1.030 1.030 884.9 90.1

5 2627 1.014 1.014 1.014 906.0 92.9

0

500

1000

1500

2000

2500

3000

3500

4000

0 30 60 90 120 150

Performance loss (ns)

Po
w

er
 s

av
in

g
(n

W
)

Vth limit=10mv

Vth limit=30mv

Vth limit=50mv

Vth limit=80mv

Fig. 3. Worst case energy-performance tradeoff curves for
a 0.18u M32R processor.

0

300

600

900

1200

1500

0 10 20 30 40 50 60 70

Performance loss (ns)

Po
w

er
 s

av
in

g
(n

W
)

M32R

ARM920

Fig. 4. Energy-performance tradeoff curves comparing
M32R and ARM920 processors.

9A-3

882

9A-3

the usefulness of the technique for long-standby applications.
Here, Pleak is taken from simulation results in Table II.

Comparing 3rd and 4th columns of Table II, it can be seen
that more than one leaky transistor may exist in the same
SRAM cell when the Vth limit is set to 100mv or higher. This
violates our initial assumption and suggests 100mv as the
upper bound of applicability of our technique. However note
that although our technique is not specifically designed for
such multiple-leaky cases, it can still be helpful here by
finding less leaky values for such cells (see Section III-B).

V. Summary and Conclusions

In this paper, we presented a first software technique to
improve yield by suppressing leakage current of ultra leaky
transistors of cache in standby mode. One major advantage
of the technique is its dynamic nature which enables it to
handle dynamic effects, such as increased leakage due to
aging, that cannot be addressed by static techniques such as
fuse cutting and spare replacement as part of manufacturing
process. Consequently, it addresses leaky cells caused by
aging, it reduces production time and cost by eliminating
fuse-cutting, and it can also be used for suppressing
abnormal leakages due to any other causes (e.g. dust or
electromigration) and then replacing the leaky cache line
with spare ones (using programmable address decoders)
without the expensive and slow fuse-blowing circuit-level
techniques.

The applicability limits of the technique were presented
and it was shown that the significance of the technique will
even increase in future technologies. If the standby mode is
longer than a tiny fraction of a second (depending on the
chip manufacturing process and the processor used), our
technique becomes viable with negligible performance
penalty. We characterized the power saving and performance
penalty of our technique with respect to number of leaky
cache lines cured, so that it is possible to tune the number of
cured cache lines versus maximum desired performance loss.
We are developing leakage-aware compiler techniques so as
to reduce leakage even in the active mode of system
operation. Elaborating the test techniques for diagnosing
ultra leaky cells is another part of our future work.

Acknowledgements

This work is supported by VLSI Design and Education
Center (VDEC), The University of Tokyo with the
collaboration of STARC, Panasonic, NEC Electronics,

Renesas Technology, and Toshiba. This work is also
supported by Core Research for Evolutional Science and
Technology (CREST) project of Japan Science and
Technology Corporation (JST). We are grateful for their
support.

References
[1] N.H.E. Weste, D. Harris, CMOS VLSI Design : A Circuits and

Systems Perspective, Addison Wesley, 2004.
[2] K. Kanda, N. Duc Minh, H. Kawaguchi, and T. Sakurai,

“Abnormal leakage suppression (ALS) scheme for low standby
current SRAMs,” Proc. IEEE International Solid-State Circuits
Conference, pp. 174-176, 2001.

[3] J. Montanario, et al., “A 160-MHz 32-b 0.5-W CMOS RISC
microprocessor,” IEEE Int’l Solid-State Circuits Conference,
1996.

[4] G. Sohi, “Cache memory organization to enhance the yield of
high performance VLSI processors,” IEEE Trans. on Computers,
vol. 38, no. 4, pp. 484-492, April 1989.

[5] T. Ishihara, F. Fallah, “A cache-defect-aware code placement
algorithm for improving the performance of processors,” Proc.
Int’l Conference on Computer-Aided Design, pp. 995-1001,
2005.

[6] J.T. Kao, A.P. Chandrakasan, “Dual-threshold voltage
techniques for low-power digital circuits,” IEEE Journal of
Solid State Circuits, Vol. 35, pp. 1009-1018, July 2000.

[7] M.D. Powell, et al., “Gated-Vdd: a circuit technique to reduce
leakage in cache memories,” International Symposium Low
Power Electronics and Design, 2000.

[8] S. Kaxiras, Z. Hu, M. Martonosi, “Cache decay: exploiting
generational behavior to reduce cache leakage power,” Int’l
Symposium on Computer Architecture, pp. 240-251, 2001.

[9] K. Flautner, et al., “Drowsy caches: simple techniques for
reducing leakage power,” Proc. Int’l Symposium on Computer
Architecture, pp. 148-150, 2002.

[10] F. Fallah, M. Pedram, “Circuit and system level power
management,” in Power Aware Design Methodologies, M.
Pedram and J. Rabaey Eds., Kluwer Academic Pub., pp.
373-412, 2002.

[11] V. De, S. Borkar, “Low power and high performance design
challenge in future technologies,” Proc. the 10th Great Lake
Symposium on VLSI, pp. 1-6, 2000.

[12] T. Kuroda, T. Fujita, F. Hatori, and T. Sakurai, “Variable
threshold-voltage CMOS technology,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Sciences, vol. E83-C, pp. 1705-1715, 2000.

[13] A. Abdollahi, F. Fallah, M. Pedram, “Runtime mechanisms for
leakage current reduction in CMOS VLSI circuits,” Proc. Int’l
Symposium on Low Power Electronics and Design, August
2002.

[14] L.T. Clark, V. De, “Techniques for Power and Process Variation
Minimization,” in Low-Power Electronics Design, C. Piguet
Eds., CRC Press, 2005.

[15] E. Toyoda, “DFM: Device & Circuit Design Challenges,” Int’l
Forum on Semiconductor Tech., 2004.

[16] Int’l Tech. Roadmap for Semiconductors, http://www.itrs.net
[17] C. Thibeault, “On the Comparison of Delta IDDQ and IDDQ

Testing,” Proc. VLSI Test Symp., pp. 143-150, 1999.
[18] uC Operating System, http://www.ucos-ii.com/
[19] P. Keltcher, S. Richardson, S. Siu, “An equal area comparison

of embedded DRAM and SRAM memory architectures for a
chip multiprocessor,” HP Labs. 2000 Technical Reports, April
2000.

[20] ARM920T, http://www.arm.com/products/CPUs/ARM920T.html

TABLE III
Viability threshold for ARM920 and M32R processors

Vth limit (mv) Viability
threshold (s)

10 20 50 80

M32R 0.0452 0.0513 0.0963 0.1929

ARM920 0.0090 0.0103 0.0193 0.0386

9A-3

883

9A-3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

