
Integrating Power Management into Distributed
Real-time Systems at Very Low Implementation Cost

Bita Gorjiara, Nader Bagherzadeh, Pai Chou
Department of Electrical Engineering and Computer Science

University of California, Irvine
{bgorjiar, nader, chou} @ece.uci.edu

Abstract
The development cost of low-power embedded systems can be

significantly reduced by reusing legacy designs and applying proper
modifications to meet the new power constraints. The proposed
power management techniques in the literature for implementing
distributed power managers in multi-processor systems are very
costly in terms of hardware and software modifications. For
example, extra software code for power management must be
integrated into each component of the system. Furthermore, in order
to turn on a component at a specific time/event, extra hardware
timers and interrupt controllers must be added to each component
along with proper software/device driver modifications.

In this paper, we propose a new centralized power management
technique that reduces the power consumption of distributed real-
time systems at very low implementation cost. Our power manager
does not need software and hardware modifications of each
individual component. Instead, it uses the model of the
system/application to compute the schedule of turning on/off
commands by dynamically simulating the system for a given
application scenario. The dynamic simulation can be conservative to
reflect the jitter in arrival time of events and/or variation in
execution delay of tasks. We applied our power management
technique to a distributed software-defined radio system and
achieved significant energy savings (60% to 87%) at the cost of 1%
energy consumed by the power manager itself, as verified by actual
hardware measurements. Furthermore, our power manager reacts to
the changes in application scenario (referred to as mission) within
milliseconds.

1 Introduction
Reusing legacy embedded systems in new application domains

can significantly reduce the design cost, especially if the volume of
the product is low. However, if the new domain limits the amount of
power consumption, then the system must be modified to meet the
power constraints. For example, it may be very cost effective to
reuse a software-defined radio system designed for large airplanes in
small Unmanned Aerial Vehicles (UAVs). However, unlike large
airplanes, UAVs have limited power budgets due to low fuel
capacity. If the product volume is not high enough to justify the cost
of redesigning a low-power system, then it is desirable to modify the
legacy system for better power efficiency.

Many algorithms have been proposed for dynamic power
management of systems. Time-out and predictive techniques are two
popular approaches. In timeout, a resource goes to standby mode
after staying idle for a specified duration. Whenever a new request
arrives, the resource must be turned on, and the request must wait
for completion of mode transition. Because of the transition
overhead, the overall performance of the system may be affected. To
improve performance and also to avoid energy waste caused by
unnecessary timeouts, predictive algorithms have been proposed.
These algorithms usually use the history of the idle durations to

predict future idle lengths [2][4]; or learn the distribution of idle
lengths and periodically update the threshold of mode transitions
[6][8]. A survey of power management techniques can be found in
[1]. Note that most of these power management techniques are
applied to individual components.

For legacy systems, implementing distributed power managers
based on the policies mentioned above is costly, because it requires
redesigning the system hardware and software. Hardware timers and
interrupt controllers must be added to each component to turn it on
at a specific time or at arrival of a specific event. Additionally,
software code of power manager must run on each component. Also,
the application code must be modified to avoid system failure when
a component tries to communicate with a standby component. On
the other hand, today’s systems may have high-power analog devices
that need power management but cannot run any power manager
code locally. Therefore, their power mode must be controlled by
another component. In legacy systems, the cost of changing
hardware and software, and then verifying the correctness and
reliability of the system is very high.

Compared to distributed power management techniques,
centralized power managers are less costly to implement. However
they can waste significant energy and bus bandwidth for
communication between resources and the power manager. To
reduce such communications, Li et al [10] suggest considering mode
dependency between components. The power management turns on
and off the dependent components together, and as a result
eliminates extra communications between some components and the
power manager. However, defining fixed mode dependencies, as
proposed in their approach, is not always possible because the
dependencies tend to vary in time based on the running application.
Therefore, their technique is only applicable to simple systems with
fixed dependencies. Also, the authors do not propose any general
approach to extract the dependencies from the application or system
architecture.

In this paper, we propose a new cost-effective centralized power
management technique for distributed real-time systems. To avoid
unnecessary communication between devices and the power
manager, we dynamically simulate the system schedule based on
high-level application and mission-level information as well as
system architecture. The dynamic simulation can be conservative to
reflect the jitter in arrival time of events or variations in execution
delay of tasks due to data dependency. In real-time systems, usually
the input events are periodic; however, the rate and type of the
events may change dynamically based on the user demand or
environmental changes. Our power manager can dynamically adjust
the power commands for the new changes. Contributions of this
paper include modeling of real-time systems for centralized dynamic
power management and developing the power manager kernel that
runs a fast high-level simulator to predict busy-time and idle-time of
the resources at runtime. We applied our power management
technique to a legacy software-defined radio system and achieved
significant energy savings (60% to 87%). The energy savings

1-4244-0630-7/07/$20.00 ©2007 IEEE.

9A-2

872

computed using simulation was verified by actual measurement on
the hardware implementation.

In this paper, Section 2 presents an overview of our approach.
Section 3 discusses our model of computation and the amount of
offline information needed for the online algorithm. Section 4
explains our online power management algorithm and Section 5
discusses our experimental results on the software-defined radio
system, and the runtime overhead of the power manager.

2 Overview of our approach
Conventional power management techniques try to predict the

length of idle durations, in order to avoid unnecessary mode
transitions. However, in our approach, which is targeted for domain-
specific real-time systems, we extract the busy-times and idle-times
of resources using high-level application and communication
knowledge. The behavior of embedded systems can be captured
using Communicating Sequential Processes (CSP) [4]. In CSP,
sequential processes communicate with each other for
synchronization and/or data exchange. In system implementation,
one or more processes may be mapped to a resource. Resources may
have local operating systems and hence, local scheduling algorithms
that determine the execution order of the mapped processes. In CSP,
the complete functionality of the system is described usually in a
high-level language such as SpecC [3] or SystemC [16]. However,
for power management, we are interested only in timing and
dependencies of tasks as opposed to their functionalities. In our
model, we abstract away the functionality and capture timing and
dependencies using a task graph model. Furthermore, embedded
systems may provide more than one type of service. Therefore, in
our model, each service type is captured using a separate task graph.
Based on the user’s decisions and/or surrounding situation, a subset
of the services may simultaneously become activated on a system.

Our power manager uses the knowledge of system structure,
running processes and task graphs to dynamically simulate and
predict the schedule of tasks on the system, and extract the idle times
of the components. Note that the real schedule of tasks on a system
may deviate from the anticipated schedule due to existence of jitter
in arrival time of the external events or variation in execution delay
of tasks. This deviation can cause the power manager to sometimes
turn off a resource when running a task. To address this issue, we
add a safety margin to the computated of schedule in order to
lengthen the ON duration of the resources. In Section 5, we discuss
the amount of energy penalty caused by adding the safety margins.

Figure 1 shows the block diagram of our proposed power
manager. The power manager captures the model of the system and
the task graph of services at design time. At runtime, the user makes
high-level decisions and a System Coordinator Module translates the
decisions to application requests. Each request is represented by its
service type (i.e. a task graph), period and deadline. Using a simple

API, the coordinator module may register a new request or cancel a
previously registered one. Then, the power manager is called to
analyze the schedule of the system for the currently registered
requests. The power manager generates power commands that are
periodically applied to the system as long as the system maintains its
status. In order to avoid any incorrect mode change, some of the
resources may be kept on while power manager is analyzing the new
schedule.

The following example helps to understand the role of the
System Coordinator and the API: suppose that a software-defined
radio system provides different waveforms of wireless links to many
digital devices including two cameras. The user chooses to enable
either one or both of the cameras and stream the video on one or
more waveforms. Also, the user may select the picture refreshing
rate, the resolution, and level of encryption. The System Coordinator
Module uses the above information to determine the type of service
(i.e. task graph) and the rate of the requests that the system must
process in future. Then, it runs the power manager to generate the
power commands. After a few hours, the user may stop streaming
the video or change the settings. In that case, the coordinator module
cancels the previous requests and registers the new ones. Then it
runs the power manager again to re-generate the power commands.

3 Modeling system and services
This section presents our model of computation and the amount

of offline information needed for online power manager. The model
commonly used for capturing embedded systems is Communicating
Sequential Processes (CSP) [4] model. We use the CSP as the base
of our model and simplify it for dynamic power manager by
replacing the functionality with tasks. The task graph model
presented here can be extracted from CSP descriptions in SpecC and
SystemC using a profiler.

A heterogeneous system is usually composed of a set of analog
and digital resources. We model a system S with S(R, P, B, G),
where R is the set of resources, P is the set of processes, B is the set
of buffers, and G is the set of services (task graphs). For each
resource r∈R we define an ON mode, denoted by om(r), a set of idle
modes denoted by IM(r) and a local scheduling algorithm denoted
by SA(r). The scheduling algorithm can be First-In First-Out (FIFO),
Rate Monotonic, Earliest Deadline First (EDF), etc. Each im∈IM(r)
is represented by its power consumption, shown by pwr(im), and
timing overhead of mode transition from om to im and from im to
om, shown by ovT1(im) and ovT2(im), respectively. The energy
overhead of the transitions are denoted by ovE1(im) and ovE2(im).
Also, each process is mapped to a resource:

∀π∈P, res(π) = r where, r∈R

Additionally, each process has an input buffer:

∀π∈P, buff(π) = b where, b∈B

Usually buffers are implemented by memory units for processors
and by digital buffers for hardware accelerators and buses. Analog
devices and ASICs have a single default process with a limited
buffer size.

Each service TG∈G is modeled by a task graph TG(T, D, E),
where, T is the set of tasks, D is the set of edges of the graph, and E
is the set of events that triggers the tasks. For each task τ∈T,
process(τ)∈P is the process that runs τ, and δ(τ) represents its
execution delay. The edges of the graph capture the dependencies
and execution order of the tasks:

D = {(τ1, τ2) | τ1,τ2 ∈T, τ2 is dependent on τ1}

Registered
requests

System Coordinator
Module

Application
Requests (API)

(Section 2)
Model of system &

services (TGs)

(Section 3)

Schedule

Analyzer (Section 4)

Dynamic Power Manager

Environmental
Changes

User
decisions

Power Command
Dispatcher

Figure 1. Block diagram of the proposed power manager

9A-2

873

Each event e∈E can trigger only one task denoted by θ(e)∈T.
However, in general, a task may need to receive more than one event
before it can be executed. The set of input events of a task τ is
denoted by ω(τ)⊂E. After execution of a task τ, a set of events must
be dispatched to trigger its successor tasks. The output events of τ
are represented by χ⊂E and are formally defined as follows:

∀τ∈T, χ(τ) = {e | (τ, θ(e))∈D}

We also define root event of a graph as follows:

rootEv(TG) = ω(τr) where, ∀τ∈T, (τ,τr)∉D

In task graph model, serialization, concurrency and
synchronization of tasks can be captured using the events.

3.1 System modeling example
Suppose that we have a system consisting of a General-Purpose

Processor (GPP) and two ASICs. The system processes a periodic
request of type request1 with period of 1000ms and deadline of
600ms.

Also, suppose that whenever a new request arrives, the system
behaves as follows (shown in Figure 2): the GPP does some pre-
processing (denoted by task n1) and initiates another task (n2) on
ASIC1. Then, GPP performs additional processing (n3) and waits
for the result of n2. As soon as the execution of the task n2 finishes,
the processor handles the results (n4) and initiates two other tasks
(n5 and n6) on ASIC1 and ASIC2. Finally, the processor receives
the output of n5 and n6 and finishes the processing (n7). This kind
of interaction between resources is very common in heterogeneous
systems composed of both hardware and software components. It is
worth noting that although the request is periodic, GPP and ASIC1
do not process regular periodic tasks.

Suppose that in this example, the GPP communicates to ASIC1
via a shared memory while it communicates to ASIC2 through a bus.
Also, suppose that there are two software processes running on the
GPP: process1 and process2. Also, a fixed priority scheduling
algorithm is used that gives higher priority to process1. Figure 3
shows the system model using the elements presented in this section.
For each process, a buffer exists that stores incoming events. Note
that buffers B3 and B1 may actually be implemented using a single
shared memory unit. However, they are shown as separate entities in
this model. In this figure, buffers B5 and B6 are bus interface
buffers.

Figure 4 shows the task graphs of the service TG1. Figure 5
shows the execution delay of the tasks in Figure 4, and their
corresponding processes and resources. In TG1, tasks c1 and c2 are
added to represent the bus delay. Note that in general, several
services can be described for a system using task graphs. However,
the user may request a subset of the services at a given time. For
example, request1 activates service TG1 with period of 1000ms and
deadline of 600ms. Using the above model, the dynamic power
manager analyzes the schedule of the tasks on the resources and
produces a timing diagram similar to that of Figure 2. Then it
generates the power commands based on the length of the idle
intervals and the mode-transition overheads.

Tasks Exec. Delay Process Resource

n1 100 Process1 GPP

n2 100 Process3 ASIC1

n3 30 Process1 GPP

n4 100 Process1 GPP

n5 80 Process4 ASIC2

n6 100 Process3 ASIC1

n7 100 Process1 GPP

c1 10 Process5 Bus

c2 10 Process6 Bus

Figure 5. Tasks of the task graphs

4 Our dynamic power-management algorithm
Our dynamic power management algorithm requires a discrete

event simulation engine for high-level simulation of systems.
Although discrete event simulations can be very slow for low-level
system models, they tend to run very fast for high-level models due
to relatively low numbers of components and events. The inputs to
our algorithm are the system model and the application requests. The
output of the algorithm is a sequence of power commands usually
generated for the hyper-period duration of registered requests. The
hyper-period duration of a set of requests is the Least Common
Multiple (LCM) of their periods. Figure 6 shows the pseudo code of
the power management algorithm. The code consists of modules and
procedures. Modules are parallel entities that may wait for certain
events before continuing their executions. In module
Module_DPM_Alg, after calculation of the hyper-period, all task
graphs that must be processed during the period are generated. Then,
the root events of the task graphs are extracted (line 4). At the arrival
time of each request, its rootEv is added to the buffer of the process
that must run θ(rootEv). After dispatching all root events, the power
manager algorithm waits until the end of simulation (line 8) and then
collects and sorts the power commands generated during the
simulation. The rest of the procedures and modules explain how
power commands are actually generated.

In our algorithm, for each resource and process in the system, a
module is created. In Module_Resource, a resource waits until it is
activated by either a timing interrupt or by receiving an event
(depending on its scheduling algorithm). Then, using the
selectNextActiveProcess() the next active process is selected for the
resource. This procedure uses the resource’s local scheduling

n1 n4 n7GPP n3

Figure 2. Schedule of tasks on a system servicing request1

n2ASIC1 n6

n5ASIC2

0 100 200 300 400 500 600 700
Deadline

external event

ASIC2

Process
3

B3

ASIC1

Process
1

B1

Process
2

B2

Process
4

B4

B5 B6

GPP

Sch.Alg.

Figure 3. System modeling example

Process 6Process 5
Arb.Alg.

Bus

n1

n2

n3

n4

c1

n6

n7TG1

Figure 4. Services supported by the system of Figure 3

c2n5

9A-2

874

algorithm (SA) to select from the list of ready processes. A process
is considered ready if it has one or more events in its input buffer. If
no ready process exists, then the resource goes to an idle state (line
17). However, if a ready process exists, then depending on the
previous state of the resource two situations may happen: (1)
resource has been idle or (2) the resource was already running
another process. In the first case, the resource leaves the idle state
(line20), and in the second case, the current active process is
preempted (line 22). At the end, the resource resumes the
nextActiveProcess.

1 Module_DPM_Alg (reqs, resources, commands, safetyMargin){
// inputs: application requests (TG, period) ,
// resources (active mode, idle modes, functions)

// TGs (nodes, edges, resources, execDelays, processes)
// safetyMargin
// output: commands (resource, mode, issue time)
2 hp = calcHyperPeriod(reqs) // for long hyper-periods, break it to smaller

intervals
3 TGs = generateAllTGs(reqs, hp)
4 events = generateAllRootEvents(TGs);
5 for-each rootEv in events
6 waitTill(rootEv.arrivalTime)
7 buff(process(θ(rootEv))).add(rootEv) //dispatching the events
8 waitTill(hp)
9 for-each resource in resources

10 commands = Union(commands, getCommand(resource))
11 sort commands based on their issue time
12 }

Module_Resource (resource res) {
13 while (1)
14 wait for activation
15 nextActiveProcess = selectNextActiveProcess(res, SA(res))
16 if(nextActiveProcess=null)
17 if(res.activeProcess != null) onIdleStarted(res, NOW)
18 res.activeProcess = null
19 else
20 if(res.activeProcess=null) onIdleFinished(res, NOW)
21 else if(res.activeProcess != nextActiveProcess)
22 preempt(res.activeProcess)
23 res.activeProcess=nextActiveProcess
24 resume(res.activeProcess)
25 }
26 onIdleStarted(resource res, Time NOW){
27 res.idleStartTime = NOW
28 }
29 onIdleFinished(resource res, Time NOW) {
30 idleDur= NOW – res.idleStartTime – 2× safetyMargin //calculate idle duration
31 Select im∈IM(res) so that idleDur > ovT1(im) + ovT2(im) and

idleDur×pwr(om(res))–(ovE1(im)+ovE2(im)+pwr(im)×(idleDur–ovT1(im)–
ovT2(im)) is maximized

32 if (im != null)
33 t1 = res.idleStartTime + safetyMargin //issue time of stdby command
34 t2 = NOW – ovT2(im) – safetyMargin // issue time of ON command
35 c1 = new command(res, im, t1) // stdby command
36 c2 = new command(res, om, t2) // ON command
37 addCommands(res, c1)
38 addCommands(res, c2)
39 }

Module_Process (process π) {
40 while (1)
41 if(buff(π) is empty or preempted) wait to be resumed
42 e = getNextEv(buff(π))
43 τ = θ (e)
44 τ.triggeredEvList.add(e)
45 if(τ.triggeredEvList = ω (τ))
46 startTime = NOW
47 waitTill(δ (τ) + NOW) or preemption //interrupt the wait if preempted
48 if(preempted)
49 δ (τ) = δ (τ) - (NOW - startTime)
50 else //not preempted
51 for-each event in χ (τ)
52 buff(process(θ (event))).add(event) //dispatching the events
53 }

Figure 6. Pseudo code of our power management algorithm

Whenever a resource leaves the idle state (onIdleFinished
procedure), based on the length of the idle duration, the specified
safety margin, and the available standby modes, the power manager
decides about mode transition (line 31). If any suitable transition

was possible, the power manager adds two commands to shutdown
(line 35) and turn on the resource (line 36) at appropriate times.

In Module_Process, a process π waits until it is resumed. Then,
it reads an event from its buffer and obtains the task τ triggered by
the event (line 43). Task τ may need to receive several other events
before it can be executed. To keep track of the events, we use
triggerdEvList to store the events that have been dispatched for task
τ. The list is complete when all the events in ω(τ) are received. If the
list is not completed yet, the process skips this event; otherwise, it
simulates processing of task τ by waiting for δ(τ) (line 47). If the
process is preempted by the Module_Resource, then the wait is
interrupted, the remaining execution delay of task τ is computed, and
the process must wait to be resumed once again. If not preempted,
the process finishes the execution of task τ and dispatches its output
events from set χ(τ) (line 52).

In cases that calculated hyper-period is very long or the requests
change very often, the computation can be performed for a smaller
window of time instead of the entire hyper-period. In that case,
always the schedule of the next window must be computed before
the end of the current window.

5 Experimental results
In this section, the results of applying our power management

technique to a multi-channel software-defined radio system [9] are
presented. The radio was originally designed for large airplanes and
was modified for small Unmanned Aerial Vehicles (UAVs). UAVs
are small airplanes that are usually remotely piloted and can carry
cameras, sensors and communications equipment. The radio sends
and receives many real-time messages used to control and monitor
the aircraft. The energy budget in this system is constrained due to
the limitation on the amount of fuel that the small aircraft can carry.

The system (Figure 7) has four channels that each processes a
specific waveform (e.g. Link16, SATCOM, ATC and MilStar). Each
channel has two general-purpose processors (called Black and Red
processors), a modem, a transceiver, and a power amplifier (PA) to
process network protocols, modulate/demodulate, convert to
RF/baseband, and transmit/receive signals, respectively. Among
these components, PA and transceiver are analog while the rest are
digital processing elements. The Black and Red Processors run a
real-time OS that gives a higher priority to received messages over
the ones being sent. Some of the messages are critical and need to be
encrypted before being sent or decrypted after being received. We
call them classified messages. These messages must go through the
shared Encryption unit, Red Processors and Red I/O. Non-classified
messages go through Black I/O instead. The power manager and
system coordinator modules reside on a separate processor, called
System Manager, outside the channels. Table 1 shows the
characteristics of each component in terms of its power modes and

Power
Amplifier1

Transceiver1 Modem1 Black
Processor1

Red
Processor1

Link 16
Channel 1

Power
Amplifier2

Transceiver2 Modem2 Black
Processor2

Red
Processor2

SATCOM
Channel 2

Power
Amplifier3

Transceiver3 Modem3 Black
Processor3

Red
Processor3

ATC
Channel 3

Power
Amplifier4

Transceiver4 Modem4 Black
Processor4

Red
Processor4

MilStar
Channel 4

Red I/OBlack I/O EncryptionSystem
Manager

Figure 7. The software-defined radio system [9]

9A-2

875

transition overhead based on the measurements on the modified
radio system [9].

Note that mode dependency model proposed in [10] is not
sufficient for this system because of the existence of shared
resources in the paths. For example, no correct mode dependency
can be defined between the Encryption unit and Black Processor1
(BP1) because they must be turned on together when Channel-1 is
used and they should not be turned on together when other channels
are used, or when the message is not classified.

To model the system for our power management, we need to
capture the task graphs of the system corresponding to the services
that it provides. Figure 8 shows the task graph of sending a non-
classified message on Channel-1, and the corresponding timing
diagram of the system. The message arrives at the Black I/O and,
after some initial processing, is passed to the Black Processor1. The
Black Processor1 handles the communication protocol and
eventually streams the message to Modem1, Transceiver1 and PA1.
The execution delay of each task is specified in the task graph
model. In this system, there are four channels that each can send and
receive classified and non-classified messages. Therefore, the total
number of task graphs in the system is 16 (i.e. 4×2×2).

Table 1. Power modes of different components [9]

ON mode StdbyMode

Components Power (W) Power (W) ON-Stdby
(ms)

Stdby-ON
(ms)

Red/Black IO 5 1 50 1

Black Proc. 6 1 50 1

Modem 4 1 50 1

Transceiver 25 0.1 50 2

PA 10 1 50 2

Encryption 10 2 100 5

Red Processor 10 2 50 1

System Mangr. 16 1 50 1

To study different aspects of the system, we modeled it in
SystemC and used state-based power estimation technique [12] to
estimate the amount of energy consumption. However, we
implemented our final power manager on the actual hardware as well
and used measurements to confirm the energy savings.

We modeled this system in SystemC once without any power
manager (No-PM) and once with our application-based power
manager (APM). The inputs of the simulator are requests (messages)
and its outputs are total energy consumption, and number of lost
events. We assume that events are lost if they arrive when resources
are in standby mode or in mode transition. For our application the
tolerable event loss is 1% or less.

As our testbench, we used the actual communication profile of
the radio system recorded during a ten-hour test mission. The profile
contains more than 300000 messages. Different messages arrive at
the system with different rates, and the rate and type of the messages
change in different phases of a mission. For example, during take off

and landing of the aircraft, the rates of certain messages increases,
while during the actual flight, their rates drop. Without any power
management (No-PM) and excluding the System Manager
component, the system consumes 7.92MJ during the ten-hour
mission. Using an ideal power manager, a power manager that
exactly knows the arrival time of all the messages, the energy
consumption is reduced to 0.95MJ achieving 88% energy saving.

Table 2. The event loss percentage and energy consumption of our
approach (APM) for different jitter and safety margin values

Jitter (ms)
Safety Margin

(ms) 10 50 100 200 300
Energy

saving (%)

5 0.32 0.44 11.21 28.79 36.06 87.8
7 0.08 0.26 10.66 27.87 35.79 87.6
10 0 0.32 9.3 27.48 35.19 87.2
20 0 0.12 9.3 27.48 35.19 87.2
30 0 0.04 3.3 22.62 31.81 84.9
40 0 0.08 1.35 20.16 30.14 83.8
50 0 0 0.04 17.57 28.43 82.7
60 0 0 0.08 15.11 26.56 81.5
80 0 0 0 10.5 23.34 79.3

100 0 0 0 6.56 20.56 77.0
120 0 0 0 2.86 16.82 74.8
140 0 0 0 0.52 13.36 72.5
160 0 0 0 0.04 10.62 70.2
180 0 0 0 0 7.16 68.0
200 0 0 0 0 4.37 65.7
220 0 0 0 0 1.99 63.5
240 0 0 0 0 0.44 61.2
260 0 0 0 0 0.04 59.0
280 0 0 0 0 0.04 56.7
300 0 0 0 0 0 54.4
320 0 0 0 0 0 52.2

To evaluate our power management technique, we ran our
experiments assuming variations in the execution delay of tasks and
jitter in the arrival times of events. Since the variations of execution
delay can also be modeled by event jitter, here we only focus on the
event jitter. In our approach (APM), if the events do not have any
jitter, then the ideal energy savings of 88% can be achieved with 0%
event loss. However, if the events have jitter, then a safety margin is
added to the computation of idle durations to keep the event loss
low. The amount of safety margin is selected based on the amount of
jitter. To find the appropriated safety margin, we ran the SystemC
simulation model with different safety margins and jitter values.
Table 2 shows the rate of event loss and the amount of energy
savings computed for different jitter and safety margin values. The
event loss drops fast by adding the safety margin. However, the
energy savings also decrease linearly. Adding a safety margin
equivalent to half of the jitter value can reduce the event loss to 10%
or less. For our application the tolerable event loss is less than 1%.
Therefore, for each jitter value, we select the safety margin that
reduces the event loss to less than 1% and show the corresponding
energy savings in Table 3. For a jitter of 10-50ms the energy savings
is as high as 87.8% while it reduces to 82.7%, 72.5% and 61.2% for
jitter values of 100ms, 200ms and 300ms respectively.

We ran the power manager with a conservative safety margin of
140ms on the actual hardware and could achieve 68% energy
savings according to the actual measurement. This shows less than
5% error in our power model in SystemC.

5.1 Runtime overhead of our power manager
To evaluate the cost of the power manager, we ran it on System

Manager processor (PowerPC 500MHz, 256MB RAM, 16W) for the
entire ten-hour mission. The total execution time of our power
manager is nine minutes. Therefore, on average, for every 80
seconds of the mission, one second of computation is performed by
the power manager. This computation accounts for 8.6KJ energy
consumption, which is less than 1% of the total energy consumption
of the system with APM. This clearly shows that low-cost
centralized power managers can be implemented on legacy systems
and achieve significant energy savings with reasonable overhead.

Figure 8. Sending a non-classified message on Channel 1:
(a) task graph, (b) schedule of tasks on the components

n1I/O

Black GPP1

PA1

Transceiver1

Modem1

n2 n3

n4

n5

n6

0.5ms 1ms 2ms1.5ms 2.5ms

n1

n2

n3

n4 n5 n6

0.5ms

2.5ms

1.5ms

1ms

0

(a) (b)

9A-2

876

To further reduce the overhead of power manager, we suggest
designing custom hardware on an FPGA that implements the power
manager. In that case, the high-level model of the system can be
emulated using hardware.

Table 3. The result of APM approach for different jitter values

Jitter (ms)
Min. safety margin (ms)

(less than 1% event loss)
Energy saving

(%)

10 5 87.8

50 5 87.8

100 40 82.7

200 140 72.5

300 240 61.2

6 Conclusion
In this paper, we present a new cost-effective centralized

dynamic power management technique for legacy real-time systems.
In our approach, we employ the high-level application and
communication knowledge as well as future workload information to
anticipate the idle intervals of the components using a low-cost
scheduling analysis technique. Using this technique, the required
communications between resources and the central power manager
is reduced significantly. In real-time systems, usually the input
events are periodic, however, the rate and type of the events may
change based on the user demand or environmental changes. Our
power manager can dynamically adjust the power commands for the
new changes. Also, our power manager takes into account the
possibility of jitter in the arrival time of external events as well as
the variation in execution time of tasks. Our experimental results on
a software-defined radio system show that our technique can achieve
60% to 87% energy savings while spending 1% energy overhead for
running the power manager.

References
[1] L. Benini, A. Bogliolo, and G. De Micheli, "A survey of design

techniques for system-level dynamic power management". IEEE
Transactions on VLSI Systems, VOL.8, NO.3,2000

[2] E. Chung, L. Benini, and G. De Micheli. "Dynamic power
management using adaptive learning tree". ICCAD, 1999.

[3] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, "SpecC:
Specification Language and Methodology", Kluwer Academic
Publishers, Boston, MA, ISBN 0-7923-7822-9, 2000.

[4] C. Hoare, Communicating Sequential Processes, Prentice Hall
International, 1985.

[5] C. Hwang and A. Wu, "A Predictive System Shutdown Method
for Energy Saving of Event-Driven Computation", ICCAD
1997.

[6] S. Irani, S. Shukla, and R. Gupta. "Online strategies for dynamic
power management in systems with multiple power-saving
states". ACM Transactions on Embedded Computing Systems,
2003.

[7] M. Jersak, R. Ernst, "Enabling Scheduling Analysis of
Heterogeneous Systems with Multi-Rate Data Dependencies
and Rate Intervals". In Proc. DAC, 2003.

[8] P. Kachroo, S. Shukla, T. Erbes, and H. Patel. "Stochastic
learning feedback hybrid automata for power management in
embedded systems". In IEEE International Workshop on Soft
Computing in Industrial Applications, 2003.

[9] S. Koenck, B. Getz, “JTRS Resources and Relational Behavior
Definition”, DARPA Power Aware Computing and
Communications, Rockwell Collins Inc., F33615-02-C-4000,
Nov. 2002.

[10]D. Li, Q. Xie, P. Chou, "Scalable Modeling and Optimization of
Mode Transitions Based on Decoupled Power Management
Architecture", Design Automation Conference (DAC’03), 2003.

[11]Q. Qiu and M. Pedram, "Dynamic power management based on
continuous-time Markov decision processes," DAC, 1999.

[12]R. Bergamaschi, Y. Jiang, “State-based power analysis for
systems-on-chip”, In Proc. of IEEE Design Automation
Conference (DAC), 2003.

[13]T. Simunic, L. Benini, G. De Micheli, “Cycle-accurate
simulation of energy consumption in embedded systems”, in
Proc. Design Automation Conference (DAC) 1999.

[14]M. Srivastava, A. Chandrakasan. R. Brodersen, "Predictive
system shutdown and other architectural techniques for energy
efficient programmable computation", IEEE Transactions on
VLSI Systems, Vol. 4, No. 1 (1996), pp. 42-55.

[15]Q. Wu, Q. Qiu and M. Pedram, "Dynamic power management
of complex systems using generalized stochastic Petri nets". In
Proc. IEEE Design Automation Conference (DAC’00), 2000,
pp. 352-356.

[16]www.systemc.org.
[17]www.specC.org

9A-2

877

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

