
Flow Time Minimization under Energy Constraints∗

Jian-Jia Chen
Department of Computer
Science and Information

Engineering
National Taiwan University

Taiwan

r90079@csie.ntu.edu.tw

Kazuo Iwama
School of Informatics

Kyoto University
Yoshida-Honmachi

Kyoto, Japan

iwama@kuis.kyoto-u.ac.jp

Tei-Wei Kuo and Hseuh-I Lu
Department of Computer
Science and Information

Engineering
National Taiwan University

Taiwan

{ktw, hil}@csie.ntu.edu.tw

ABSTRACT
Power-aware and energy-efficient designs play important roles for
modern hardware and software designs, especially for embedded
systems. This paper targets a scheduling problem on a proces-
sor with the capability of dynamic voltage scaling (DVS), which
could reduce the power consumption by slowing down the proces-
sor speed. The objective of the targeting problem is to minimize
the average flow time of a set of jobs under a given energy con-
straint, where the flow time of a job is defined as the interval length
between the arrival and the completion of the job. We consider two
types of processors, which have a continuous spectrum of the avail-
able speeds or have only a finite number of discrete speeds. Two al-
gorithms are given: (1) An algorithm is proposed to derive optimal
solutions for processors with a continuous spectrum of the avail-
able speeds. (2) A greedy algorithm is designed for the derivation
of optimal solutions for processors with a finite number of discrete
speeds. The proposed algorithms are extended to cope with jobs
with different weights for the minimization of the average weighted
flow time. The proposed algorithms are also evaluated with com-
parisons to schedules which execute jobs at a common effective
speed.

Keywords
Energy-aware systems, Scheduling, Flow time minimization, Dy-
namic voltage scaling.

1. INTRODUCTION
With the advanced technology of circuit designs, many modern

processors, such as Intel XScale, can operate at different proces-
sor speeds dynamically. Dynamic voltage scaling (DVS) has been
adopted in many systems to reduce the supply voltage and the ex-
ecution speed dynamically. Reducing the processor speed can cer-
tainly reduce the power consumption but may lead to the violation
of the timing requirements of the systems. To prolong the life-
time of battery-powered embedded systems under the satisfaction
of performance, it is desirable to reduce the energy consumption
as much as possible under the timing constraints. The energy-
efficient scheduling problem is to compromise between the energy
consumption and performance degradation.

Since embedded devices generally have real-time requirements
to guarantee the stability of the provided services, such as video
decoding or wireless communication, the minimization of the en-
ergy consumption for real-time systems with the DVS capability
has been an important issue in the past decade. Researchers have
proposed various scheduling algorithms to minimize the energy

∗Support in parts by research grants from ROC National Science
Council NSC-95-2752-E-002-008-PAE, NSC-95-2219-E-002-014,
and NSC-95-2221-E-002-077, and from KAKENHI (16092101,
16092215, 16300002).

consumption for periodic hard real-time tasks under different dead-
line assumptions [3, 5, 7, 9, 11, 12, 13, 15, 16, 26]. When energy-
efficient scheduling of aperiodic real-time jobs is considered, energy-
efficient scheduling for uniprocessor environments with a continu-
ous speed spectrum was explored in [5, 11, 26]. Scheduling algo-
rithms have been also proposed for the minimization of the energy
consumption when there is a finite number of speeds for a processor
with negligible speed transition overheads [8, 12, 14].

In addition to the minimization of energy consumption, another
critical issue for energy-aware systems is to maximize the system
performance under a given energy constraint. For example, con-
sider a system that is powered by a re-chargeable battery equipped
with a solar panel. The available energy consumption to execute
tasks is limited at night. For such a system, the scheduler should try
to maximize the system performance under the energy constraint
instead of pursuing the minimization of energy consumption. For
example, researchers in [6, 10, 21, 22] targeted on the maximiza-
tion of the total system reward under given timing and energy con-
straints, while Alenawy et al. [2] considered the minimization of
dynamic faults for soft real-time systems under a given energy con-
straint.

Previous researches mostly focus on systems with timing con-
straints. However, not all jobs have natural deadlines associated
with them. For general operating systems such as Windows and
Linux, schedulers are not deadline-driven. A fundamental perfor-
mance metric for job scheduling could be on the minimization of
the average flow time, as known as the average response time, or
on the minimization of the (maximum) completion time. The ob-
jective of the minimization of the completion time is pursued for
systems that treat the execution of all the jobs as an execution en-
tity, such as defense and control applications. The minimization of
the average flow time is pursued in multimedia or on-line transac-
tion processing applications. This metric reveals the time that a job
has to wait between its arrival time and its completion time. Dis-
tinct from the measurement on the minimization of the completion
time, the average flow time treats all jobs as different entities for
performance measurement.

The minimization of the completion time under a given energy
constraint can be obtained easily for DVS systems by the convexity
of the power consumption functions. This paper mainly considers
the performance metric on the minimization of the average flow
time of a given job set on a DVS processor under a given energy
constraint. However, only limited work has been known for such
energy-constrained systems. Pruhs et al. [18] and Albers et al.
[1] explore the scheduling of jobs with equal computation require-
ments under different arrival times on a processor with a continuous
spectrum of the available speeds. Processors under considerations
in this paper might be with a continuous spectrum of the available
speeds between the upper-bounded and lower-bounded speeds or
with a finite number of available speeds. We show that the mini-
mization of the average flow time for a set of jobs with the same

1-4244-0630-7/07/$20.00 ©2007 IEEE.

9A-1

866

arrival/ready time could be derived in polynomial time for the pro-
cessor models considered in this paper. For processors with a con-
tinuous spectrum of the available speeds, we present an algorithm
based on the well-known Lagrange Multiplier Method [20]. How-
ever, most modern processors can only operate at a finite number
of discrete available speeds. Examples are the ARM7D processor
(20 or 33 MHz) [23], the Crusoe processor by Transmeta (200-700
MHz in 33MHz steps) [25], the Intel StrongARM SA1100 pro-
cessor (59-221 MHz in 14.7MHz steps) [23], and the Intel XScale
(150-1000 MHz with 5 different levels) [24]. Hence, we also de-
velop a greedy algorithm for processors with a finite number of dis-
crete available speeds. Both of the proposed algorithms are proved
to derive optimal solutions under different settings on the processor
types. We also perform evaluations with comparisons to solutions
with the minimization on the makespan, i.e., the maximum com-
pletion time, under the given energy constraint. Simple extensions
are made for the minimization of the weighted average flow time,
but the optimality is not guaranteed.

The rest of this paper is organized as follows: Section 2 defines
the problems. Section 3 presents some preliminary results and a
motivational example. Section 4 considers processors with a con-
tinuous spectrum of the available speeds. The minimization of the
average flow time for processors with a finite number of available
speeds is then presented in Section 5. The extensions for the mini-
mization of the average weighted flow time is shown in Section 6.
Section 7 presents the performance evaluation of the proposed al-
gorithms. Section 8 is the conclusion.

2. PROBLEM DEFINITIONS
We explore the scheduling of jobs on a dynamic voltage scaling

(DVS) processor. The power consumption function P () is defined
as a function of the adopted processor speed s. The dynamic power
consumption Pδ() resulting from the charging and discharging of
gates on a DVS processor could be modeled as a function of the
adopted processor speed s as follows [19]: Pδ(s) = Cef V

2
dds,

where s ∝ (Vdd−Vt)
2

Vdd
, and Cef , Vt, and Vdd denote the effective

switch capacitance, the threshold voltage, and the supply voltage,
respectively (Vdd ≥ Vt ≥ 0, and Cef > 0). The dynamic power
consumption function is a convex and increasing function of pro-
cessor speeds. When Vt = 0, the dynamic power consumption
function can be rephrased as a cubic function of the processor speed
s. As reported in the literature [5, 11, 26], the dynamic power con-
sumption function can be phrased as sα, where α is a hardware-
dependent factor. Leakage power consumption of the processor is
assumed to be a non-negative constant. The power consumption
function is the summation of the dynamic power consumption and
the leakage power. For example, as shown in [7], the power con-
sumption function could be P (s) = s3 + β.

In this study, we consider two types of processors: (1) proces-
sors with a continuous spectrum of the available speeds between the
upper-bounded speed smax and the lower-bounded speed smin, and
(2) processors with M distinct available speeds, say s1, s2, . . . , sM

indexed in an increasing order of the speeds. For brevity, we also
denote s1 by smin and sM by smax. Moreover, for the rest of this
paper, the former type of processors is denoted by ideal proces-
sors while the latter type is denoted by non-ideal processors. Let
P (s) be the power consumption function of the processor under
considerations at speed s. Note that the power consumption func-
tion of processor speed discussed in this paper can be any function
that is strictly convex and increasing [16, 26], e.g., P (s) ∝ s3,
where the convexity is defined in the field of non-negative real
numbers. The number of CPU cycles executed in a time interval
is linear in the processor speed. That is, the number of CPU cy-
cles completed in time interval (t1, t2] is

R t2
t1

s(t)dt, where s(t) is

the processor speed at time t. The energy consumed in (t1, t2]

is
R t2

t1
P (s(t))dt. Moreover, the time and energy overheads on

speed (voltage) switching are assumed to be negligible. This is
a common assumption in the literature [3, 5, 16, 18, 26]. With-
out loss of generality, the rest of the paper makes the physically
reasonable assumption that the function P (s)/s is strictly convex
and monotonically increasing in [smin, smax]. For example, when

P (s) = s3 + β, smin must be at least 3
q

β
2

since P (s)/s is mini-

mized when s = 3
q

β
2

.

We are given a set J = {J1, J2, . . . , JN} of N jobs with the
same arrival/ready time. Each given job Ji in J is specified by its
computation requirement on the CPU as execution cycles ci. A
schedule of J is an assignment of processor speeds for the corre-
sponding time intervals of the jobs in J. The total flow time of a
schedule is defined as the sum of the flow time of all the jobs. This
paper considers the performance metric on the minimization of the
average flow time of J under a given energy constraint Eb on a
specified DVS-capable processor, where the average flow time of a
schedule is the total flow time of J divided by N . For brevity, the
arrival time of the these N jobs is 0, and hence, the average flow
time for a schedule is the sum of the completion time of all the jobs
in J divided by N . The problem is called the energy-constrained
average flow time minimization problem.

A schedule is feasible for the energy-constrained average flow
time minimization problem if the execution intervals of jobs are
not overlapped, the energy constraint is satisfied, and the execution
speeds are valid. An optimal schedule for the energy-constrained
average flow time minimization problem is a schedule with the
minimum average flow time among all feasible schedules. For the
rest of this paper, we focus on input instances with

P
Ji∈J P (smin)·

ci
smin

≤ Eb, since there does not exist any feasible solution for
the other cases. Moreover, if

P
Ji∈J P (smax) · ci

smax
≤ Eb, exe-

cuting all the jobs at speed smax does not violate the energy con-
straint, and executing all the jobs at speed smax consecutively in a
non-decreasing order of the execution cycles of jobs is an optimal
schedule. We consider the other cases for the rest of the paper.

3. PRELIMINARY RESULTS AND A MO-
TIVATIONAL EXAMPLE

Because of the convexity of the power consumption function
P (), in order to minimize the energy consumption of a job, the
job must be executed at either one speed for ideal processors [26]
or at most two consecutive speeds for non-ideal processors [12] for
a fixed duration of executions. In other words, we only have to
consider schedules that execute a job at one speed for ideal proces-
sors or at one or two consecutive speeds for non-ideal processors,
since other types of schedules can be transformed into such a kind
of schedule with the same average flow time and with less energy
consumption.

If the duration of executions for each job in J is determined, the
minimization of the average flow time could be achieved by adopt-
ing the well-known shortest-job-first strategy [17, §3] by executing
jobs in the non-decreasing order of their lengths of durations of
executions. The following lemma states the optimality on the exe-
cution order of the jobs on their CPU execution cycles.

LEMMA 1. There exists an optimal schedule which executes
jobs in J in a non-decreasing order of their CPU execution cycles
for both ideal and non-ideal processors.

PROOF. For any optimal schedule, we know that (1) the proces-
sor executes some job at any moment from time 0 to the completion
time of the job completed last, and (2) each job is executed one by
one. Assume for contradiction that Ji is executed right after Jj

9A-1

867

j1 j2 j3

0 10 22 40 time

speed

(a) Executing all the jobs in J at a common speed

j1 j2 j3

0 8.36 19.85 41.54 time

speed

(b) Executing j1, j2, and j3 at speeds 0.598, 0.522,
and 0.415, respectively

Figure 1: A motivational example with 3 jobs.

in which cj > ci in an optimal schedule S∗ of J with the above
two properties. The time at which job Jj starts (completes, respec-
tively) is tj,1 (tj,2, respectively). ti,1 and ti,2 are defined similarly.
We know tj,2 = ti,1. Let Ŝ be a schedule with the same speed
assignment as S∗ all the time. Ŝ swaps the execution order of Ji

and Jj so that Ji is executed right before Jj . Since ci < cj , Ŝ
completes the execution of job Ji before tj,2 and that of job Jj at
speed ti,2. As a result, the average flow time of Ŝ is less than that
of S∗, since the flow time of all the jobs in J \ {Ji, Jj} remains.
This contradicts the optimality of S∗.

By Lemma 1, for brevity, we index jobs in J so that c1 ≤ c2 ≤
· · · ≤ cN . Based on Lemma 1, an intuitive solution is to minimize
the maximum completion time of J under the given energy con-
straint with an execution order from J1 to JN one by one. For the
scheduling on an ideal processor, such a solution executes all the
jobs at a common speed, while two consecutive speeds are used for
non-ideal processors in such a solution. Suppose that J consists of
3 jobs with c1 = 5, c2 = 6, and c3 = 9. Consider the scheduling of
J on an ideal processor. The ideal processor under considerations
in this example is with smin = 0.15 and smax = 1. The power
consumption function is P (s) = s3 and the energy constraint is 5.
Hence, the strategy to minimize the maximum completion time of
J executes all the three jobs in J at speed 0.5 on the ideal processor.
Executing these jobs in a shortest-job-first order at speed 0.5 leads
to a solution with 24 time units on the average flow time with 5
unit of energy consumption, as shown in Figure 1(a). However, al-
though executing all the jobs at a common speed minimizes the en-
ergy consumption when all the jobs have the same arrival time and
share a common deadline [4], such an execution might not lead to
solutions with minimum average flow time. Another speed setting
by executing jobs (J1, J2, J3) at speeds (0.598, 0.522, 0.415) re-
sults in a solution with about 23.25 time units on average flow time
and 4.973 unit of energy consumption, as shown in Figure 1(b).

4. IDEAL PROCESSORS
This section considers the energy-constrained average flow time

minimization problem on an ideal processor. Suppose that the ex-
ecution speed of job Jj is rj . Executing jobs from J1 to JN con-
secutively leads to a solution, in which the flow time of job Jj isPj

i=1
ci
ri

. Hence, the total flow time of such a solution is

NX
j=1

jX
i=1

ci

ri
=

NX
j=1

(N − j + 1)
cj

rj
,

while the energy consumption is
PN

j=1 P (rj)
cj

rj
.

Algorithm 1 : LM

Input: {J, Eb}
1: derive an optimal solution (r†1, r†2, . . . , r†|J|) for Equation (2);

2: if r†1 > smax then

3: return (r†1, LM(J \ {J1} , Eb − P (smax) c1
smax

));

4: else if r†|J| < smin then

5: return (LM(J \ ˘
J|J|

¯
, Eb − P (smin)

c|J|
smin

), r†|J|);

6: else
7: return (r†1, r†2, . . . , r†|J|);

The following lemma shows that an optimal schedule will exe-
cute jobs at a non-increasing order of the processor speeds on an
ideal processor.

LEMMA 2. There exists an optimal schedule executing jobs (i)
in a non-decreasing order of their CPU execution cycles and (ii) in
a non-increasing order of the processor speeds on an ideal proces-
sor.

PROOF. Assume for contradiction that S∗ is an optimal sched-
ule which executes job Jj at a lower speed than the speed of job
Jj+1. Let r∗j (r∗j+1, respectively) be the speed to execute job Jj

(Jj+1, respectively) in S∗. By definition, smin ≤ r∗j < r∗j+1 ≤
smax. By executing job Jj at speed r∗j+1 and job Jj+1 at speed

cj+1
cj
r∗

j
+

cj+1
r∗

j+1
− cj

r∗
j+1

, both the energy consumption and the average flow

time are reduced due to the convexity of the power consumption
function, a contradiction.

Since
PN

j=1 P (smin) · cj

smin
≤ Eb ≤ PN

j=1 P (smax) · cj

smax
,

the energy consumption of the optimal solution is Eb. Hence, the
optimization problem can be formulated as follows:

minimize
PN

j=1(N − j + 1)
cj

rj

subject to
PN

j=1 P (rj)
cj

rj
= Eb, and

smin ≤ rj ≤ smax, for j = 1, 2, . . . , N.

(1)

Note that we index jobs in J so that c1 ≤ c2 ≤ · · · ≤ cN .
By relaxing the last inequalities in Equation (1), we could have

the following programming:

minimize
PN

j=1(N − j + 1)
cj

rj

subject to
PN

j=1 P (rj)
cj

rj
= Eb,

(2)

which could be solved by applying the Lagrange Multiplier Method
[20]. The optimal solution of Equation (2) must satisfy

d((N − j + 1)
cj

rj
− λP (rj)

cj

rj
)

drj
= 0,

for all j = 1, 2, . . . , N for some constant λ. As a result, λ is
N−j+1

−rj(P ′(rj)−P (rj)/rj)
, where P ′(s) is the first derivative of P (s).

For example, ri
rj

= α

q
N−i+1
N−j+1

and r1 is α−1

r
EbPN

j=1 cj(N−j+1
N

)
α−1

α

,

when P (s) = sα. Hence, the optimal solution of Equation (2)
could be derived efficiently.

If smin = 0 and smax = ∞, the above procedure derives an
optimal solution. For general cases, by applying Lemma 2, we
could find an index j∗ ≥ 1 by assigning the execution speed of
J1, J2, . . . , Jj∗−1 as smax and an index i∗ ≤ N by assigning the
execution speed of Ji∗+1, Ji∗+2, . . . , JN as smin with E†

b = Eb −Pj∗−1
j=1 P (smax)

cj

smax
− PN

j=i∗+1 P (smin)
cj

smin
≥ 0. The speeds

of the other jobs Jj∗ , . . . , Ji∗ are obtained by solving the following

9A-1

868

programming:

minimize
Pi∗

j=j∗(N − j + 1)
cj

rj

subject to
Pi∗

j=j∗ P (rj)
cj

rj
= E†

b , and
rj ≥ 0, for j = j∗, . . . , i∗.

(3)

Let r†j be the resulting speed assignment of job Jj in the set
{Jj∗ , . . . , Ji∗} of jobs by solving Equation (3). Our proposed al-
gorithm, denoted as Algorithm LM and shown in Algorithm 1, finds
the indices i∗ and j∗ so that

(N − i∗ + 1)

(smin)2(
P (smin)

smin
)′

<
(N − j + 1)

(r†j)2(
P (r

†
j)

r
†
j

)′
<

(N − j∗ + 1)

(smax)2(
P (smax)

smax
)′

,

(4)
and smax ≥ r†j ≥ smin for any j∗ ≤ j ≤ i∗. Then, J1, . . . , Jj∗−1

are executed at speed smax, Ji∗+1, . . . JN are at speed smin, and
Jj is executed at speed r†j for j∗ ≤ j ≤ i∗.

Because P (s)/s is a convex function, there must exist an index
pair (j∗, i∗) satisfying Equation (4) with smax ≥ r†j ≥ smin for
any j∗ ≤ j ≤ i∗. The time complexity is O(N3), provided that
the optimal solution of Equation (3), which is an extension of Equa-
tion (2), could be determined in O(N). The time complexity could
be reduced to O(N2 log N) by performing a binary research. We
omit the detail due to the space limitation. The optimality is shown
as follows:

THEOREM 1. Algorithm LM derives an optimal schedule of the
energy-constrained average flow time minimization problem on any
ideal processor.

PROOF. We prove the lemma by applying the Karush-Kuhn-
Tucker optimality condition for Equation (1) by finding a positive
constant λ and three vectors (λ1, λ2, . . . , λ|J|), (λ̂1, λ̂2, . . . , λ̂|J|),
and (r∗1 , r∗2 , . . . , r∗

|J|) with

N−j+1
(r∗

j)2
− λ(

P (r∗
j)

r∗
j

)′ − λj + λ̂j = 0

smin ≤ r∗j ≤ smax, λj ≥ 0, λ̂j ≥ 0

(r∗j − smax)λj = 0, (smin − r∗j)λ̂j = 0,

∀Jj ∈ J, and

PN
j=1 P (r∗j)

cj

r∗
j

= Eb.

(5)

It is clear that the resulting speed assignment (r†1, r
†
2, . . . , r

†
N) of

Algorithm LM satisfies
PN

j=1 P (r†j)
cj

r
†
j

= Eb and smin ≤ r†j ≤
smax.

By Algorithm LM, jobs J1, J2, . . . , Jj∗−1 are executed at speed
smax, where jobs Ji∗+1, Ji∗ , . . . JN are executed at speed smin.

Let λ be (N − j + 1)/((r†j)
2(

P (r
†
j)

r
†
j

)′) for some j∗ ≤ j ≤ i∗. For

any j∗ ≤ j ≤ i∗, λj and λ̂j are set as 0. Hence, the conditions in
Equation (5) hold for j∗ ≤ j ≤ i∗. For any j < j∗, let λ̂j = 0

and λj = (N − j + 1) − λs2
max(

P (smax)
smax

)′. By Equation (4),
we know that λj > 0 for any j < j∗. Similarly, let λj = 0 and
λ̂j = λs2

min(
P (smin)

smin
)′ − (N − j + 1) > 0 for any j > i∗. The

theorem is proved.

5. NON-IDEAL PROCESSORS
This section copes with the energy-constrained average flow time

minimization problem on a non-ideal processor. The proposed al-
gorithm is a greedy algorithm based on a cost-benefit policy. First,
we index jobs in J so that c1 ≤ c2 ≤ · · · ≤ cN . Then, each job Jj

is split into M execution pieces. The additional energy consump-
tion ej,m of the m-th execution piece of job Jj is the difference of
the energy consumption of Jj at speed sm to that at speed sm−1,

i.e., ej,m =
P (sm)cj

sm
− P (sm−1)cj

sm−1
, for m = 2, 3, . . . , M . For

Algorithm 2 : GREEDY

Input: {J, Eb}
1: if

PN
j=1

P (s1)cj

s1
> Eb then

2: return ”no feasible schedule exists”;

3: else if
PN

j=1
P (sM)cj

sM
≤ Eb then

4: execute jobs from J1 to JN at speed sM ;
5: else
6: rj = s1, for j = 1, 2, . . . , N ;
7: let Π be the set of the N(M − 1) execution pieces of the m-th exe-

cution pieces of job Jj for m = 2, 3, . . . , M and j = 1, 2, . . . , N ;
8: sort execution pieces in Π in a non-increasing order of ρi

ei
of execu-

tion piece πi;

9: find the minimum q such that
PN

j=1
P (s1)cj

s1
+

Pq−1
i=1 ei ≤ Eb <

PN
j=1

P (s1)cj

s1
+

Pq
i=1 ei;

10: for each job Jj with ψ(πi) = Jj for some 1 ≤ i < q, let rj be
sm, where m is maxi=1,2,...,q−1{φ(πi)|ψ(πi) = Jj};

11: Jj∗ ← ψ(πq);
12: execute jobs from J1 to JN , where every job Jj ∈ J \ ˘

Jj∗
¯

is executed at speed rj ,
Eb−

„
(
Pq−1

i=1 ei)+
PN

j=1
P (s1)cj

s1

«

eq
portion

of job Jj∗ is executed at sφ(πq), and the other portion of Jj∗ is
executed at speed rj∗ ;

brevity, ej,1 is P (s1)cj/s1. The reduced total flow time ρj,m of
the m-th execution piece of job Jj is the difference of the total flow
time by executing job Jj at speed sm instead of that at speed sm−1,
i.e., ρj,m = (N−j+1)cj (

1
sm−1

− 1
sm

), for m = 2, 3, . . . , M . For

brevity, let ρj,1 = (N − j + 1)
cj

s1
. Since P (s)/s is strictly convex

and monotonically increasing in [smin, smax], we know that

ej,m

ρj,m
<

ej,m+1

ρj,m+1
, (6)

for m = 2, 3, . . . , M − 1.
Initially, Algorithm GREEDY tries to execute all the jobs in J

at speed s1. That is, rj is set as s1 initially for all jobs Jj in
J. By

P
Ji∈J P (smin) · ci

smin
≤ Eb, the initial speed assign-

ment would result in a feasible schedule. Let Π be the set of the
N(M − 1) execution pieces of the m-th execution pieces of job
Jj for m = 2, 3, . . . , M and j = 1, 2, . . . , N . Suppose that the
additional energy consumption (the reduced total flow time, respec-
tively) of execution piece πi is ei (ρi, respectively). We index the
execution pieces in Π in a non-increasing order of the ratio of the
reduced total flow time to the additional energy consumption of an
execution piece. That is, ρi

ei
≥ ρj

ej
for any i < j. For brevity, let

ψ(πi) return job Jj and φ(πi) return index m, where πi is the m-th
execution piece of job Jj . Algorithm GREEDY then greedily finds
the minimum integer q such that

NX
j=1

P (s1)cj

s1
+

q−1X
i=1

ei ≤ Eb <
NX

j=1

P (s1)cj

s1
+

qX
i=1

ei.

For job Jj with ψ(πi) = Jj for some 1 ≤ i < q, rj is updated
to sm, where m is maxi=1,2,...,q−1{φ(πi)|ψ(πi) = Jj}. Suppose
that ψ(πq) is Jj∗ and φ(πq) is m∗. Every job Jj in J \ {Jj∗}

is executed at speed rj , while
Eb−

„
(
Pq−1

i=1 ei)+
PN

j=1
P(s1)cj

s1

«

eq
por-

tion of job Jj∗ is executed at speed sφ(πq), and the other portion of
Jj∗ is executed at speed rj∗ . The derived schedule then executes
all the jobs in J from J1 to JN consecutively. Algorithm GREEDY

is illustrated in Algorithm 2.
The time complexity of Algorithm GREEDY is shown as fol-

lows: The sorting and derivation of execution pieces could be done
in O(NM log(NM)) time. The time for the remaining part is
O(NM). The overall time is O(NM log(NM)).

9A-1

869

The feasibility of the derived schedule is shown as follows: Be-
cause of the inequality in Equation (6), when the m-th execution
piece of job Jj is one of the first q execution pieces in Π, the k-th
execution pieces of job Jj is also one of the first q execution pieces
in Π for any 1 < k < m. The energy consumption to execute job
Jj at the updated rj is

PN
j=1

P (s1)cj

s1
+

Pq−1
i=1 ei, which is no more

than Eb by the definition of q. The execution of job Jj∗ at speed

sφ(πq) consumes Eb − (
PN

j=1

P (s1)cj

s1
+

Pq−1
i=1 ei) additional en-

ergy. As a result, the derived schedule is feasible.
The optimality of Algorithm GREEDY is as follows:

THEOREM 2. Algorithm GREEDY derives an optimal schedule
of the energy-constrained average flow time minimization problem
on any non-ideal processor.

PROOF. From the convexity of the power consumption, a job
must be executed at one or two consecutive speeds [12] to mini-
mize the energy consumption. Based on Lemma 1, we only have to
consider schedules that execute jobs from J1 to JN . For any sched-
ule that does not satisfy the above two properties, the schedule can
be transformed into another one with the two properties.

For any feasible schedule S with the above properties, we show
that the total flow time is no less than the total flow time of the
derived schedule Sg of Algorithm GREEDY. We divide jobs in J
into two job sets J1 and J2, in which each of the jobs in J1 is ex-
ecuted at one speed and each of the jobs in J2 is executed at two
speeds in S. For job Jj in J1, r†j is the speed that Jj is executed

at in S. For job Jj in J2, r†j is the lower speed that Jj is exe-

cuted at in S, and x†
j is the portion that Jj is executed at speed

r†j . By the definition of S, we know that the remaining 1 − x†
j

portion of job Jj is executed at the higher consecutive speed of
r†j . For brevity, let x†

j = 1 for any job Jj in J1. Let ZS be a
vector of zS

j,m for j = 1, 2, . . . , N and m = 1, 2, . . . , M . If rj

is sm, zS
j,1, z

S
j,2, . . . , z

S
j,m are set as 1, zS

j,m+1 is set as 1 − x†
j ,

and zS
j,m+2, z

S
j,m+3, . . . , z

S
j,M are set as 0. By the definition of

execution pieces, we know that the energy consumption of S is
equal to

PN
j=1

PM
m=1 ej,mzS

j,m, and the total flow time of S is

(
PN

j=1 ρj,1) − (
PN

j=1

PM
m=1 ρj,mzS

j,m). The vector ZSg is de-
fined similarly for schedule Sg . Since execution pieces are sorted
in a non-increasing order of the ratio of the reduced total flow time
to the additional energy consumption of an execution piece, we
know that

PN
j=1

PM
m=1 ρj,mzS

j,m ≤ PN
j=1

PM
m=1 ρj,mz

Sg

j,m. As
a result, the average flow time of S is no less than that of Sg .

6. ENERGY-CONSTRAINED AVERAGE
WEIGHTED FLOW TIME

Simple extensions of our proposed algorithms could be made for
pursuing the minimization of the average weighted flow time, in
which the weighted flow time of a job is defined as the flow time
times the given weight of the job. If the duration of executions for
each job is determined, the minimization of the average weighted
flow time could be achieved by applying the well-known weighted-
shortest-job-first strategy [17, §3], which executes jobs in the non-
decreasing order of their lengths of durations of executions divided
by their weights. By executing jobs in a non-decreasing order of
their execution cycles divided by their weights, we could revise
Algorithm LM and Algorithm GREEDY to derive a solution for the
minimization of the average weighted flow time. Let wj be the
weight of job Jj . With the above order, we know ci

wi
≤ cj

wj
when

i < j.
Algorithm LM is modified by taking the objective function of

Equation (1) as
PN

j=1(
PN

i=j wi)
cj

rj
. The value N − j + 1 in Sec-

tion 4 is replaced by
PN

i=j wi, and the algorithm still works. Algo-

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

γ

I-MAKESPAN
I-LM

NI-MAKESPAN
NI-GREEDY

(a) unweighted cases

 8

 10

 12

 14

 16

 18

 20

 22

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 w
ei

gh
te

d
re

sp
on

se
 t

im
e

γ

I-MAKESPAN
I-LM

NI-MAKESPAN
NI-GREEDY

(b) weighted cases

Figure 2: Experimental results for fixed job sets when the num-
ber of jobs is 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 5 10 15 20 25 30

A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

Number of jobs

I-MAKESPAN
I-LM

NI-MAKESPAN
NI-GREEDY

(a) unweighted cases

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30

A
ve

ra
ge

 w
ei

gh
te

d
re

sp
on

se
 t

im
e

Number of jobs

I-MAKESPAN
I-LM

NI-MakESPAN
NI-GREEDY

(b) weighted cases

Figure 3: Experimental results when γ is 0.4

rithm GREEDY is modified by taking ρj,m as (
PN

i=j wi)cj(
1

sm−1
−

1
sm

).
The above two revised algorithms can be proved to be optimal

under a specified execution order. However, the weighted-shortest-
job-first strategy does not result in optimal solutions neither for
ideal nor for non-ideal processors. Consider two jobs J1 and J2

with c1 = 1, c2 = 10, w1 = 1 + ε, and w2 = 10 on a non-ideal
processor with s1 = 0.5, s2 = 1, and P (s) = s3, where Eb is
10.25 and ε < 0.5. Executing the two jobs in a non-decreasing or-
der of the ratios of their execution cycles divided by their weights,
i.e., J1 before J2, results in a solution with (121 + ε)/2 average
weighted flow time, and vice versa with (112 + 12ε)/2 average
weighted flow time. For ideal processors with two jobs, in which
w1 = 0.51, w2 = 1, c1 = 0.5, c2 = 1, smax = 1, smin = 0.9,
and Eb = 1.405, executing J2 before J1 results in a solution with
0.896̄ average weighted flow time by executing J2 at speed 1 and
J1 at speed 0.9, and vice versa with about 0.9031 average weighted
flow time by executing J1 at speed 1 and J2 at speed 0.951315.

7. PERFORMANCE EVALUATION
We compare the performance of Algorithm LM and Algorithm

GREEDY with solutions derived from Algorithm MAKESPAN, in
which Algorithm MAKESPAN decides the effective speed for J to
minimize the maximum completion time under the given energy
constraint and executes jobs in the shortest-job-first order. For non-
ideal processors Algorithm MAKESPAN executes jobs at two con-
secutive speeds from the higher one to the lower one. Algorithm
MAKESPAN is optimal when the objective is on the minimization of
the (maximum) job completion time. We denote such an algorithm
as Algorithm I-MAKESPAN (NI-MAKESPAN, respectively) when
ideal (non-ideal, respectively) processors are considered. Since Al-
gorithm GREEDY is designed for non-ideal processors, we also de-
note it as Algorithm NI-GREEDY, while Algorithm LM is denoted
as I-LM.

We perform evaluations for non-ideal processors by taking the
Intel XScale processor [24] as an example, in which there are five
processor speeds: 150, 400, 600, 800, and 1000 MHz with power

9A-1

870

consumption 80, 170, 400, 900, and 1600 mWatt. We normalize
the processor speed so that the maximum speed is 1 and the min-
imum speed is 0.15. For ideal processors, the processor speed is
continuous in the speed range of the Intel XScale, i.e., the speed is
in [0.15, 1]. The power consumption function of Intel XScale for
ideal processors is approximated as P (s) = 0.08 + 1.52s3 Watt.
Other settings on the power consumption function could have very
similar results. For each job Jj , cj is normalized as a random vari-
able in (0, 1]. For the evaluations of the minimization of the aver-
age weighted flow time, the weight of a job is a random variable in
(0.1, 10.1].

For a given job set J with N jobs, let Emax (Emin, respectively)
be the energy consumption by executing all of the jobs at speed
smax (smin, respectively). The energy consumption constraint Eb

for a job set depends on the value 0 ≤ γ ≤ 1. For a specified γ,
Eb is set as Emin + γ(Emax − Emin). We simulate job sets with
10 jobs by varying γ from 0.1 to 0.9. Another evaluation is done
for job sets with 5 to 30 jobs by taking γ as 0.4. For each configu-
ration, we perform evaluations with 99% confidence interval. The
average (weighted) flow time is taken as the performance metric in
the experiments.

Figure 2 shows the average flow time and weighted average flow
time for the evaluated algorithms when there are 10 jobs by varying
γ from 0.2 to 0.98, stepped by 0.02. For a fixed job set, we vary
the energy constraint. As a result, the greater the value of energy
constraint, the less the average (weighted) flow time for any of the
evaluated algorithms. Algorithm I-LM outperforms Algorithm I-
MAKESPAN, and Algorithm NI-GREEDY outperforms Algorithm
NI-MAKESPAN. The significant performance improvement from
γ = 0.34 to γ = 0.36 and from γ = 0.62 to γ = 0.64 is be-
cause the resulting schedule from Algorithm NI-MAKESPAN will
execute most jobs at one available speed which is close to the re-
sulting schedule from Algorithm I-MAKESPAN. When the energy
constraint is great enough, i.e., γ ≥ 0.6, the performance of Algo-
rithm I-LM becomes steady. This comes from Lemma 2 since the
resulting schedule will execute most jobs at speed smax. The more
amount of energy for executions only has little improvement for the
average (weighted) flow time.

Figure 3 shows the average flow time and weighted average flow
time for the evaluated algorithms when γ is 0.4 by varying the num-
ber of jobs from 5 to 30. Similarly, Algorithm I-LM outperforms
Algorithm I-MAKESPAN, and Algorithm NI-GREEDY outperforms
Algorithm NI-MAKESPAN.

8. CONCLUSION
This paper explores the minimization of the average flow time

under a given energy constraint on a DVS processor. Two algo-
rithms are proposed to derive optimal solutions for processors with
a continuous spectrum of the available speeds or with a finite num-
ber of discrete speeds. Jobs are executed in a non-decreasing order
of their execution cycles. The proposed algorithms are also eval-
uated with comparisons to solutions which execute every job at a
common (effective) speed. We also provide extensions for the min-
imization of the average weighted flow time. Simulation results
show the effectiveness of the proposed algorithms. It is still open
to minimize the average weighted flow time under a given energy
constraint.

For future research, we will explore the minimization of the av-
erage flow time for jobs with different arrival times. It is also inter-
esting to derive algorithms to minimize the average weighted flow
time under a given energy constraint.

References
[1] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time

minimization. In STACS, pages 621–633, 2006.

[2] T. A. Alenawy and H. Aydin. Energy-constrained scheduling for
weakly-hard real-time systems. In Proceedings of the 26th IEEE
Real-time Systems Symposium (RTSS’05), pages 376–385, 2005.

[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez. Determining
optimal processor speeds for periodic real-time tasks with different
power characteristics. In Proceedings of the IEEE EuroMicro
Conference on Real-Time Systems, pages 225–232, 2001.

[4] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez. Dynamic and
aggressive scheduling techniques for power-aware real-time systems.
In Proceedings of the 22nd IEEE Real-Time Systems Symposium,
pages 95–105, 2001.

[5] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to
manage energy and temperature. In Proceedings of the Symposium
on Foundations of Computer Science, pages 520–529, 2004.

[6] J.-J. Chen and T.-W. Kuo. Voltage-scaling scheduling for periodic
real-time tasks in reward maximization. In the 26th IEEE Real-Time
Systems Symposium (RTSS), pages 345–355, 2005.

[7] J.-J. Chen and T.-W. Kuo. Procrastination for leakage-aware
rate-monotonic scheduling on a dynamic voltage scaling processor.
In ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), pages 153–162, 2006.

[8] J.-J. Chen, T.-W. Kuo, and H.-I. Lu. Power-saving scheduling for
weakly dynamic voltage scaling devices. In Workshop on Algorithms
and Data Structures (WADS), pages 338–349, 2005.

[9] J.-J. Chen, T.-W. Kuo, and C.-S. Shih. 1+ε approximation clock rate
assignment for periodic real-time tasks on a voltage-scaling
processor. In the 2nd ACM Conference on Embedded Software
(EMSOFT), pages 247–250, 2005.

[10] J.-J. Chen, T.-W. Kuo, and C.-L. Yang. Profit-driven uniprocessor
scheduling with energy and timing constraints. In ACM Symposium
on Applied Computing, pages 834–840, 2004.

[11] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 37–46, 2003.

[12] T. Ishihara and H. Yasuura. Voltage scheduling problems for
dynamically variable voltage processors. In Proceedings of the
International Symposium on Low Power Electronics and Design,
pages 197–202, 1998.

[13] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic
voltage scaling for real-time embedded systems. In Proceedings of
the Design Automation Conference, pages 275–280, 2004.

[14] W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for
dynamically variable voltage processors. In Proceedings of the 40th
Design Automation Conference, pages 125–130, 2003.

[15] Y.-H. Lee, K. P. Reddy, and C. M. Krishna. Scheduling techniques for
reducing leakage power in hard real-time systems. In 15th Euromicro
Conference on Real-Time Systems (ECRTS), pages 105–112, 2003.

[16] P. Mejı́a-Alvarez, E. Levner, and D. Mossé. Adaptive scheduling
server for power-aware real-time tasks. ACM Transactions on
Embedded Computing Systems, 3(2):284–306, 2004.

[17] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Precentice
Hall, 2nd edition, 2002.

[18] K. Pruhs, P. Uthaisombut, and G. J. Woeginger. Getting the best
response for your erg. In 9th Scandinavian Workshop on Algorithm
Theory (SWAT), pages 14–25, 2004.

[19] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated
Circuits. Prentice Hall, 2nd edition, 2002.

[20] R. L. Rardin. Optimization in Operations Research. Prentice Hall,
1998.

[21] C. Rusu, R. Melhem, and D. Mosse. Maximizing the system value
while satisfying time and energy constraints. In IEEE 23th Real-Time
System Symposium, pages 246–255, Dec. 2002.

[22] C. Rusu, R. Melhem, and D. Mossé. Multiversion scheduling in
rechargeable energy-aware real-time systems. In EuroMicro
Conference on Real-Time Systems (ECRTS’03), pages 95–104, 2003.

[23] INTEL. Strong ARM SA-1100 Microprocessor Developer’s Manual,
2003. INTEL.

[24] INTEL-XSCALE, 2003. http://developer.intel.com/design/xscale/.
[25] TRANSMETA, 2003.
[26] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced

CPU energy. In Proceedings of the 36th Annual Symposium on
Foundations of Computer Science, pages 374–382. IEEE, 1995.

9A-1

871

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

