
Fault Dictionary Size Reduction for Million-Gate Large Circuits

Abstract - In general, fault dictionary is prevented from
practical applications for its extremely large size. Several
previous works are proposed for the fault dictionary size
reduction. However, they might not be able to handle today’s
million-gate circuits due to the high time and space complexity.
In this paper, we propose an algorithm to significantly reduce the
size of fault dictionary while still preserving high diagnostic
resolution. The proposed algorithm possesses extremely low time
and space complexity by avoiding constructing the huge
distinguishability table, which inevitably boosts up the required
computation complexity. Experimental results demonstrate that
the proposed algorithm is fully capable of handling industrial
million-gate large circuits in a reasonable amount of runtime and
memory.

I. INTRODUCTION

Semiconductor technology progresses constantly so that
electronic products with higher performance and various novel
functions can be provided to end users. However, denser and
finer fabrication processes make chips vulnerable to defects,
and hence lower the manufacturing yield and reliability. Fault
diagnosis techniques are then proposed to help locate faults
and determine the causes of failures in the manufacturing
process. Based on the diagnosis results, manufacturers can
refine their processes while designers can modify their designs
to improve the yield of chips.

Conventionally, diagnosis techniques are classified into two
major categories, effect-cause and cause-effect analysis [1].
Dynamic diagnosis is an effect-cause analysis which observes
the faulty response of the circuit under test (CUT) and
deduces the cause of error based on the fault-free response.
There are many research works devoted to dynamic diagnosis
[2-4]. For the cause-effect analysis, diagnosis uses a
pre-computed fault dictionary generated through fault
simulation. The dictionary stores the faulty output response of
the CUT in the presence of every modeled fault. By
comparing the response of the CUT to the response in the
dictionary, faults can be recognized and hence located. If,
however, in the presence of different faults, the CUT
responses the same to any test vector in a given test set, these
faults form an equivalence class which limits the maximum
diagnostic resolution of the test set. Here the diagnostic
resolution (DR) is defined as the fraction of distinguishable
faults of all modeled faults.

Nevertheless, two obstacles generally prevent fault
dictionary to practical applications: (1) Creating a dictionary
with high diagnostic resolution requires a long computation
time. (2) The size of dictionary is extremely large and thus
impractical to use. The first obstacle has been evaluated by the
authors in [5]. They show that only a small number of
diagnostic runs are sufficient to compensate for the
nonrecurring effort of creating a fault dictionary. Therefore,
fault dictionary is still attractive as long as its size can be kept
small. Unfortunately, as the circuit size increases, the memory
requirement of fault dictionary grows so rapidly and thus
becomes unacceptable.

Though many research works [6-8] are contributed to
overcome this obstacle, some of them are still unable to bring
down the dictionary size to an acceptable level; others
consume too much time and space to be applied on real
industrial circuits. In [6], the proposed method requires to
build the distinguishability table whose space complexity is
up to O(|T|*|F|2), where |T| is the number of test vectors and |F|
is the number of faults. The complexity is simply too high to
be acceptable for million-gate circuits. In this paper, an
improved algorithm is proposed in which there is no need to
construct the distinguishability table. As a result, our
algorithm possesses extremely low time and space complexity.
The experimental results exhibit the excellent runtime
efficiency, low memory space requirement and great
dictionary size reduction capability of our method.

The rest of this paper is organized as follows. Section II
briefly describes several related works. Section III introduces
some background knowledge of our work. Section IV presents
the proposed method. Experimental results and conclusions
are given in Section V and VI, respectively.

II. RELATED WORKS

A full fault dictionary stores the full response for each test
vector applying to the CUT. It possesses the largest size of all
kinds of fault dictionaries and its size is O(R*|T|*|F|) for a
dictionary of R primary outputs, |T| test vectors, and |F| faults.
Other forms of dictionaries such as the pass-fail dictionary and
the vector dictionary are all compacted or compressed by
certain approaches. These approaches can be further
partitioned into two groups — using lossless or lossy
techniques.

Yu-Ru Hong and Juinn-Dar Huang

Department of Electronics Engineering
National Chiao Tung University

Hsinchu, Taiwan
yrhong.ee94g@nctu.edu.tw, jdhuang@mail.nctu.edu.tw

1-4244-0630-7/07/$20.00 ©2007 IEEE.

8C-4

829

Lossless methods preserve the same diagnostic resolution
as the full dictionary. One popular lossless compaction
technique is to store merely the responses of the failed test
vectors for each modeled fault. Another research work
develops alternative storage structures by encoding [9]. On the
other hand, lossy approaches may sacrifice some diagnostic
resolution to achieve an even smaller dictionary size. A
pass-fail dictionary does not store the faulty output responses
of the CUT at all. Instead, it contains an entry for each
fault-test pair to indicate whether the test vector can detect the
fault or not. Usually, ‘0’ stands for an undetected fault; ‘1’
stands for a detected fault. The size of pass-fail dictionary is
O(|T|*|F|) only. Unlike the pass-fail dictionary, a vector
dictionary alternatively stores the indices of the failed test
vectors. Among various exploited compaction techniques,
pass-fail and vector dictionaries are comparatively simple and
small. However, the dictionary size is still too big to be
applied to today’s multi-million-gate circuits even after the
compaction. Hence, it is an appealing tradeoff to tolerate
slight degradation of diagnostic resolution for drastically
smaller memory storage requirement.

In [6], on the basis of pass-fail dictionary, authors propose a
size reduction method which partitions the test set and stores a
combined signature for each partition. With a minor loss in
diagnostic resolution, the dictionary can be compacted to the
ideal log2|F| partitions. Thus, the size of the fault dictionary
is reduced to only log2|F|/|T| times large. The compaction
process, however, needs to construct a distinguishability table
with the space complexity O(|T|*|F|2), which makes its time
complexity at least the same level high. Therefore, it is highly
doubtful whether the method of such high time and space
complexity can be applied to today’s SoC chips with millions
of possible faults.

III. PRELIMINARIES

Given a fault set F and a test vector set T, a pass-fail
dictionary D is defined as a |T|x|F| matrix where

≤≤≤≤=
≤≤≤≤=

||1|,T|i1otherwise,0
||1|,T|i1detectcanif,1

FjD

FjftD

ij

jiij

Fig. 1 shows an example of a pass-fail dictionary D1. For
example, the test vector t1 can detect two faults f4 and f5, while
the test vector t2 can detect f2, f3, f4 and f5. Based on the
pass-fail dictionary, we construct a subset of T, the selected
test set TS, in which are the vectors to be stored in the resultant
reduced fault dictionary. That is, our proposed method aims at
efficiently constructing a small but effective TS. In this paper,
TS is considered as an ordered sequence for convenience in the
vector selection phase, though the order does not actually

affect the diagnostic resolution of the selected test set.
Once the TS is created, the corresponding fault equivalence

sets are formed. A fault equivalence set FE is a set of faults in
which all fault pairs are indistinguishable with respect to TS.
Given D1 in Fig. 1, assume TS = {t1}, then there are two fault
equivalence sets, FE1= {f1, f2, f3} and FE2 = {f4, f5}. The
distinguishability information can be presented using a table
by first defining a fault pair set P as

(){ }jiFfffffpP jijik <∈== ,,|, .
Then, the distinguishability table A is a |T|x|P| matrix,

where

=
=

otherwise,0
hdistinguiscanif,1

ij

jiij

A

fptA

A1 in Fig. 2 is the distinguishability table obtained from D1
in Fig. 1. The row of t1 in A1 with 4 0’s which indicate fault
pairs (f1, f2), (f1, f3), (f2, f3), (f4, f5) are indistinguishable for t1.
Now, the dictionary size reduction problem can be translated
to finding a minimum number of rows to cover all fault pairs.
This set-cover problem is a well-known NP-complete problem
[10]. Even worse, due to the extremely high space complexity
O(|T|*|F|2) of distinguishability table, a circuit with one
million faults leads to a table whose size is of 1015 order even
if only 1000 test vectors are present.

A sub-optimal but simple heuristic algorithm is therefore
necessary to deal with this problem. As in [6], a greedy
algorithm is adopted. This algorithm simply selects the best
test vector which distinguishes most new fault pairs in every
iteration. Even though the greedy algorithm is so simple, the
problem remains intractable for an extremely large
distinguishability table. Take A1 as an example to show how
this algorithm works. In the 1st iteration, t1, t3 and t4 can
distinguish 6 fault pairs, while t2 distinguishes only 2 fault
pairs. So the algorithm arbitrarily selects t1 into TS. In the 2nd

iteration, it skips the 6 recognized fault pairs by t1 and
evaluates the remaining test vectors. t3 outperforms others by
distinguishing 3 new fault pairs and is added to TS. Then, all
fault pairs are covered after t2 is selected in the last iteration.
The algorithm ends with TS = {t1, t3, t2}. This greedy set-cover
algorithm is shown in Fig. 3. The time complexity of
Greedy-Set-Cover algorithm is O(N*|T|*|F|2), where N is a
given upper bound of the size of TS. Ideally, when test vectors
evenly partition the faults into detected and undetected ones,
the minimal possible test size is log2|F|, which is generally
hard to achieve since a typical test vector usually detects only
a small portion of faults and leaves most faults undetected.
Though the greedy algorithm is simple, the O(|T|*|F|2)
introduced by the distinguishability table still keeps the
algorithm far from practical for large circuits.

Fig. 1. Pass-fail dictionary D1.

 f1 f2 f3 f4 f5

t1 0 0 0 1 1

t2 0 1 1 1 1

t3 1 1 0 0 1

t4 0 1 1 0 0

Fig. 2. Distinguishability table A1.

 (f1,f2) (f1,f3) (f1,f4) (f1,f5) (f2,f3) (f2,f4) (f2,f5) (f3,f4) (f3,f5) (f4,f5)

t1 0 0 1 1 0 1 1 1 1 0

t2 1 1 1 1 0 0 0 0 0 0
t3 0 1 1 0 1 1 0 0 1 1
t4 1 1 0 0 0 1 1 1 1 0

8C-4

830

IV. PROPOSED METHOD

In this section, we start by translating the distinguishability
table into its graph equivalent and identify several important
properties which serve as the keystones in the proposed
algorithm.

First, construct a complete graph G with |F| vertices. Each
vertex vi represents for the fault fi. Then, for a given selected
test set TS and its corresponding distinguishability table,
remove the edge (vi, vj) in G if (fi, fj) is covered by a test
vector in the distinguishability table, That is, the remaining
edges in G represent those indistinguishable fault pairs under
TS. The resultant graph has the following properties:

(1) Graph G is a complete graph if TS = ∅.
(2) There is an edge between (vi, vj) if and only if the fault

pair (fi, fj) is indistinguishable under the given TS.
(3) TS partitions G into a set of disjoint connected

components. Faults within the same connected
component form a fault equivalence set.

(4) Each connected component, representing a fault
equivalence set, is a complete graph.

Property (1) is trivial since an empty test set is incapable of
removing any edge from G. Property (2) directly comes from
the operations of edge removal; it implies that the edges
represent those uncovered 0’s in the distinguishability table.
Property (3) says that after removing specific edges according
to the distinguishability table, G is broken into a set of disjoint
connected components. Because a test vector can only
distinguish the detected faults from the undetected ones, it
actually applies a cut on the graph G. Edges across the cut are
then removed. The remaining edges represent the
indistinguishabiliy among the faults within a connected
component, forming a fault equivalence set. Property (4) is
based on the definition of fault equivalence set, in which every
two faults are indistinguishable. In other words, there should
be edges between all vertex pairs within a connected
component. Hence every connected component in G must be a

complete graph. The above properties can be examined using
the example shown in Fig. 4, which is derived from the same
example given in Section III. The initial graph is complete, as
property (1) states. Then the growing test set continually
partitions the graph into more disjoint complete connected
components until all fault pairs are distinguishable. Property
(2), (3) and (4) can be clearly observed from the graphs shown
in Fig. 4.

Next, we reexamine the greedy algorithm introduced in the
previous section in a perspective of graph. The greedy
algorithm always selects the best test vector to cover most
fault pairs in an iteration. In graph, the best vector is actually
the one which removes the most edges if it is added into the
current TS. Fig. 5 gives an example to demonstrate the
effectiveness of two different vectors. There are two
candidates, t1 and t2, to be added into the selected test set.
However, t1 can remove 6 edges while t2 can remove only 4
edges from the initial complete graph. Thus t1 is a better
choice than t2 in this case. There is also an example in Fig. 4
to illustrate the overall selection process of the previous
greedy algorithm. In fact, removing most edges is equivalent
to minimizing remaining edges. Therefore, the optimization
target can be transformed from finding a minimum
set-covering of the distinguishability table into minimizing the
remaining edges in the corresponding graph.

Based on the above properties, the number of remaining
edges in the graph for a given selected test set TS can be
calculated as follows. Assume TS partitions all faults into n
fault equivalence sets, FE1, FE2, FE3, …, FEn. From Property (4),
each fault equivalence set is represented as a complete

Fig. 3. The pseudo code of Greedy-Set-Cover algorithm.

Greedy-Set-Cover(F, T, N) {
TS ∅

 do
 for i 1 to |T|
 if ti ∉ TS
 Yi TS ∪ {ti}
 calculate CFPi
 identify tj with the largest CFP
 TS TS ∪ {tj}
 while (uncovered fault pairs exist

and |TS| < N)
 return TS
}
N is the given upper bound of the number of selected vectors
TS is the set of selected test vectors
Yi is a temporary test set
CFPi is the number of covered fault pairs

Fig. 4. Selection process resulting in a set of complete
connected components.

f2

f4f3

f1

f5f2

f4f3

f1

f5

f2

f4f3

f1

f5f2

f4f3

f1

f5

select t1

select t3
f2

f4f3

f1

f5f2

f4f3

f1

f5

select t2f2

f4f3

f1

f5f2

f4f3

f1

f5

TS = {t1, t3}

TS = {t1}

TS = {t1, t3, t2}

Fig. 5. Illustration of effectiveness of different test vectors.

f2

f4f3

f1

f5f2

f4f3

f1

f5

f2

f4f3

f1

f5f2

f4f3

f1

f5

select t1

f2

f4f3

f1

f5f2

f4f3

f1

f5

select t2

f2

f4f3

f1

f5f2

f4f3

f1

f5

remove 6
edges

f2

f4f3

f1

f5f2

f4f3

f1

f5 remove 4
edges

TS = {t1}

TS = {t2}

8C-4

831

connected component. Hence, the number of remaining edges
in the graph is

2
)1|(|||

2
)1|(|||

2
)1|(|||

2
||

2
||

2
||

2211

21

−+−+−=

+++

EnEnEEEE

EnEE

FFFFFF

FFF

=

=−=

++−++=

n

i
Eis

s

EnEEEnEE

FTEF
FTEF

FFFFFF

1

2

21
22

2
2

1

||)(where
2

||)(
2

|)||||(|||||||

Edge Factor, EF, is introduced and defined above. Since |F|
is a constant, the number of remaining edges is solely
determined by the edge factor, which is the square sum of the
cardinalities of all fault equivalence sets. Calculating the edge
factor for a candidate test set is simple and can be done in the
time of O(|F|) by a specific implementation described later.
The proposed EF-based greedy algorithm is shown in Fig. 6.

Calculation of EFs dominates the computation complexity
of the proposed algorithm and special cares need to be taken
in the implementation details. Obtaining EF for a given Ts
requires completing two tasks: 1) find which fault equivalence
set each fault belongs to; 2) find the cardinality of each fault
equivalence set. For the first task, an SID of a fault fi with
respect to TS is a sequence defined as

[]||321| ssi TTf wwwwSID =

where wk indicates whether the kth vector in TS can detect fi.
Each fault has a bit recording whether it is detected by a
specific test vector or not, so the length of SID depends on the
size of TS. Faults with the same SID belong to the same FE
because they can not be distinguished under the given TS. Fig.
7 shows an example of how to get SIDs for a given TS.

For the second task, a hash table of size M is constructed to
count the number of faults in each fault equivalence set, where
M is selected as a prime number slightly larger than |F|. The
proposed algorithm scans all the faults one by one, calculates
their SIDs under a given TS, and then searches for their SIDs
in the hash table. If there is a search hit, the counter of the
associated SID is incremented by 1. This implies the current
fault belongs to an existing fault equivalence class. Otherwise,
the algorithm creates a new node in the hash table. This node
is associated with the SID of the current fault and the

corresponding counter is initialized to 1. Note that there is at
most min(2|Ts|,|F|) nodes in the hash table. Typically,
min(2|Ts|,|F|) is limited to |F| as TS becomes large enough.
Hence, a hash table with size M > |F| ensures the loading
density < 1 all the time. Empirically, this implies on average
1.5 search is merely required to check whether an SID is in the
hash table or not [11]. After the hash table is successfully
constructed, every single node in the hash table represents a
unique fault equivalence set and the associated counter
indicates its cardinality. An example of the construction
process of the hash table for TS given in Fig. 7 is shown in Fig.
8. The last step is simply traversing the hash table and
calculating the EF(TS). Both of these two steps, searching all
SIDs within the hash table and calculating the EF, take about
O(|F|) time.

Note that neither the distinguishability table nor the
transformed graph needs to be explicitly constructed in this
algorithm. Instead, the edge factor guides the iterative test
selection process throughout the algorithm. By utilizing the
above implementation, it takes merely O(|F|) time to obtain
the EF for a given test set. So given a upper bound of the
number of selected test vectors, N, the time complexity of
Greedy_EF is O(N*|T|*|F|). Note that N is set to the ideal
log2|F| in this paper for maximum possible dictionary size

reduction. Therefore, the time complexity is an extremely low
O(|T|*|F|*log2|F|). Moreover, the memory requirement for
Greedy_EF is also extremely low. The length of an SID is at
most |T| bits and usually O(log2|F|) bits in practical use. Hence
the hash table requires only O(|F|*log2|F|) space. Hence the
space complexity of Greedy_EF is O(|T|*|F|) due to the
construction of the initial pass-fail dictionary. We conclude
that the proposed algorithm indeed possesses low time and
space complexity.

V. EXPERIMENTAL RESULTS

The proposed algorithm is implemented in C++ with the
data structures described in Section IV. All experiments are

Fig. 6. The pseudo code of the proposed EF-based algorithm.

Greedy_EF(F, T, N) {
TS ∅

 do
 for i 1 to |T|
 if ti ∉ TS
 Yi TS ∪ {ti}
 calculate EF(Yi)
 identify tj with the smallest EF
 TS TS ∪ {tj}
 while (EF(TS) > |F| and |TS| < N)
 return TS
}

N is the given upper bound of the number of selected vectors
TS is the set of selected test vectors
Yi is a temporary test set

Fig. 7. SIDs corresponding to growing selected test sets.

 f1 f2 f3 f4 f5

TS = {t1} 0 0 0 1 1

TS = {t1,t3} 01 01 00 10 11

TS = {t1, t3, t2} 010 011 001 101 111

Fig. 8. Hash table facilitating the computation of EF.

0
3

1
2

00
1

01
210

1

001
1

4
3
2
1
0

4
3
2
1
0

4
3
2
1
0

111
1

4
3
2
1
0

4
3
2
1
0

SID
count

11
1 011

1

101
1

010
1

8C-4

832

performed on a Pentium4 3.0 GHz platform.
First, we apply our method to ISCAS’85 and ISCAS’89

benchmark sets [12], [13]. The Atalanta test generator [14]
and HOPE fault simulator [15] are used to generate the
original fault dictionary for each circuit. In order to meet the
industrial practice, the compaction techniques in Atalanta are
turned on. To improve the diagnostic resolution, the fault
dictionaries are preprocessed by XORing the responses of the
test vectors as in [6]. Table I lists the experimental results of
the benchmark circuits. The second and third columns denote
the number of test vectors and faults, respectively. The size of
the selected test set TS is set to log2|F| shown in the forth
column in order to directly compare the diagnostic resolutions
reported in [6]. The fifth and sixth columns denote the
diagnostic resolutions before reduction and after reduction.
The seventh column denotes the diagnostic resolutions
revealed in [6]. The eighth column denotes the fault dictionary
reduction ratio. The results show that our diagnostic
resolutions are comparably good as those reported in [6] for
ISCAS’85 benchmark circuits. The average size reduction
ratio is up to 87.8%, while the average DR loss is only
0.00161, less than 0.2%. To sum up, the fault dictionary size
reduction ratio is very significant with merely a slight loss in
DR.

The ninth and tenth columns in Table I show the CPU time
and memory usage of our proposed algorithm. The runtime is
remarkably short. Even the largest circuit in the benchmark set
can be processed within a minute. Along with the low time
complexity, O(|T|*|F|*log2|F|), the proposed method is capable
of dealing with practical large industrial circuits. Besides the
time complexity, the other obstacle preventing the
distinguishability table to practical applications is its
unacceptable large size. By using the edge factor instead, the
proposed algorithm reduces the memory usage to about the
size of the original fault dictionary. The largest circuit in Table
I requires only 24MB throughout the whole reduction process.

As discussed previously, without the explicit construction of
the distinguishability table, the proposed algorithm performs
impressively well with short runtime and low memory usage.
Though we cannot directly compare our results to those of [6],
in which no runtime or memory information is provided, the
experimental results along with the complexity analysis
presented in Section IV should be enough to ensure the
superiority of the proposed algorithm in both aspects.

The circuits in Table I are not large enough to demonstrate
the proposed algorithm’s capability of handling large
industrial circuits. Hence, for the second part of the
experiment, the proposed algorithm is applied to several large
randomly generated fault dictionaries. The distribution of ‘1’
and ‘0’ entries in the generated fault dictionaries is set to be
equal to the average of all ISCAS’85 and ’89 benchmark
circuits. The results on those weighted random fault
dictionaries are shown in Table II. The first and the second
columns denote the number of test vectors and faults. The
fourth column denotes the diagnostic resolution. Possibly due
to the random characteristic of the dictionaries, the diagnostic
resolutions are impressively high. The fifth and sixth columns
show the runtime and memory usage, respectively. For most
cases, the runtimes are kept within one hour. Even the largest
case possessing million faults takes merely around an hour to
complete the whole reduction process. The memory usage is
also low in all cases; none of them exceeds 1GB. Though
these randomly generated fault dictionaries are not derived
from real circuits, the DR cannot serve more than a reference.
However, applying on the large size dictionaries directly
validate time and space efficiency of the proposed algorithm.
It should be reasonable to claim that a modest computer
nowadays can run the proposed algorithm to process
million-gate large circuits.

The proposed method exhibits great efficiency in both
runtime and memory usage as shown in Table I and II. It
suggests that the proposed edge factor can be used as a good

TABLE I
Results on ISCAS’85 and’89 Benchmark Circuits

Circuit |T| |F| log2|F|
DR before
reduction

DR after
reduction

DR in [6]
Size

Reduction
ratio

CPU
(s)

Mem
(MB)

c432 50 524 10 0.995877 0.989374 0.993403 0.800 0.03 <1
c499 53 758 10 0.999456 0.997121 0.997257 0.811 0.04 <1
c880 54 942 10 0.999621 0.996950 0.996970 0.815 0.06 <1

c1355 86 1574 11 0.999241 0.997302 0.997274 0.872 0.15 <1
c1908 120 1879 11 0.999403 0.997000 0.997063 0.908 0.26 <1
c2670 106 2747 12 0.997739 0.996207 0.996088 0.887 0.35 <1
c3540 150 3428 12 0.998169 0.996568 0.996694 0.920 0.64 <1
c5315 125 5350 13 0.999776 0.999268 0.999083 0.896 0.91 <1
c6288 30 7744 13 0.999815 0.999578 0.999555 0.567 0.27 <1
c7552 217 7550 13 0.999566 0.998992 0.998871 0.940 2.22 2
s9234 384 6927 13 0.995602 0.993234 -- 0.966 3.56 2
s13207 460 9815 14 0.999591 0.998303 -- 0.970 6.72 4
s15850 438 11725 14 0.998871 0.997933 -- 0.968 7.69 6
s35932 68 39094 16 0.989591 0.989422 -- 0.765 4.02 6
s38417 901 31180 15 0.999952 0.999587 -- 0.983 41.69 28
s38584 654 36303 16 0.998275 0.997943 -- 0.976 42.47 24

8C-4

833

guidance or cost function in more sophisticated algorithms
which may further boost up the diagnostic resolution and thus
allow smaller fault dictionary. For example, we can keep
several best candidates in each test vector selection iteration of
the algorithm to get a more globally optimized solution.
Another extension is to use simulated annealing based
algorithms with the edge factor as the cost function. The
advantage of low memory complexity in our proposed method
is still preserved in the above two kinds of algorithm.
Although the details need more research efforts, we believe
the proposed edge factor is promising to be used in other
algorithms.

VI. CONCLUSIONS

A time- and space-efficient approach for size reduction of
fault dictionary is proposed in this paper. Edge factor, being
strictly proportional to the number of undistinguished fault
pairs, is introduced as the guidance throughout the algorithm.
With correct implementation techniques, the edge factor can
be calculated directly from the original pass-fail fault
dictionary and thus the time- and memory-consuming
construction of the distinguishability table and further
operations on that table are completely excluded.
Experimental results over sets of benchmark circuits validate
the effectiveness and efficiency of the proposed algorithm.
Hence, the proposed algorithm is capable of providing a
feasible solution of fault dictionary compaction for today’s
industrial million-gate circuits. Moreover, the edge factor is
promising to be applied in more sophisticated algorithms for
further research works.

ACKNOWLEDGMENT

This work was supported in part by the National Science
council of Taiwan, R.O.C., under Grant NSC
94-2220-E009-041. The authors also want to thank the
anonymous reviewers for their valuable comments.

REFERENCES

[1] M. Abramovici, M.A. Breuer and A.D. Friedman, “Digital
systems testing and testable design,” Computer Science Press,
1990.

[2] F. Kocan and D.G. Saab, “Dynamic fault diagnosis on
reconfigurable hardware,” in Proc. Of IEEE/ACM Design
Automation Conference, 1999, pp. 691-696.

[3] R. Li, J. H. Olson and D.L. Chester, “Dynamic fault detection and
diagnosis using neural networks,” in IEEE International
Symposium on Intelligent control, 1990, vol.2, pp. 1169-1174.

[4] S. Venkataraman, I. Hartanto and W. Kent Fuchs, “Dynamic
diagnosis of sequential circuits based on stuck-at faults,” in IEEE
VLSI Test Symposium, 1996, pp. 198-203.

[5] I. Pomeranz and S.M. Reddy, “On the generation of small
dictionaries for fault location,” In Proc. of IEEE/ACM
International Conference on Computer-Aided Design, 1992, pp.
272-279.

[6] B. Arslan and A. Orailoglu, “Fault dictionary size reduction
through test response superposition,” in Proc. of IEEE
International Conference on Computer Design, 2002, pp.
480-485.

[7] P.G. Ryan, W.K. Fuchs and I. Pomeranz, “Fault dictionary
compression and equivalence class computation for sequential
circuits,” in Proc. of IEEE/ACM International Conference on
Computer-Aided Design, 1993, pp. 508-511.

[8] V. Boppana and W.K. Fuchs, “Fault dictionary compaction by
output sequence removal,” in Proc. of IEEE/ACM International
Conference. on, Computer-Aided Design, 1994, pp. 576-579.

[9] V. Boppana, I. Hartanto, and W.K. Fuchs,, “Full fault dictionary
storage based on lable tree encoding, “ in Proc. of IEEE VLSI
Test Symposium, 1996, pp. 174-179.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein,
“Introduction to algorithms,” The MIT Press, 2003.

[11] E. Horowitz, S. Sahni, and D. Mehta, “Fundamentals of data
structures in C++,” W.H. Freeman and Company, 1995.

[12] F. Brglez and H. Fujiwara., “A neutral netlist of 10
combinational benchmark circuits and a target translator in
FORTRAN,” in Proc. of International Symposium on Circuits
and Systems, June 1985.

[13] F. Brglez et al., “Combination Profiles of Sequential
Benchmark Circuits”, in International Symposium on Circuits
and Systems, May 1989, pp. 1929-1934.

[14] H.K. Lee and D. S. Ha, “ On the Generation of Test Patterns
for Combinational Circuits,” Technical Report 12-93, Department
of Electrical Eng., Virginia Polytechnic Institute and State
University.

[15] H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault
simulator,” in Proc. of ACM/IEEE Design Automation
Conference, pages 336–340, 1992.

TABLE II
Results on Large Randomly-Generated Fault Dictionaries

|T| |F| log2|F| DR
CPU

(sec)

Mem

(MB)

1000 50000 16 0.999986 95.970 48

1000 100000 17 0.999990 222.510 96

1000 500000 19 0.999996 1579.220 492

1000 1000000 20 0.999998 3733.180 972

8C-4

834

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

