
Fault Dictionary Size Reduction for Million-Gate Large Circuits 

Abstract -  In general, fault dictionary is prevented from 
practical applications for its extremely large size. Several 
previous works are proposed for the fault dictionary size 
reduction. However, they might not be able to handle today’s 
million-gate circuits due to the high time and space complexity. 
In this paper, we propose an algorithm to significantly reduce the 
size of fault dictionary while still preserving high diagnostic 
resolution. The proposed algorithm possesses extremely low time 
and space complexity by avoiding constructing the huge 
distinguishability table, which inevitably boosts up the required 
computation complexity. Experimental results demonstrate that 
the proposed algorithm is fully capable of handling industrial 
million-gate large circuits in a reasonable amount of runtime and 
memory. 

I. INTRODUCTION

Semiconductor technology progresses constantly so that 
electronic products with higher performance and various novel 
functions can be provided to end users. However, denser and 
finer fabrication processes make chips vulnerable to defects, 
and hence lower the manufacturing yield and reliability. Fault 
diagnosis techniques are then proposed to help locate faults 
and determine the causes of failures in the manufacturing 
process. Based on the diagnosis results, manufacturers can 
refine their processes while designers can modify their designs 
to improve the yield of chips. 

Conventionally, diagnosis techniques are classified into two 
major categories, effect-cause and cause-effect analysis [1]. 
Dynamic diagnosis is an effect-cause analysis which observes 
the faulty response of the circuit under test (CUT) and 
deduces the cause of error based on the fault-free response. 
There are many research works devoted to dynamic diagnosis 
[2-4]. For the cause-effect analysis, diagnosis uses a 
pre-computed fault dictionary generated through fault 
simulation. The dictionary stores the faulty output response of 
the CUT in the presence of every modeled fault. By 
comparing the response of the CUT to the response in the 
dictionary, faults can be recognized and hence located. If, 
however, in the presence of different faults, the CUT 
responses the same to any test vector in a given test set, these 
faults form an equivalence class which limits the maximum 
diagnostic resolution of the test set. Here the diagnostic 
resolution (DR) is defined as the fraction of distinguishable 
faults of all modeled faults.  

Nevertheless, two obstacles generally prevent fault 
dictionary to practical applications: (1) Creating a dictionary 
with high diagnostic resolution requires a long computation 
time. (2) The size of dictionary is extremely large and thus 
impractical to use. The first obstacle has been evaluated by the 
authors in [5]. They show that only a small number of 
diagnostic runs are sufficient to compensate for the 
nonrecurring effort of creating a fault dictionary. Therefore, 
fault dictionary is still attractive as long as its size can be kept 
small. Unfortunately, as the circuit size increases, the memory 
requirement of fault dictionary grows so rapidly and thus 
becomes unacceptable. 

Though many research works [6-8] are contributed to 
overcome this obstacle, some of them are still unable to bring 
down the dictionary size to an acceptable level; others 
consume too much time and space to be applied on real 
industrial circuits. In [6], the proposed method requires to 
build the distinguishability table whose space complexity is 
up to O(|T|*|F|2), where |T| is the number of test vectors and |F| 
is the number of faults. The complexity is simply too high to 
be acceptable for million-gate circuits. In this paper, an 
improved algorithm is proposed in which there is no need to 
construct the distinguishability table.  As a result, our 
algorithm possesses extremely low time and space complexity. 
The experimental results exhibit the excellent runtime 
efficiency, low memory space requirement and great 
dictionary size reduction capability of our method. 

The rest of this paper is organized as follows. Section II 
briefly describes several related works. Section III introduces 
some background knowledge of our work. Section IV presents 
the proposed method. Experimental results and conclusions 
are given in Section V and VI, respectively. 

II. RELATED WORKS

A full fault dictionary stores the full response for each test 
vector applying to the CUT. It possesses the largest size of all 
kinds of fault dictionaries and its size is O(R*|T|*|F|) for a 
dictionary of R primary outputs, |T| test vectors, and |F| faults. 
Other forms of dictionaries such as the pass-fail dictionary and 
the vector dictionary are all compacted or compressed by 
certain approaches. These approaches can be further 
partitioned into two groups — using lossless or lossy 
techniques. 
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Lossless methods preserve the same diagnostic resolution 
as the full dictionary. One popular lossless compaction 
technique is to store merely the responses of the failed test 
vectors for each modeled fault. Another research work 
develops alternative storage structures by encoding [9]. On the 
other hand, lossy approaches may sacrifice some diagnostic 
resolution to achieve an even smaller dictionary size. A 
pass-fail dictionary does not store the faulty output responses 
of the CUT at all. Instead, it contains an entry for each 
fault-test pair to indicate whether the test vector can detect the 
fault or not. Usually, ‘0’ stands for an undetected fault; ‘1’ 
stands for a detected fault. The size of pass-fail dictionary is 
O(|T|*|F|) only. Unlike the pass-fail dictionary, a vector 
dictionary alternatively stores the indices of the failed test 
vectors. Among various exploited compaction techniques, 
pass-fail and vector dictionaries are comparatively simple and 
small. However, the dictionary size is still too big to be 
applied to today’s multi-million-gate circuits even after the 
compaction. Hence, it is an appealing tradeoff to tolerate 
slight degradation of diagnostic resolution for drastically 
smaller memory storage requirement. 

In [6], on the basis of pass-fail dictionary, authors propose a 
size reduction method which partitions the test set and stores a 
combined signature for each partition. With a minor loss in 
diagnostic resolution, the dictionary can be compacted to the 
ideal log2|F|  partitions. Thus, the size of the fault dictionary 
is reduced to only log2|F|/|T| times large. The compaction 
process, however, needs to construct a distinguishability table 
with the space complexity O(|T|*|F|2), which makes its time 
complexity at least the same level high. Therefore, it is highly 
doubtful whether the method of such high time and space 
complexity can be applied to today’s SoC chips with millions 
of possible faults. 

III. PRELIMINARIES

Given a fault set F and a test vector set T, a pass-fail 
dictionary D is defined as a |T|x|F| matrix where 

≤≤≤≤=
≤≤≤≤=

||1|,T|i1otherwise,0
||1|,T|i1detectcanif,1

FjD

FjftD

ij

jiij

Fig. 1 shows an example of a pass-fail dictionary D1. For 
example, the test vector t1 can detect two faults f4 and f5, while 
the test vector t2 can detect f2, f3, f4 and f5. Based on the 
pass-fail dictionary, we construct a subset of T, the selected 
test set TS, in which are the vectors to be stored in the resultant 
reduced fault dictionary. That is, our proposed method aims at 
efficiently constructing a small but effective TS. In this paper, 
TS is considered as an ordered sequence for convenience in the 
vector selection phase, though the order does not actually 

affect the diagnostic resolution of the selected test set. 
Once the TS is created, the corresponding fault equivalence 

sets are formed. A fault equivalence set FE is a set of faults in 
which all fault pairs are indistinguishable with respect to TS.
Given D1 in Fig. 1, assume TS = {t1}, then there are two fault 
equivalence sets, FE1= {f1, f2, f3} and FE2 = {f4, f5}. The 
distinguishability information can be presented using a table 
by first defining a fault pair set P as   

( ){ }jiFfffffpP jijik <∈== ,,|, .
Then, the distinguishability table A is a |T|x|P| matrix, 

where 

=
=
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A1 in Fig. 2 is the distinguishability table obtained from D1 
in Fig. 1. The row of t1 in A1 with 4 0’s which indicate fault 
pairs (f1, f2), (f1, f3), (f2, f3), (f4, f5) are indistinguishable for t1.
Now, the dictionary size reduction problem can be translated 
to finding a minimum number of rows to cover all fault pairs. 
This set-cover problem is a well-known NP-complete problem 
[10]. Even worse, due to the extremely high space complexity 
O(|T|*|F|2) of distinguishability table, a circuit with one 
million faults leads to a table whose size is of 1015 order even 
if only 1000 test vectors are present. 

A sub-optimal but simple heuristic algorithm is therefore 
necessary to deal with this problem. As in [6], a greedy 
algorithm is adopted. This algorithm simply selects the best 
test vector which distinguishes most new fault pairs in every 
iteration. Even though the greedy algorithm is so simple, the 
problem remains intractable for an extremely large 
distinguishability table. Take A1 as an example to show how 
this algorithm works. In the 1st iteration, t1, t3 and t4 can 
distinguish 6 fault pairs, while t2 distinguishes only 2 fault 
pairs. So the algorithm arbitrarily selects t1 into TS. In the 2nd

iteration, it skips the 6 recognized fault pairs by t1 and 
evaluates the remaining test vectors. t3 outperforms others by 
distinguishing 3 new fault pairs and is added to TS. Then, all 
fault pairs are covered after t2 is selected in the last iteration. 
The algorithm ends with TS = {t1, t3, t2}. This greedy set-cover 
algorithm is shown in Fig. 3. The time complexity of 
Greedy-Set-Cover algorithm is O(N*|T|*|F|2), where N is a 
given upper bound of the size of TS. Ideally, when test vectors 
evenly partition the faults into detected and undetected ones, 
the minimal possible test size is log2|F|, which is generally 
hard to achieve since a typical test vector usually detects only 
a small portion of faults and leaves most faults undetected. 
Though the greedy algorithm is simple, the O(|T|*|F|2)
introduced by the distinguishability table still keeps the 
algorithm far from practical for large circuits. 

Fig. 1. Pass-fail dictionary D1. 

 f1 f2 f3 f4 f5

t1 0 0 0 1 1 

t2 0 1 1 1 1 

t3 1 1 0 0 1 

t4 0 1 1 0 0 

Fig. 2. Distinguishability table A1. 

 (f1,f2) (f1,f3) (f1,f4) (f1,f5) (f2,f3) (f2,f4) (f2,f5) (f3,f4) (f3,f5) (f4,f5)

t1 0 0 1 1 0 1 1 1 1 0 

t2 1 1 1 1 0 0 0 0 0 0 
t3 0 1 1 0 1 1 0 0 1 1 
t4 1 1 0 0 0 1 1 1 1 0 
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IV. PROPOSED METHOD

In this section, we start by translating the distinguishability 
table into its graph equivalent and identify several important 
properties which serve as the keystones in the proposed 
algorithm. 

First, construct a complete graph G with |F| vertices. Each 
vertex vi represents for the fault fi. Then, for a given selected 
test set TS and its corresponding distinguishability table, 
remove the edge (vi, vj) in G if (fi, fj) is covered by a test 
vector in the distinguishability table, That is, the remaining 
edges in G represent those indistinguishable fault pairs under 
TS. The resultant graph has the following properties: 

(1) Graph G is a complete graph if TS = ∅.
(2) There is an edge between (vi, vj) if and only if the fault 

pair (fi, fj) is indistinguishable under the given TS.
(3) TS partitions G into a set of disjoint connected 

components. Faults within the same connected 
component form a fault equivalence set. 

(4) Each connected component, representing a fault 
equivalence set, is a complete graph. 

Property (1) is trivial since an empty test set is incapable of 
removing any edge from G. Property (2) directly comes from 
the operations of edge removal; it implies that the edges 
represent those uncovered 0’s in the distinguishability table. 
Property (3) says that after removing specific edges according 
to the distinguishability table, G is broken into a set of disjoint 
connected components. Because a test vector can only 
distinguish the detected faults from the undetected ones, it 
actually applies a cut on the graph G. Edges across the cut are 
then removed. The remaining edges represent the 
indistinguishabiliy among the faults within a connected 
component, forming a fault equivalence set. Property (4) is 
based on the definition of fault equivalence set, in which every 
two faults are indistinguishable. In other words, there should 
be edges between all vertex pairs within a connected 
component. Hence every connected component in G must be a 

complete graph. The above properties can be examined using 
the example shown in Fig. 4, which is derived from the same 
example given in Section III. The initial graph is complete, as 
property (1) states. Then the growing test set continually 
partitions the graph into more disjoint complete connected 
components until all fault pairs are distinguishable. Property 
(2), (3) and (4) can be clearly observed from the graphs shown 
in Fig. 4. 

Next, we reexamine the greedy algorithm introduced in the 
previous section in a perspective of graph. The greedy 
algorithm always selects the best test vector to cover most 
fault pairs in an iteration. In graph, the best vector is actually 
the one which removes the most edges if it is added into the 
current TS. Fig. 5 gives an example to demonstrate the 
effectiveness of two different vectors. There are two 
candidates, t1 and t2, to be added into the selected test set. 
However, t1 can remove 6 edges while t2 can remove only 4 
edges from the initial complete graph. Thus t1 is a better 
choice than t2 in this case. There is also an example in Fig. 4 
to illustrate the overall selection process of the previous 
greedy algorithm. In fact, removing most edges is equivalent 
to minimizing remaining edges. Therefore, the optimization 
target can be transformed from finding a minimum 
set-covering of the distinguishability table into minimizing the 
remaining edges in the corresponding graph. 

Based on the above properties, the number of remaining 
edges in the graph for a given selected test set TS can be 
calculated as follows. Assume TS partitions all faults into n 
fault equivalence sets, FE1, FE2, FE3, …, FEn. From Property (4), 
each fault equivalence set is represented as a complete 

Fig. 3. The pseudo code of Greedy-Set-Cover algorithm. 

Greedy-Set-Cover(F, T, N) { 
TS ∅

  do 
    for i  1 to |T| 
      if ti ∉ TS
        Yi  TS ∪ {ti}
        calculate CFPi
    identify tj with the largest CFP 
    TS  TS ∪ {tj}
  while ( uncovered fault pairs exist 

and |TS| < N) 
  return TS
}
N is the given upper bound of the number of selected vectors 
TS is the set of selected test vectors 
Yi is a temporary test set 
CFPi is the number of covered fault pairs 

Fig. 4. Selection process resulting in a set of complete 
connected components. 
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connected component. Hence, the number of remaining edges 
in the graph is 
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Edge Factor, EF, is introduced and defined above. Since |F| 
is a constant, the number of remaining edges is solely 
determined by the edge factor, which is the square sum of the 
cardinalities of all fault equivalence sets. Calculating the edge 
factor for a candidate test set is simple and can be done in the 
time of O(|F|) by a specific implementation described later. 
The proposed EF-based greedy algorithm is shown in Fig. 6. 

Calculation of EFs dominates the computation complexity 
of the proposed algorithm and special cares need to be taken 
in the implementation details. Obtaining EF for a given Ts 
requires completing two tasks: 1) find which fault equivalence 
set each fault belongs to; 2) find the cardinality of each fault 
equivalence set. For the first task, an SID of a fault fi with 
respect to TS is a sequence defined as 

[ ]||321| ssi TTf wwwwSID =

where wk indicates whether the kth vector in TS can detect fi.
Each fault has a bit recording whether it is detected by a 
specific test vector or not, so the length of SID depends on the 
size of TS. Faults with the same SID belong to the same FE
because they can not be distinguished under the given TS. Fig. 
7 shows an example of how to get SIDs for a given TS.

For the second task, a hash table of size M is constructed to 
count the number of faults in each fault equivalence set, where 
M is selected as a prime number slightly larger than |F|. The 
proposed algorithm scans all the faults one by one, calculates 
their SIDs under a given TS, and then searches for their SIDs 
in the hash table. If there is a search hit, the counter of the 
associated SID is incremented by 1. This implies the current 
fault belongs to an existing fault equivalence class. Otherwise, 
the algorithm creates a new node in the hash table. This node 
is associated with the SID of the current fault and the 

corresponding counter is initialized to 1. Note that there is at 
most min(2|Ts|,|F|) nodes in the hash table. Typically, 
min(2|Ts|,|F|) is limited to |F| as TS becomes large enough. 
Hence, a hash table with size M > |F| ensures the loading 
density < 1 all the time. Empirically, this implies on average 
1.5 search is merely required to check whether an SID is in the 
hash table or not [11]. After the hash table is successfully 
constructed, every single node in the hash table represents a 
unique fault equivalence set and the associated counter 
indicates its cardinality. An example of the construction 
process of the hash table for TS given in Fig. 7 is shown in Fig. 
8. The last step is simply traversing the hash table and 
calculating the EF(TS). Both of these two steps, searching all 
SIDs within the hash table and calculating the EF, take about 
O(|F|) time. 

Note that neither the distinguishability table nor the 
transformed graph needs to be explicitly constructed in this 
algorithm. Instead, the edge factor guides the iterative test 
selection process throughout the algorithm. By utilizing the 
above implementation, it takes merely O(|F|) time to obtain 
the EF for a given test set. So given a upper bound of the 
number of selected test vectors, N, the time complexity of 
Greedy_EF is O(N*|T|*|F|). Note that N is set to the ideal 
log2|F|  in this paper for maximum possible dictionary size 

reduction. Therefore, the time complexity is an extremely low 
O(|T|*|F|*log2|F|). Moreover, the memory requirement for 
Greedy_EF is also extremely low. The length of an SID is at 
most |T| bits and usually O(log2|F|) bits in practical use. Hence 
the hash table requires only O(|F|*log2|F|) space. Hence the 
space complexity of Greedy_EF is O(|T|*|F|) due to the 
construction of the initial pass-fail dictionary. We conclude 
that the proposed algorithm indeed possesses low time and 
space complexity. 

V. EXPERIMENTAL RESULTS

The proposed algorithm is implemented in C++ with the 
data structures described in Section IV. All experiments are 

Fig. 6. The pseudo code of the proposed EF-based algorithm. 

Greedy_EF(F, T, N) { 
TS ∅

  do 
    for i  1 to |T| 
      if ti ∉ TS
        Yi  TS ∪ {ti}
        calculate EF(Yi)
    identify tj with the smallest EF 
    TS  TS ∪ {tj}
  while (EF(TS) > |F| and |TS| < N) 
  return TS
}

N is the given upper bound of the number of selected vectors 
TS is the set of selected test vectors 
Yi is a temporary test set 

Fig. 7. SIDs corresponding to growing selected test sets. 

 f1 f2 f3 f4 f5

TS = {t1} 0 0 0 1 1 

TS = {t1,t3} 01 01 00 10 11 

TS = {t1, t3, t2} 010 011 001 101 111 

Fig. 8. Hash table facilitating the computation of EF. 
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performed on a Pentium4 3.0 GHz platform. 
First, we apply our method to ISCAS’85 and ISCAS’89 

benchmark sets [12], [13]. The Atalanta test generator [14] 
and HOPE fault simulator [15] are used to generate the 
original fault dictionary for each circuit. In order to meet the 
industrial practice, the compaction techniques in Atalanta are 
turned on. To improve the diagnostic resolution, the fault 
dictionaries are preprocessed by XORing the responses of the 
test vectors as in [6]. Table I lists the experimental results of 
the benchmark circuits. The second and third columns denote 
the number of test vectors and faults, respectively. The size of 
the selected test set TS is set to log2|F|  shown in the forth 
column in order to directly compare the diagnostic resolutions 
reported in [6]. The fifth and sixth columns denote the 
diagnostic resolutions before reduction and after reduction. 
The seventh column denotes the diagnostic resolutions 
revealed in [6]. The eighth column denotes the fault dictionary 
reduction ratio. The results show that our diagnostic 
resolutions are comparably good as those reported in [6] for 
ISCAS’85 benchmark circuits. The average size reduction 
ratio is up to 87.8%, while the average DR loss is only 
0.00161, less than 0.2%. To sum up, the fault dictionary size 
reduction ratio is very significant with merely a slight loss in 
DR. 

The ninth and tenth columns in Table I show the CPU time 
and memory usage of our proposed algorithm. The runtime is 
remarkably short. Even the largest circuit in the benchmark set 
can be processed within a minute. Along with the low time 
complexity, O(|T|*|F|*log2|F|), the proposed method is capable 
of dealing with practical large industrial circuits. Besides the 
time complexity, the other obstacle preventing the 
distinguishability table to practical applications is its 
unacceptable large size. By using the edge factor instead, the 
proposed algorithm reduces the memory usage to about the 
size of the original fault dictionary. The largest circuit in Table 
I requires only 24MB throughout the whole reduction process. 

As discussed previously, without the explicit construction of 
the distinguishability table, the proposed algorithm performs 
impressively well with short runtime and low memory usage. 
Though we cannot directly compare our results to those of [6], 
in which no runtime or memory information is provided, the 
experimental results along with the complexity analysis 
presented in Section IV should be enough to ensure the 
superiority of the proposed algorithm in both aspects. 

The circuits in Table I are not large enough to demonstrate 
the proposed algorithm’s capability of handling large 
industrial circuits. Hence, for the second part of the 
experiment, the proposed algorithm is applied to several large 
randomly generated fault dictionaries. The distribution of ‘1’ 
and ‘0’ entries in the generated fault dictionaries is set to be 
equal to the average of all ISCAS’85 and ’89 benchmark 
circuits. The results on those weighted random fault 
dictionaries are shown in Table II. The first and the second 
columns denote the number of test vectors and faults. The 
fourth column denotes the diagnostic resolution. Possibly due 
to the random characteristic of the dictionaries, the diagnostic 
resolutions are impressively high. The fifth and sixth columns 
show the runtime and memory usage, respectively. For most 
cases, the runtimes are kept within one hour. Even the largest 
case possessing million faults takes merely around an hour to 
complete the whole reduction process. The memory usage is 
also low in all cases; none of them exceeds 1GB. Though 
these randomly generated fault dictionaries are not derived 
from real circuits, the DR cannot serve more than a reference. 
However, applying on the large size dictionaries directly 
validate time and space efficiency of the proposed algorithm. 
It should be reasonable to claim that a modest computer 
nowadays can run the proposed algorithm to process 
million-gate large circuits. 

The proposed method exhibits great efficiency in both 
runtime and memory usage as shown in Table I and II. It 
suggests that the proposed edge factor can be used as a good 

TABLE I
Results on ISCAS’85 and’89 Benchmark Circuits 

Circuit |T| |F| log2|F|
DR before 
reduction 

DR after 
reduction 

DR in [6] 
Size 

Reduction 
ratio 

CPU 
(s) 

Mem 
(MB) 

c432 50 524 10 0.995877 0.989374 0.993403 0.800 0.03 <1 
c499 53 758 10 0.999456 0.997121 0.997257 0.811 0.04 <1 
c880 54 942 10 0.999621 0.996950 0.996970 0.815 0.06 <1 

c1355 86 1574 11 0.999241 0.997302 0.997274 0.872 0.15 <1 
c1908 120 1879 11 0.999403 0.997000 0.997063 0.908 0.26 <1 
c2670 106 2747 12 0.997739 0.996207 0.996088 0.887 0.35 <1 
c3540 150 3428 12 0.998169 0.996568 0.996694 0.920 0.64 <1 
c5315 125 5350 13 0.999776 0.999268 0.999083 0.896 0.91 <1 
c6288 30 7744 13 0.999815 0.999578 0.999555 0.567 0.27 <1 
c7552 217 7550 13 0.999566 0.998992 0.998871 0.940 2.22 2 
s9234 384 6927 13 0.995602 0.993234 -- 0.966 3.56 2 
s13207 460 9815 14 0.999591 0.998303 -- 0.970 6.72 4 
s15850 438 11725 14 0.998871 0.997933 -- 0.968 7.69 6 
s35932 68 39094 16 0.989591 0.989422 -- 0.765 4.02 6 
s38417 901 31180 15 0.999952 0.999587 -- 0.983 41.69 28 
s38584 654 36303 16 0.998275 0.997943 -- 0.976 42.47 24 
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guidance or cost function in more sophisticated algorithms 
which may further boost up the diagnostic resolution and thus 
allow smaller fault dictionary. For example, we can keep 
several best candidates in each test vector selection iteration of 
the algorithm to get a more globally optimized solution. 
Another extension is to use simulated annealing based 
algorithms with the edge factor as the cost function. The 
advantage of low memory complexity in our proposed method 
is still preserved in the above two kinds of algorithm. 
Although the details need more research efforts, we believe 
the proposed edge factor is promising to be used in other 
algorithms. 

VI. CONCLUSIONS

A time- and space-efficient approach for size reduction of 
fault dictionary is proposed in this paper. Edge factor, being 
strictly proportional to the number of undistinguished fault 
pairs, is introduced as the guidance throughout the algorithm. 
With correct implementation techniques, the edge factor can 
be calculated directly from the original pass-fail fault 
dictionary and thus the time- and memory-consuming 
construction of the distinguishability table and further 
operations on that table are completely excluded. 
Experimental results over sets of benchmark circuits validate 
the effectiveness and efficiency of the proposed algorithm. 
Hence, the proposed algorithm is capable of providing a 
feasible solution of fault dictionary compaction for today’s 
industrial million-gate circuits. Moreover, the edge factor is 
promising to be applied in more sophisticated algorithms for 
further research works. 
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TABLE II 
Results on Large Randomly-Generated Fault Dictionaries 

|T| |F| log2|F| DR 
CPU 

(sec) 

Mem 

(MB) 

1000 50000 16 0.999986 95.970 48 

1000 100000 17 0.999990 222.510 96 

1000 500000 19 0.999996 1579.220 492 

1000 1000000 20 0.999998 3733.180 972 
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