
Efficient Second-Order Iterative Methods for IR Drop Analysis in Power Grid

Yu Zhong Martin D. F. Wong
Dept. of Electrical and Computer Engineering Dept. of Electrical and Computer Engineering

Univ. of Illinois at Urbana-Champaign Univ. of Illinois at Urbana-Champaign
Urbana, IL, 61801 Urbana, IL, 61801

e-mail: yuzhong@uiuc.edu e-mail: mdfwong@uiuc.edu

Abstract— Due to the extremely large sizes of power grids, IR
drop analysis has become a computationally challenging prob-
lem both in terms of runtime and memory usage. It has been
shown in [5] that first-order iterative algorithms based on node-
by-node and row-by-row traversals of the power grid have both
accuracy and runtime advantages over the well-known Random-
Walk method. In this paper, we propose second-order iterative
algorithms that can significantly reduce the runtime. The new
algorithms are extremely fast, and we prove that they guarantee
converge to the exact solutions. Experimental results show that
our algorithms outperform the Random-Walk algorithm in [2]
and algorithms in [5]. For a 25-million node problem, while the
Random-Walk algorithm takes 2 days with maximum error of 6.1
mV, the fastest algorithm in [5] takes 50 minutes, and our second-
order row-based algorithm takes 32 minutes to get an exact solu-
tion. Moreover, we can get a solution with maximum error 2 mV
in 10 minutes.

I. INTRODUCTION

A reliable power grid is an important part of high perfor-
mance VLSI design. With the rapid increase in the complexi-
ties of VLSI circuits, accurate and efficient analysis of power
grid is becoming a critical issue in nanometer design.

Let us consider a power grid in steady state, which can be
solved by DC analysis. The power grid model is illustrated in
Figure 1, which consists of wire resistances, VDD pads, and
current sources that represent the currents drawn by logic gates
and functional blocks. The DC analysis problem can be formu-
lated as:

(1)

where is the conductance matrix for the interconnection re-
sistors, is the vector of node voltages, and is a vector of in-
dependent sources. Solving this set of linear equations can be-
come prohibitively expensive for extremely large power grids
with millions of nodes. Several methods have been proposed to
achieve an acceptable runtime with reduced accuracy [1, 2, 4].

Due to the structure of power grids, iterative methods turn
out to be good solution methodologies. Instead of construct-
ing a large matrix as in traditional iterative methods, first-order
node-based and row-based methods have been proposed re-
cently [5]. They have both accuracy and runtime advantages
over the well-known Random-Walk method in [2], which was
the state-of-the-art before [5]. In this paper, we present second-
order iterative algorithms to further improve the rate of conver-
gence and shorten the runtime. Due to the special characteris-
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Fig. 1. A typical DC circuit model for power grid.

tics of the power grid problem, the main challenge here is to
derive the important iterative coefficients used in the second-
order method. The iterative coefficients have a great influence
on the convergence and the convergence rate of the iterative
algorithms. We prove the convergence of own second-order
methods. Experimental results show that our algorithms out-
perform not only the Random-Walk method but also the first-
order node-based and row-based methods in [5]. For a 25-
million node problem, our second-order row-based algorithm
takes 32 minutes to get an exact solution while the Random-
Walk-based algorithm takes 2 days with maximum error of 6.1
mV.

The rest of the paper is organized as follows. We first re-
view the first-order node-based and row-based methods in [5]
in Section 2. Then, we present two second-order iterative algo-
rithms in Section 3. In Section 4, we provide theoretical foun-
dations for the new iterative algorithms. Finally, in Section 5,
we demonstrate that our algorithms outperform the existing al-
gorithms in terms of both runtime and accuracy.

II. PREVIOUS ITERATIVE METHODS

In this section, we give a brief review of the iterative algo-
rithms in [5]. It is shown in [5] that the system matrix in
Equation (1) is symmetric and positive definite. This prop-
erty ensures the convergence of traditional first-order iterative
methods.

Note that applying the traditional iterative methods to solve
large power grid problem is not practical, because the construc-
tion, storage, and computation of such a large matrix is expen-
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Fig. 2. A representative node in the power grid.

sive. For example, has 1 trillion elements for a
power grid. So, [5] introduced efficient implementation of
those iterative methods. If we apply Kirchoff’s current law on a
single node in the power grid, as shown in Figure 2, we obtain
voltage at node as

(2)

, where is the set of nodes adjacent to
node . The generic node-based method is defined as follows.
Pick a node in the power grid and update its voltage ac-
cording to Equation (2). Iteratively update the node voltages
one node at a time until it converges to the exact solution.

Based upon the Successive Over-Relaxation (SOR) method,
[5] presents the improved node-based method, of which rate of
convergence is an order of magnitude faster than the generic
node-based method. The main iteration formula is

(3)

where denotes a generic node-by-node iteration as in Equa-
tion (2), and is the extrapolation factor.
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Fig. 3. A representative row in the power grid.

Because a power grid is constructed by horizontal rows and
vertical columns, it is intuitive to group the nodes on the same
row and solve them together depending on the boundary condi-
tions of adjacent rows. Figure 3 shows a representative row in
a power grid. For a single row , Equation (2) can be expressed
as

(4)

where represents the voltages in row . It has been shown
that according to the special structure of matrix , which is
a positive definite tri-diagonal matrix, each row can be solved
in linear time. Similarly, iteratively do the row-by-row traver-
sals until it converges to the exact solution. This is called the

generic row-based method. The rate of convergence of row-
based method is approximately times as fast as the node-
based method. [5] also use similar idea as in SOR method to
obtain the improved row-based method. The main iterative for-
mula is

(5)

where denotes a generic row-by-row iteration, which is the
solution to Equation (4).

III. NEW ALGORITHMS

The iterative algorithms in [5] are first-order iterative meth-
ods because in each iteration they update node voltages based
on node voltages from the previous iteration only. In this sec-
tion, we present second-order iterative methods where we up-
date node voltages based on node voltages from the previous
two iterations. The extension from a first-order method to
a second-order method is non-trivial because we need to de-
rive an optimal set of coefficients that define the second-order
method such that convergence and fast convergence rate are
guaranteed. As in [5], our new algorithms avoid construction
of the system matrix and directly carry out the computations
based on the structure of the power grid in a node-by-node or
row-by-row fashion.

VV
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Fig. 4. Symmetric node-based method.

A. Second-Order Node-based Method

We attempt to upgrade a first-order method to get a second-
order method as follows. Suppose we can solve the linear sys-
tem (1) using a first-order iterative method

(6)

Consider a second-order method defined by

(7)

where denotes the first-order iteration as Equation (6),
and and are important coefficients to be decided. We will
discuss how to decide those coefficients in Section 4.

Then we need to decide the first-order iterative method we
want to use as in Equation (7). We choose a first-
order method called symmetric improved node-based method
obtained from the improved node-based method in Equa-
tion (3). In each iteration of the symmetric improved node-
based method, the first half iteration is the same as one iteration

8A-4

769



Second-Order Node-based method
initialize
initialize
new
set

if , return
;

/*solve .*/
for node i=1 to

/*symmetric improved node-based method.*/
for node i=1 to

forward improved node-based method
for node i= down to 1

backward improved node-based method
/*Solve .*/
for node i=1 to

Fig. 5. The algorithm for the second-order node-based method

of the improved node-based method, while the second half iter-
ation is the improved node-based method taken in reverse order
as in Figure 4. We will explain the reason that we choose the
symmetric improved node-based method instead of the original
improved node-based method in Section 4.

For each node , Equation (7) can be written as

(8)

Suppose we know the iterative coefficients, then we can solve
the voltage at node in iteration by two parts:

the symmetric improved node-based iteration , and the

influence of its own previous two iterations and .

The overall algorithm is as follows. Suppose a power grid
has rows and columns, the total node number is . Be-
gin with any initial values (e.g., for VDD power grids) in
iterations and at the nodes to be solved. For each node
, we first compute the influence of the past two iterations

as in Equation (8). Then in the first
half iteration, apply the original improved node-based method
to each node in forward order . Later in the second
half iteration, apply the original improved node-based method
with to each node in reverse order . Now
we have a solution of the symmetric node-based method for
each node. Finally, we combine the influence of the past two
iterations with the symmetric node-

based part together to obtain the updated solution of
second-order node-based method at node as in Equation (8).
Figure 5 shows the algorithm for the second-order node-based
method. Though compared to the original improved node-
based method, we must do at least twice as much work per
iteration in the second-order method, the faster convergence
speed justifies the additional work.
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Fig. 6. Symmetric row-based method.

B. Second-Order Row-based Method

Now consider how to upgrade the first-order row-based
method to a second-order method. We still group the nodes on
the same row and solve them together depending on the bound-
ary conditions of the adjacent rows in linear time. Similar to the
second-order node-based method, we want to combine the im-
proved row-based method in [5] with a second-order method to
improved its rate of convergence.

Here we choose some a first-order method called symmetric
improved row-based method which is obtained from the im-
proved row-based method in Equation (5). In each iteration of
the symmetric improved row-based method, the first iteration
is the same as the improved row-based method, while the sec-
ond half iteration is the improved row-based method taken in
reverse order as Figure 6.

In second-order row-based method, for each row , Equa-
tion (7) can be written as

(9)

where denotes the symmetric improved row-based
method. Suppose we know the iterative coefficients, then we
can solve the voltages on row in iteration by two
parts: the symmetric improved row-based iteration ,
and the influence of its own previous two iterations and

.
The overall algorithms is as follows. Suppose a power grid

has rows and columns, the total number of rows is .
Begin with any initial values (e.g., for VDD power grids)
in iterations and at the nodes to be solved. For each row
, we first compute the influence of the past two iterations

as in Equation (9). Then in the
first half iteration, apply the first-order improved row-based
method to each row in forward order . Later in the
second half iteration, apply the first-order improved row-based
method to each row in reverse order . Now we have
a solution of the symmetric improved row-based method for
each node. Finally, we combine the influence of the past two
iterations with the symmetric im-
proved row-based part together to obtain the updated solution

of second-order row-based method for row . Figure 7
shows the algorithm for the second-order row-based method.
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Second-Order Row-based method
initialize
initialize
new
set

if return
;

/*solve .*/
for node i=1 to

/*symmetric improved row-based method.*/
for row j=1 to

forward improved row-based method
for row j= down to 1

backward improved row-based method
/*Solve .*/
for node i=1 to

;

Fig. 7. The algorithm for the second-order row-based method

IV. THEORETICAL FOUNDATION

In this section, we derive the iterative coefficients and pro-
vide convergence analysis.

A. Second-Order Method

Let be the solution to the linear system in Equation (1).
Consider a second-order iterative method defined by

(10)

In Equation (10), as , , , .
This gives the following consistency condition on and .

(11)

where is the solution to Equation (1).

Theorem IV.1 Consider the following second-order method:

(12)
where and are defined in Equation (6). If is a solution
to Equation (6), it is also a solution to Equation (12) for any
and .

Proof: Compare Equation (12) to the general form of second-
order iterative method in Equation (10), we have

(13)

If we substitute Equation (13) in Equation (11) to check the
consistency condition, then we obtain

(14)

which is satisfied because we assume that the first-order
method can solve the linear system (1). Therefore, is also
a solution of Equation (12).

Now let us analyze the convergence for the second-order
method in Equation (10), and furthermore, derive the critical
coefficients and . Note that the iterative method in Equa-
tion (6) is convergent if and only if , where is
the spectral radius of matrix , [3].

For second-order method in Equation (10), we observe that

(15)

From above, a necessary and sufficient condition that the
method converge for all initial conditions and is that

(16)

where

(17)

And if and only if all eigenvalues of are less
than unity in modulus. So we must have all roots of

(18)

are less than unity in modulus. Substitute Equation (13) into
(18), we have

(19)

Rearranging the terms, we obtain

(20)

So the eigenvalues of are related to the eigenvalues of
as follows

(21)

Suppose the eigenvalues of are real numbers that lie
within the interval , where . Rewrite
Equation (21) as

(22)

It has been shown in [3] that to minimize the number of itera-
tions, we need to minimize , which shows the way of choos-
ing coefficients and . Then the optimum choice of and
satisfies the conditions

(23)

Therefore,

(24)

For any first-order iterative method which has real eigenvalues,
if we know the eigenvalue bounds and of its itera-
tive matrix, we can obtain the coefficients in the second order
method by Equation (24).
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B. Symmetric SOR Method

Now we want to show the reason that we used symmetric
improved node-based or row-based method in Section 3. It
is because the iterative matrix of symmetric method has real
eigenvalues, which allows us to use the coefficients and as
Equation (24).

Let us check SOR method first. Define matrix as

(25)

where . The diagonal elements of matrix are
all 0. Thus, we separate into and , one strictly lower and
one strictly upper triangular matrices respectively,

(26)

Then we can express SOR method as

(27)

where
(28)

If , then the eigenvalues of the SOR method are not all
real and hence the methods of choosing coefficients in Equation
(24) are not applicable.

To make the eigenvalues of the first-order iterative method
all real, instead of generic SOR method, we consider the sym-
metric SOR method as two half iterations. We have
from by forward SOR method

(29)

and from by the backward SOR method

(30)

where

(31)

Because it is shown that the improved node-based method is
equivalent to SOR method in [5], so our symmetric improved
node-based method is equivalent to symmetric SOR. From
Equations (29) and (30) we have

(32)

where
(33)

It can be shown that if system matrix is a symmetric matrix
with positive diagonal elements. For any real the eigenval-
ues of are real and nonnegative. Moreover, if
then , so symmetric SOR converges with any initial
condition.

If we choose in symmetric node-based method as

(34)

where . then

(35)

TABLE I
RUN TIME COMPARISON BETWEEN FIRST AND SECOND-ORDER METHODS

FOR CIRCUIT C1.

Method # Iterations CPU time(s)
First-Order Node 134 2.69
First-Order Row 81 1.86

Second-Order Node 46 1.67
Second-Order Row 34 1.28

In the symmetric row-based method, choose as

(36)

Then
(37)

Now consider second-order symmetric node-based and row-
based method, then . Because has real and non-
negative eigenvalues, pick , . Once
we know , we can obtain the coefficients and from
Equation (24). Also by Equation (24), the spectral radius of
second degree iterative matrix is

(38)

Compare with the spectral radius of SOR method
[3],

(39)

Usually, is substantially less than , so is
smaller than . Then the second degree SSOR method
converges much faster than the original SOR method.

V. EXPERIMENTAL RESULTS

We apply the proposed second-order node-based and row-
based methods to a 251,001-node power grid model, named
Circuit C1, with the value of 1.8 V. Our computations
are carried out on a Linux PC with 2.8-GHz CPU and 4-GB of
RAM. All the algorithms were implemented using C++.

Circuit C1 with 251,001 nodes is analyzed by the four it-
erative methods, which are separately the first-order improved
node-based and row-based methods, the first-order improved
node-based and row-based methods.

Figure 8 shows the convergence of the solution by the four
iterative methods. We do iterations until the maximum error is
zero, which guarantees that the iterative methods all converge
to the exact solution.

Still for Circuit C1, Table I shows the runtime compari-
son between the first-order and second-order methods. It is
shown that the second-order node-based method converges al-
most two times faster than the first-order node-based method.
And the second-order row-based method converges faster than
the second-order node-based method, as we expected. We can
take the results as reference to exact solutions.

To compare runtime, we implemented the well-known
Random-Walk algorithm, and applied it to our problems as a
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TABLE II
RUNTIME COMPARISON. ITERATIVE METHODS HAVE NO ERRORS.

Random Walk First-Order Second-Order
MaxE time Node time Row time Node time Row time

Circuits #nodes #sources (mV) (min:sec) (min:sec) (min:sec) (min:sec) (min:sec)
C1 251K 441 5.4 4:55 0:02 0:02 0:02 0:01
C2 251K 121 6.0 11:04 0:09 0:04 0:04 0:03
C3 1M 121 7.5 37:40 2:02 1:24 1:08 0:49
C4 4M 441 6.3 152:22 3:54 2:30 2:01 1:35
C5 16M 441 4.9 1019:16 40:09 23:52 21:58 15:05
C6 25M 441 6.1 2943:56 76:50 47:39 42:16 32:20

0 20 40 60 80 100 120 140
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Fig. 8. The convergence of the fi rst-order and second-order node-based and
row-based method.

reference. Table II compares the performance of the first and
second-order node and row-based method with the Random-
Walk program on the same problems. We take the results by the
iterative methods as reference of error analysis because they all
converged to the exact solutions. There are six different test
circuits of power grids in column 1. Column 2 is the number of
nodes in those circuits and column 3 is the number of voltage
sources. Column 4 shows the maximum error by Random Walk
method. The comparison of columns 5, 6, 7, 8, and 9 is the run-
time by the Random Walk, the first-order node-based method,
the first-order row-based method, the second-order node-based
method, and second-order row-based method. Experimental
results show that our second-order methods outperform not
only the Random-Walk-based algorithm but also the first-order
ones. For example, in circuit C6, the runtime of Random Walk
method is about 2 days, while the the second-order row-based
method takes only 32 minutes without error.

In practice, if the required error margin is larger, the runtime
of iterative methods will get even shorter. From Figure 8, we
can see the tradeoff between maximum error and runtime. We
can cut the runtime into if mV maximum error is per-
mitted. So we give the second-order row-based method some
small error bound and compare the error and runtime with ran-
dom walk again in Table III. In circuit C6, the runtime of Ran-
dom Walk method is about 2 days, while the the second-order
row-based method takes less than 10 minutes with maximum
error mV.

TABLE III
RUNTIME AND ERROR COMPARISON.

Random Walk 2nd-Order Row
MaxE time MaxE time

Circuits #nodes (mV) (min:sec) (mV) (min:sec)
C1 251K 5.4 4:55 1.8 0:00
C2 251K 6.0 11:04 2.0 0:01
C3 1M 7.5 37:40 1.9 0:13
C4 4M 6.3 152:22 2.0 0:25
C5 16M 4.9 1019:16 1.9 4:42
C6 25M 6.1 2943:56 2.0 9:55

VI. CONCLUSION

Second-order node-based and row-based iterative methods
for power grid DC analysis are presented. They are shown to
be faster than the first-order iterative methods in [5] and the
well-known Random-Walk algorithm in [2].
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