
RunBasedReordering: A Novel Approach for
Test Data Compression and Scan Power

Hao Fang Chenguang Tong Xu Cheng

Micro Processor Research and Development Center of Peking University
Beijing, China, 100871

Tel: 086-010-62765828 ext{649,651,801}
Fax: 086-010-62756231

e-mail: {fanghao,tongchenguang,chengxu}@mprc.pku.edu.cn

Abstract— As the large size of test data volume is becoming
one of the major problems in testing System-on-a-Chip (SoC),
several compression coding schemes have been proposed. Ex-
tended frequency-directed run-length (EFDR) is one of the best
coding compression schemes. In this paper, we present a novel
algorithm named RunBasedReordering(RBR), which is based on
EFDR codes. Three techniques have been applied to this algo-
rithm: scan chain reordering, scan polarity adjustment and test
pattern reordering. The experiment results show that the test data
compression ratio is significantly improved and scan power con-
sumption is dramatically reduced. Moreover, our algorithm can
be easily integrated into the existing industrial flow with little area
penalty.

I. INTRODUCTION

As the feature size decreases, a high degree of functionality
is usually integrated into System-on-a-Chip(SoC) in a small sil-
icon area. The complex logic leads to an extraordinarily large
size of test data and high scan power consumption, which are
the big test challenges.

Many coding schemes [1–7, 9–11, 14] have been invented
for test data compression. In [7, 10, 11], statistical schemes
based on Huffman coding are utilized. However, these meth-
ods suffered from high area overhead. On the other hand, run-
length methods can make a good trade-off between test data
compression ratio and area penalty. Jas and Touba [1] pro-
posed a fix-to-variable coding technique of ”running” 0s se-
quence. Later, Chandra and Chakrabarty improved this tech-
nique using variable-to-variable encoding techniques: Golomb
codes [3] and FDR codes [2,4]. Gonciari et al. [6] proposed an
enhanced coding scheme named extended frequency-directed
run-length(EFDR). EFDR codes took advantage of both runs
of 0’s and runs of 1’s and outperformed the other coding tech-
niques that are based on only runs of 0’s. Recently, Doi et
al. [5] tried to adjust scan polarity for better compression re-
sult.

However, all the above coding schemes assumed that scan
chains are fixed, that is, the order of scan cells cannot be
changed. Also, to the best knowledge of the authors, there
are no algorithms of reordering scan chains for test data com-
pression. In commercial DFT tools, scan chains are usually
reordered to save routing resources or avoiding race conditions

in scan shift mode, not for test data compression.
In this paper, we present a novel algorithm named RunBase-

dReordering(RBR), which is based on EFDR codes. Three
techniques have been applied to this algorithm: scan chain re-
ordering, scan polarity adjustment and test pattern reordering.
The experiment results show that the test data compression ra-
tio is significantly improved and scan power consumption is
dramatically reduced. Moreover, our algorithm can be eas-
ily integrated into the existing industrial flow with little area
penalty.

The paper is organized as follow. Section II describes ex-
isting run-length codes and scan chain reordering techniques.
Section III presents our algorithm and its refinements for higher
compression ratio and lower scan power. Section IV proposes
the implementation flow. Section V gives the experimental re-
sults. Finally conclusions and future work discussion are given
in Section VI.

II. BACKGROUNDS

A. Run-based codes

A run is a sequence of 0s or 1s that can be encoded using
two elements: the repeating symbol and the number of times
it appears. A run of 0’s is a number of 0s ended with a single
1 while a run of 1’s is a number of 1s ended with a single 0.
Almost all of run-length coding schemes [1–4, 7] encode only
runs of 0’s. Intuitively, the less the number of runs is, the higher
compression ratio will be obtained. EFDR codes encode both
runs of 0’s and runs of 1’s to reduce the number of runs. The
first two groups of EFDR codewords [6] are shown in TABLE I.
A compression example using EFDR codes is given in Fig.1(a)
where TD means original test data, TE means compressed test
data and |T | means the size of data T.

EFDR needs an on-chip decompressor, which loads com-
pressed data from automatic test equipment(ATE) and restores
the original test data. The decompressed test data will be dis-
patched to scan chains. Due to the simplicity of EFDR codes,
the area of on-chip decompressor is small.

B. Scan chain reordering

In mainstream commercial EDA tools such as DFTAdvi-
sor of Mentor Graphics and DFT Compiler of Synopsys, scan

1-4244-0630-7/07/$20.00 ©2007 IEEE.

7C-4

732

TABLE I
EFDR CODES

Group Run Group Tail Code Word Code Word

Length Prefix Runs of 0’s Runs of 1’s

A1 1 0 0 000 100

2 1 001 101

3 00 01000 11000

A2 4 10 01 01001 11001

5 10 01010 11010

6 11 01011 11011

chains are connected alphabetically in default mode. As the or-
der of scan chains does not affect chain functions, scan chains
reordering techniques have been widely used for various objec-
tives. In most cases, scan chains are reordered after placement.
For example, Synopsys DFT Compiler detaches scan chains
before placement and then reconnect them during routing, ei-
ther for reducing wirelength or for preventing race conditions
(hold time violations). Moreover, scan chain reordering can be
used to reduce scan power [12].

III. PROPOSED RUNBASEDREORDERING ALGORITHM

Former work [6] showed that EFDR codes outperformed
FDR codes in compression ratio because of the fewer number
of runs. Intuitively, the reduction of the number of runs leads:
1) the higher compression ratio of the run-length algorithm and
2) the fewer transitions during scan shift, which indicates lower
scan power. This inspired us to further reduce the number of
runs. To achieve it, we have designed a new algorithm Run-
BasedReordering(RBR). RBR includes three techniques: scan
chain reordering, scan polarity adjustment and test pattern re-
ordering, which will be described in the following three sub-
sections.

A. The basic run-based reordering algorithm

Before describing our algorithm, some definitions used in
this paper have to be introduced.

Scan Frame – A scan frame is a vector of inputs applied
to the same scan cells in each test patterns, which contains a
number of 0s, 1s, and don’t-cares (Xs). The width of a frame
is equal to the number of test patterns. The number of frames
is equal to the length of the longest scan chain. An example of
test data for a circuit under test (CUT) with 3 test patterns and
6 scan cells is shown in Fig.1(a). In this example there are total
of 6 frames, each of which has 3 bits.

Incompatible & Compatible – Given two bits i, j ∈
{0, 1, X}, i and j are incompatible if i = 0 and j = 1 or
vice versa. All other circumstances are compatible.

Distance – The distance between two scan frames is equal to
the number of corresponding incompatible bits. This definition
is similar to Hamming distance with extention of don’t-care
bits. For example, given two frames F1 = (10XX01) and
F2 = (001X11), the distance d(F1, F2) is 2 because the first
and the fifth corresponding bits in the frames are incompatible.

F1 F2 F3 F4 F5 F6

T1 0 1 1 X 1 1

T2 1 0 0 X 0 X

T3 1 X 0 0 0 0

TD0 = 01 111110 00001 00000

TE0 = 000 11010 01001 01010

|TE0|= 18
(a) EFDR compression result after Xs are filled carefully

F1 F4 F6 F2 F5 F3

T1 0 0 1 1 1 1

T2 1 1 1 0 0 0

T3 1 0 0 0 0 0

TD1 = 001 1111110 001 00000

TE1 = 001 11011 001 01010

|TE1|= 16
(b)EFDR Compression result by the algorithm in Fig.2

F1 F̄2 F̄3 F̄4 F̄5 F̄6

T1 0 0 0 0 0 0

T2 1 1 1 1 1 1

T3 1 1 1 1 1 1

TD2 = 0000001 11111111111

TE2 = 01011 1110100

|TE2|= 12
(c)EFDR Compression result by the algorithm in Fig.3

Fig. 1. An example of test data compression

The order of scan frames determines the decompressed test
data that will be dispatched to scan chains. No matter how
scan frames are reordered, scan chains can be reconstructed to
keep consistent with test data. Therefore, we can freely reorder
scan frames for better compression ratio. The basic idea of our
run-based scan frames reordering algorithm is to minimize the
total distance between every two adjacent frames. Since the
total distance of frames decreases, the average length of runs
increases, which reduces the total number of runs.

We represent each scan frame as a vertex in a complete undi-
rected graph G, and the distance between two frames as the
weight of an edge. Then our problem goes back to Hamilton
problem, which is known as NP-hard and usually solved by var-
ious greedy algorithms. The simplest pure greedy algorithm is:
choosing as the next frame in a path the one that is closest to
the current frame, provided it hasn’t been visited yet.

It seems that the Hamilton path of G is the solution to our re-
ordering problem. However, there are two differences between
Hamilton path problem and ours. The first one is that the dis-
tance of scan frames in our problem may be uncertain while the
distance of Hamilton path is certain. Scan frames may contain
Xs that have to be eventually filled with care-bits, which leads
to distance uncertainty. Considering a single-pattern that has
only one test pattern t = (111XXX000) in test data, because
every two adjacent frames are compatible, the total distance is
zero. In fact, no matter how you fill Xs with 0 and 1, the total

7C-4

733

1 Assign F1 to the 1st frame; FR ← F1;
2 Choose FL that is the closest frame to FR;
3 Fill Xs in FL, assign FL to the next frame;
4 Compute new FR according to Table II;
5 If any remaining frames, goto 2.
6 Fill-X: fill remaining Xs of the new frames.

Fig. 2. The Basic Scan Frames Reordering

distance will not be less than 1. This is because the Xs se-
quence in the middle conceals the incompatibility between the
1 sequence and the 0 sequence. To reveal this incompatibility,
we need to fill Xs during reordering operations.

The second one is that Hamilton path problem aims at find-
ing the shortest path which visits each vertex exactly once,
while our problem aims at finding a frame sequence which can
achieve the minimum number of runs. Sometimes the total dis-
tance of scan frames is equal to the number of runs. Consider-
ing a single-pattern T1 = (00110001), the total distance of T1

is 3 and T1 is divided into 3 runs: 001, 10 and 001. However, in
most cases, the total distance is slightly larger than the number
of runs. Given another single-pattern T2 = (00010001), the
total distance of T2 is 3 but T2 is divided into 2 runs: 0001 and
0001. This is because the single bit of 1 in T2 can occupy the
end of runs of 0s, but the two consequent bits of 1 in T1 leads
to an additional run of 1s.

Due to these differences, we have to extend the pure greedy
algorithm in order to get a sequence of scan frames which can
achieve the minimum number of runs (shown in Fig.2). Given
some scan frames F1, F2, . . . , Fn as input, each time we select
from the remaining frames as the next frame in the sequence the
one that is closest to a reference frame FR. At the beginning,
F1 is assigned the first in the frame sequence directly without
any reference frame. Then FR is initialized as F1, according
to which we can find the second frame in the sequence. In the
subsequent steps, FR is recalculated according to Table II be-
fore each frame selection. In the pure greedy algorithm, FR

should be equal to the last frame FL in the current sequence,
however, in our algorithm, FR is not always set equally to FL.
If a bit in FL is X, which may conceal incompatibility, the cor-
responding bit in FR keeps unchanged. If the corresponding
bits in FL and FR are incompatible, the bit in FR is set to X.
The reason is that the incompatibility indicates an end of a run,
and a new run will be started by the next bit in the test patten.
Therefore, we can ignore the distance computed by the ending
bit of the former run and the leading bit of the latter one, and
set the bit in FR to X.

During reordering, if a bit in a frame is X, it is set equally to
the corresponding bit in the reference frame, in order to make
the run continuous. After reordering, there may still be some
X bits in frames, so we need to deal with these bits using oper-
ation Fill-X at line 6 in Fig.2. The remaining Xs are filled by
the first care-bits that follow them.

After scan frames reordering, we use EFDR codes to com-
press the new test data. Fig.1(b) shows the compression re-
sults. Compared with Fig.1(a) without reordering, our algo-
rithm saves two more bits.

TABLE II
USING FL AND THE OLD FR TO COMPUTE THE NEW FR

bit of bit of FL

new FR 0 1 X

bit of 0 0 X 0

old 1 X 1 1

FR X 0 1 1

1 Assign F1 to the 1st frame, assign FR ← F1;
2 Choose FL or F̄L that is the closest frame to FR;
3 Fill Xs in Fi or F̄L, assign it to the next frame;
4 Flip & record the Fi if needed;
5 Compute new FR according to Table II;
6 If any remaining frames, goto 2.
7 Fill-X: fill remaining Xs of the new frames.

Fig. 3. Scan Frames Reordering with Polarity Adjustment

B. Scan Polarity Adjustment

Adjusting scan polarity to improve test data compression is
proposed in [5]. Because FDR codes is used to deal with only
runs of 0s, the number of 1 will determine the number of runs.
The more 0s the test data contain, the more opportunity FDR
could have to achieve high compression ratio. In [5], they try to
flip the value of scan cells if the number of 1 is more than that
of 0, to make 0s in the test data as much as possible. There-
fore, the scan polarity adjustment technique is applied to make
the test data contain fewer number of 1. As scan polarity ad-
justment does not require insertion of logic gates on the scan
chains, there is no area or delay penalty.

In the scan polarity adjustment, we simply change 0 to 1
and 1 to 0 in a frame, while keep X unchanged. This tech-
nique can also be adopted into our algorithm to shorten the
total distance. Given a set of n frames F1, F2, . . . , Fn, after
applying scan polarity adjustment to each frame, we get a set
of 2n frames F1, F2, . . . , Fn, F 1, F 2, . . . , Fn. When selecting
the next frame closest to FR, we must also check the frames
after scan polarity adjustment. If an unflipped frame is chosen
into the sequence, the corresponding flipped frame will not be
considered later, and vice versa. During reordering, we have
to record flipping information for chain modification. The re-
fined algorithm is shown in Fig.3. Fig.1(c) shows the results
of Fig.1(a) using EFDR codes and the current algorithm. The
size of compressed test data is four bits smaller than that of
Fig.1(b). Moreover, the algorithm in Fig.3 reduces the number
of transitions during scan shifting.

C. Test Pattern Reordering

Test patterns focused on stuck-at faults can be arranged in
any order without losing fault coverage. 1 Traditionally, test
pattern reordering [1, 3] is used to minimize the distance be-
tween two consecutive patterns in differential coding based

1Test patterns focused on delay faults can be partly reordered.

7C-4

734

1 Execute the algorithm in Fig.3 without Fill-X;
2 Fill Xs in patterns except boundary Xs;
3 Count 9 types of patterns separately;
4 Fill remaining Xs to balance 01 and 10 patterns;
5 Reorder filled patterns.

Fig. 4. RunBasedReordering

techniques. In our algorithm, we introduce test pattern reorder-
ing for gap minimization.

If the last bit of a pattern and the first bit of its subsequent
pattern are incompatible, there is a gap between them. Such
gaps may increase the number of runs. In algorithms shown in
Fig.2 and Fig.3, the consecutive Xs at the end of a pattern will
be filled with the first care-bit of its next pattern. This can mini-
mize the total number of gaps. When considering the flexibility
of test pattern reordering, such filling scheme is no longer opti-
mal. We need a sophistical method that incorporates boundary
(leading and ending) Xs filling and test pattern reordering.

Since gaps are only related to the boundary bits of patterns,
we classify all the test patterns into nine groups: {Gij |i, j ∈
{0, 1, X}}, where i and j present the values of leading bit and
the ending bit respectively. |Gij | denotes the number of pat-
terns in Gij . Eventually, Xs in patterns will be filled with care-
bits and only four groups G00,G01,G10 and G11 remain.

We create a directed graph DG containing two vertexes V0

and V1. Every eventual test pattern is mapped to a separate
directed edge. For example, a pattern in G01 is mapped to an
edge from V0 to V1. There are four types of edges in the DG

and the number of every type of edges is equal to the size of
corresponding pattern group. Thus, the problem of minimizing
the number of gaps is mapped into the problem of adding as few
edges as possible to make DG unicursal. This kind of unicursal
problem has been solved. The directed graph is unicursal if and
only if ∣∣∣|G01| − |G10|

∣∣∣ ≤ 1 (1)

We apply the pattern reordering technique to the algorithm
shown in Fig.3 to form our final algorithm RunBasedReorder-
ing(RBR). The leading and ending Xs of patterns are filled to
minimize

∣∣|G01| − |G10|
∣∣ at line 4 in Fig.4. We reorder filled

test patterns at line 5 according to the traveling sequence of
unicursal problem.

Fig.5 demonstrates the effectiveness of RBR. Consider the
example in Fig.5(a), which gives the test patterns after scan
frames reordered in the algorithm of Fig.3 with 2 ending Xs
of the second pattern unfilled. The Fill-X procedure of for-
mer algorithms will fill these X according to the leading bit
of the third pattern. Fig.5(b) gives the filling result and the
compressed data TE1 using EFDR codes. Fig.5(c) adopts our
sophistical filling scheme and pattern reordering to get higher
compression ratio. Comparing with the two filling schemes,
although the Fill-X procedure does not generate a run between
the second pattern and the third pattern, there is a gap between
the third pattern and the fourth that increase the count of runs.
Note that no matter how the patterns in Fig.5(b) are reordered,
the gap cannot be eliminated as

∣∣|G01| − |G10|
∣∣ = 2. Fig.5(c)

F1 F2 F3 F4 F5 F6 F7 F8 F9

T1 0 0 0 0 0 0 0 0 1

T2 1 1 0 0 0 0 1 X X

T3 1 1 1 1 1 1 1 1 1

T4 0 0 0 0 0 0 1 1 1
(a) Patterns after scan frames reordered

F1 F2 F3 F4 F5 F6 F7 F8 F9

T1 0 0 0 0 0 0 0 0 1

T2 1 1 0 0 0 0 1 1 1

T3 1 1 1 1 1 1 1 1 1

T4 0 0 0 0 0 0 1 1 1

TD1 = 000000001 110 0001 111111111110 000001 11

TE1 = 0110001 101 01000 1110110 01010 101

|TE1|= 30
(b) Patterns filled by the algorithm in Fig.3

F1 F2 F3 F4 F5 F6 F7 F8 F9

T1 0 0 0 0 0 0 0 0 1

T2 1 1 0 0 0 0 1 0 0

T4 0 0 0 0 0 0 1 1 1

T3 1 1 1 1 1 1 1 1 1

TD2 = 000000001 110 0001 000000001 11111111111

TE2 = 0110001 101 01000 0110001 1110100

|TE2|= 29
(c) Patterns filled and reordered by RBR

Fig. 5. An example of filling Xs

gives better filling scheme and reordered result by RBR that
combines filling and reordering and thus get a shorter com-
pressed data and higher compression ratio. The corresponding
unicursal directed graph is shown in Fig.6.

IV. IMPLEMENTATION FLOW

We have modified the existing standard cell flow with our
algorithm. Instead of integrating into the executables of indus-
trial tools, we insert it into the current design flow as a separate
step that generates scan chains configuration information for
reordering.

Traditional routing-oriented reordering flow detaches scan
chains before placement, and records the information of every
scan chain. During routing, the preserved information and scan
cells positions are used to optimize and reconnect scan chains,
which can save routing resources or avoid race conditions.

Our modified flow, shown in Fig.7, is similar to the tradi-
tional one. After ATPG tool produces test patterns, we use
RunBasedReordering algorithm to get the new configuration
of scan frames, which determines the new structure of scan
chains. Because commercial tools such as Astro allow to re-
connect scan chains by user-defined sequence, this feature can
be used to reconstruct scan chains according to the new config-

7C-4

735

Fig. 6. Directed Graph of Fig.5(c) dealt by RBR

Fig. 7. Implementation Flow

uration. As we reorder scan chains for reducing the number of
runs without considering the physical locations of scan cells,
the reordering of scan chains for minimizing the wire length of
scan chains may not be applicable.

V. EXPERIMENT RESULTS

We have evaluated RunBasedReordering algorithm with
ISCAS-89 benchmarks using C++ language. Only the experi-
ment results of RBR with three scan frames configuration tech-
niques are presented. The experiments are conducted on a
workstation with a 2.8GHz Pentium 4 processor and 512 MB
of memory. We consider the seven largest full-scan circuits.
The test sets TD are obtained from the Mintest ATPG program
with dynamic compaction [8]. We use the original test data TD

instead of differential coded test data Tdiff to avoid high area
overhead.

Due to the efficiency in reducing the number of runs, our
algorithm outperforms EFDR in compression ratio and scan

Fig. 8. Comparison between the number of runs

power reduction.
The comparison of the numbers of runs between EFDR

codes and RBR is shown in Fig. 8. RBR reduces the number
of runs by 56% on average.

The amount of compression obtained is computed as follow:

CompressionRatio(percent) =
(|TD| − |TE |)

|TD| × 100 (2)

Table III presents the experimental results for test cubes TD

and compares with the existing coding schemes. Test data
size, the number of scan cells(SC) and the number of test pat-
terns(TP) are displayed in the table. We also give the size
of compressed bits and the compression ratio(CR) in percent
and run time in second of RBR. Except for circuit s9234f, Al-
gorithm 3 outperforms all other coding schemes dramatically.
RBR achieves 82.50% compression ratio in average.

As the number of runs decreases, the number of transitions
during scan shifting is reduced, which lowers scan power. For
simplicity, we only consider single scan chain implementation
to compute scan power. We use a widely used weighted tran-
sitions metric (WTM) introduced in [13] to estimate the power
consumption. Suppose test data T = {T1, T2, . . . , Tm} have
m patterns, and the length of the single scan chain is n. Each
test pattern Ti = {ti,1, ti,2, . . . , , ti,n}, 1 ≤ i ≤ m contains n
bits. ti,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n denotes the j-th bit in the i-th
pattern. Weighted transitions metric WTMj for Tj , the aver-
age scan power Pavg and peak scan power Ppeak are estimated
as follows:

WTMj =
n−1∑

i=1

(n − i) × (tj,i ⊕ tj,i+1) (3)

Pavg =

m∑
j=1

WTMj

m
(4)

Ppeak = max
1≤j≤m

WTMj (5)

We computed Pavg and Ppeak of compressed test data dealt
by EFDR and our RBR algorithm in table IV. We can
see clearly that with the number of runs decrease, RBR al-
gorithm can achieve great power consumption saving. The
last column shows the power saving ratios(PSR) between
RBR and EFDR computed as: PSR(percent) = (1 −

7C-4

736

TABLE III
COMPARISON OF TEST DATA COMPRESSION BETWEEN DIFFERENT CODING SCHEMES

EFDR [6] SPA [5] RBR
Circuits |TD| # of SC # of TP bits CR(%) bits CR(%) bits CR(%) time(s)
s5378f 23754 214 111 11006 53.67 8502 64.21 7469 68.56 0.03
s9234f 39273 247 159 20162 48.66 10608 72.99 11727 70.14 0.07

s13207f 165200 700 236 28932 82.49 18518 88.79 11847 92.83 0.28
s15850f 76986 611 126 24127 68.66 15900 79.35 11477 85.09 0.16
s35932f 28208 1763 16 5415 80.80 13880 50.79 1250 95.57 0.14
s38417f 164736 1664 99 62568 62.02 57118 65.33 24746 84.98 0.83
s38584f 199104 1464 136 71121 64.28 53774 72.99 39099 80.36 1.14
Average - - - - 65.80 - 70.64 - 82.50 -

TABLE IV
COMPARISON OF POWER

Circuits EFDR RBR Power Saving

Peak Avg Peak Avg Peak(%) Avg(%)

s5378f 11522 3525 3661 717 68.23 79.66

s9234f 14103 4022 4717 899 66.55 77.65

s13207f 94886 7892 9379 590 90.12 92.52

s15850f 70894 13659 12092 1839 82.94 86.54

s35932f 108957 40214 5780 2696 94.70 93.30

s38417f 437935 118077 47399 12292 89.18 89.59

s38584f 481171 86305 115917 18942 75.91 78.05

Average - - - - 81.09 85.33

PowerRBR/PowerEFDR) ∗ 100%. About 85% average scan
power is saved with adopting RBR algorithm.

VI. CONCLUSION AND FUTURE WORK

This paper proposed an idea of scan chain reordering for test
data compression and presented three novel techniques to con-
figure scan frames based on EFDR codes to minimize the num-
ber of runs: scan frames reordering, scan polarity adjustment
and test patterns reordering. Our RunBasedReordering can be
easily adopted into industrial flow, to get a high test data com-
pression ratio and low scan power with little area penalty.

The reordering of scan chains helps obtaining higher com-
pression ratio and lower scan power, however, it sacrifices the
possibility of reordering scan chains for minimizing the wire
length of scan chains. In the future work, we will consider scan
cell physical positions in our RunBasedReordering algorithm,
in order to save routing resources and prevent race conditions,
while keeping an adequately high test data compression ratio
and low scan power.

ACKNOWLEDGEMENT

We are grateful to Yinhe Han for providing test sets. We also
wish to thank Yuanrui Zhang and Kui Wang for their valuable
suggestions to improve this work.

REFERENCES

[1] A.Jas and N.A.Touba. Test vector decompression via cyclical scan chains
and its application to testing core-based designs. Proc. of International
Test. Conference, pages 458–464, Oct 1998.

[2] A. Chandra and K. Chakrabarty. Frequency-directed run-length (fdr)
codes with application to system-on-a-chip test data compression. Proc.
IEEE VLSI Test Symposium, pages 42–47, 2001.

[3] A. Chandra and K. Chakrabarty. System-on-a-chip test-data compression
and decompression architectures based on golomb codes. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 20:355–368,
March 2001.

[4] A. Chandra and K. Chakrabarty. Test data compression and test re-
source partitioning for system-on-a-chip using frequency-directed run-
length (fdr) codes. IEEE Trans. on Computers, 52:1076–1088, Aug 2003.

[5] Y. Doi, S. Kajihara, W. Xiaoqing, L. Li, and K. Chakrabarty. Test com-
pression for scan circuits using scan polarity adjustment and pinpoint test
relaxation. Proc. of ASP-DAC Asia and South Pacific Design Automation
Conference, 1:59–64, Jan 2005.

[6] A. El-Maleh and R. Al-Abaji. Extended frequency-directed run-length
code with improved application to system-on-a-chip test data compres-
sion. Proc. Int. Conf. on Electronics, Circuits and Systems, 2:449–452,
Sep 2002.

[7] P. Gonciari, B. Al-Hashimi, and N. Nicolici. Improving compression
ratio, area overhead, and test application time for system-on-a-chip test
data compression/decompression. Proc. IEEE/ACM Design, Automation
and Test in Europe, pages 604–611, March 2002.

[8] I. Hamzaoglu and J. Patel. Test set compaction algorithms for combina-
tional circuits. Proc. Int. Conf. Computer-Aided Design, pages 283–289,
Nov 1998.

[9] I.Bayraktaroglu and A.Orailoglu. Concurrent application of compaction
and compression for test time and data volume reduction in scan designs.
IEEE Trans. on Computers, 52(11):1480–1489, Nov 2003.

[10] A. Jas, J. Ghosh-Dastidar, and N. Touba. Scan vector compres-
sion/decompression using statistical coding. Proc. on VLSI Test Symp.,
pages 114–120, 1999.

[11] A. Jas, J. Ghosh-Dastidar, and N. Touba. An efficient test vector compres-
sion scheme using selective huffman coding. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 22:797–806, June 2003.

[12] P. Rosinger, P. Gonciari, B. Al-Hashimi, and N. Nicolici. Analysing
trade-offs in scan power and test data compression for systems-on-a-chip.
IEEE Proc-Comput. Digit Tech., 149:188–196, July 2002.

[13] R. Sankaralingam, R. R. Orugani, and N. A. Touba. Static compaction
techniques to control scan vector power dissipation. Proc. IEEE VLSI
Test Symp., pages 35–40, 2000.

[14] M. Tehranipour, M. Nourani, and K. Chakrabarty. Nine-coded compres-
sion technique with application to reduced pin-count testing and flexible
on-chip decompression. Proc. IEEE/ACM Design, Automation and Test
in Europe, Paris, France, 2:1284–1289, Feb 2004.

7C-4

737

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

