
Core-Based Testing of Multiprocessor System-on-Chips Utilizing Hierarchical
Functional Buses

Fawnizu Azmadi Hussin1, Tomokazu Yoneda1, Alex Orailoglu2, and Hideo Fujiwara1

1Graduate School of Information Science
Nara Institute of Science and Technology

Kansai Science City, 630-0192, Japan
{fawniz-h, yoneda, fujiwara}@is.naist.jp

2Computer Science and Engineering Department
University of California, San Diego

La Jolla, CA 92093
alex@cs.ucsd.edu

Abstract—An integrated test scheduling methodology for mul-
tiprocessor System-on-Chips (SOC) utilizing the functional buses
for test data delivery is described. The proposed methodology
handles both flat bus single processor SOC and hierarchical bus
multiprocessor SOC. It is based on a resource graph manipulation
and a packet-based packet set scheduling methodology. The re-
source graph is decomposed into a set of test configuration graphs,
which are then used to determine the optimum test configurations
and test delivery schedule under a given power constraint. In or-
der to validate the effectiveness of the proposed methodology, a
number of experiments are run on several modified benchmark
circuits. The results clearly underscore the advantages of the pro-
posed methodology.

I. INTRODUCTION

SOC design with multiple embedded processors is getting
momentum due to the increasingly high demand on processing
power. Due to the high bandwidth communication between the
multiple embedded processors and the SOC cores, the use of
a flat bus is no longer adequate. These recent advancements
present new problems as well as opportunities to the test engi-
neers in the form of multiple embedded processors and a com-
plex network of communication channels between the SOC
cores. The abundant resources of a communication network
dramatically diminish the benefits of introducing extraneous
Test Access Mechanism (TAM) for test purposes. Hence the
use of functional on-chip resources for test purposes is more
practical and more economical.

Amongst the earliest literature on the utilization of the func-
tional interconnects for core-based testing of SOCs stands out
the paper by Papachristou et al. in 1999 [1], in which, an
embedded microprocessor is used as the test controller. The
test data from an external tester are loaded into the embedded
memories through a direct memory access controller (DMA)
and delivered to the core under test by the embedded proces-
sor through the functional interconnect. The test responses are
evaluated by embedded signature analyzers.

A more comprehensive methodology on the functional bus
based SOC testing was discussed by Harrod [2]. The paper
presented a test application strategy for various types of test
requirements for the embedded Intellectual Property (IP) cores.
Test access to the Core-Under-Test (CUT) is provided by the
Test Interface Controller (TIC), which is part of the AMBA
[3] specifications. An external ATE is used to deliver the test
vectors through the TIC interface. At each core, a test wrapper

is required to isolate the core from the surrounding logic.
Krstic et al. [4] presented a similar test methodology, where

the embedded processor first tests itself by executing a set of
instructions using a software-based self test (SBST) method-
ology [5, 6]. Subsequently, the processor tests the bus and
the other IP cores. Huang et al. [7] presented a similar core-
based test approach for PCI bus based SOCs. The test applica-
tion is performed by the test support architecture at every core.
The test patterns for each core under test are generated using
software-based weighted random patterns [8]. Nahvi et al. [9]
proposed a TAM architecture based on a packet switching com-
munication network, called NIMA. NIMA provides access to
the cores for test data delivery by means of multi-level routers
and communication channels similar to the bus-based TAMs.

Larsson et al. [10] proposed a buffer-based test support
architecture to enable parallel testing of core-based SOCs.
As opposed to the embedded processor-based approach by
[1, 4, 7], the test control is performed by an embedded finite
state machine based controller which requires additional hard-
ware overhead, proportional to the volume of the test data.

Our group recently [11] proposed a buffer-based test archi-
tecture similar to [10] for core-based test application utilizing
the embedded processor and the functional bus. The test ap-
plication time is minimized by optimizing the bus sharing be-
tween multiple CUTs using a novel scheduling methodology
called PAcket Set Scheduling (PASS). The applicability of the
proposed methodology is, however, limited to flat bus and sin-
gle processor SOC architectures.

In this paper, our Integrated PAcket Set Scheduling (IPASS)
methodology targeting the hierarchical bus based multiproces-
sor SOCs is described. Scheduling core tests for a hierarchical
bus and multiprocessor SOC involves the tasks of distributing
the core tests to multiple processors, and allocating the time
slots on the shared functional buses for the delivery of the test
data to each CUT. The proposed power-constrained and Mul-
tiProcessor PAcket Set Scheduling (MPPASS) methodologies
address the above issues in order to produce an efficient test
data delivery schedule.

II. SCOPE AND PROBLEM FORMULATION

The design of a multiprocessor SOC (MPSOC) can be im-
plemented using a wide range of architectures [12, 13, 14], de-
pending on the exact design specifications. In addition, various
test strategies can be adopted for each embedded IP core. In or-
der to develop an effective SOC test scheduling methodology,

1-4244-0630-7/07/$20.00 ©2007 IEEE.

7C-2

720

a constricted scope of SOC architecture and test requirements
are considered in this paper.

The proposed test methodology is applicable to the multi-
processor SOCs with hierarchical bus architecture like AMBA
[3], CoreConnect, and some specialized MPSOC buses [12].
Given (i) a bus-based MPSOC with NP embedded processors,
NB bridged buses, and NM IP cores with the corresponding
test power information, and (ii) the test requirements for all of
the IP cores, find, for each processor, the optimum test delivery
schedule (under the constraints of maximum power dissipation,
Pmax, and total buffer sizes, Bmax) which utilizes the hierar-
chical functional buses under the assumptions that:

• Processors are not the target of testing; all the embedded
processors are assumed tested by the SBST methodology
[5] prior to the start of core testing.

• Each processor has a fault-free local memory, tested dur-
ing the processor testing stage [15].

• The core scan frequency can be less than the maximum
scan frequency, fmax.

• Deterministic full-scan tests are used for all CUTs.

• Test data are:

– loaded into the corresponding memory location be-
fore core-testing begins, or

– loaded as they are needed during the test application
through DMA [1], or

– generated by the embedded processors using the de-
terministic SBST [6].

III. BUFFER-BASED TEST ARCHITECTURE

In [10], the differences between three types of test access ar-
chitecture are explained—dedicated TAM, functional bus, and
functional bus with buffers similar to Fig. 1, for an n-bit bus
and a CUT with m scan chains. The bit-width conversion is
achieved by parallel-serial shifting within the buffer, controlled
by the test controller [11]. The first n bits of the core’s pri-
mary inputs (PIs) and primary outputs (POs) are connected to
the data bus. The remaining u PIs and v POs are connected to
other parts of the SOC.

To isolate the cores during testing, each PI/PO is connected
to the bus through a boundary cell, similar to IEEE 1500’s
[16], which selects either the scan input (dotted line) or the
functional input (solid line). The same control signal (T/N) is
used for the boundary cells, the buffers, and the multiplexer
to switch between test mode and normal mode. Wrapper scan

Core (CUT)

PI0 PI1 PIn-1

n

PO0 PO1 POn-1POn POn+1

PIn+1 PIn+u-1

n
m

B
U

S
 PR

O
T

O
C

O
L

IN

T
E

R
FA

C
E

OUTPUT
BUFFER

m

T/N

BUFFER
CONTROLLER

From other cores / PIs

To other cores / POs

n

n

n
n

INPUT
BUFFER

SC
1

SC
0

SC
m

-1

FU
N

C
T

IO
N

A
L

 B
U

S

Boundary cell

n

nPIn

POn+v-1

Fig. 1. Core test architecture

B
uffer A

Functional Bus

Stage 1Stage 2 Stage 1 Stage 2
B

uffer B

B
us

Interface

B
us

Interface

C
ore A

Boundary scan cells

C
ore B

Fig. 2. Buffer-based test architecture

chains with equal scan-in/scan-out depths are formed by cas-
cading PIs and POs to the internal scan chains (Fig. 1). Com-
pared to a TAM-based architecture which utilizes the IEEE
1500 wrapper, the proposed buffer architecture incurs a single
additional multiplexer delay overhead on the functional output
path.

During the test application, the test data are delivered
through the functional bus to the input buffer. Regardless of
the data format on the bus, after passing through the functional
bus protocol interface, decoded bit-level data is transferred to
the input buffer. Test data decoding is handled by the existing
functional interface. The dotted line shows the path taken by
the test data from the input buffer into the scan chains. At the
same time, the test responses are scanned out of the scan chains
into the output buffer. The test responses are then read by the
processor for analysis.

The introduction of buffers enables the test application to be
scheduled concurrently [10, 11]. Figure 2 shows the simplified
representation of the buffer architecture for two CUTs. The
test data are delivered by an embedded processor to buffers A
and B alternately in stage 1 (data delivery stage). In stage 2,
the test data in the respective buffers are loaded into the scan
chains (test application stage) of cores A and B simultane-
ously. Figure 3 shows the timing diagram of the data delivery
on the functional bus (labeled Bus) and the test application at
each core (labeled Core A and Core B).

IV. TEST SCHEDULING METHODOLOGY

In this section, the scheduling methodology which con-
sists of the resource graph manipulation, the power-constrained
scheduling, and the multiprocessor packet set scheduling is ex-
plained. The packet set scheduling methodology [11], which is
targeted for flat bus and single processor architectures, is also
described in order to complete the flow of the algorithm de-
scription.

A. Test Configuration Graph (TCG)

Figure 4 shows a resource graph [17] for the MPSOC in
Fig. 5 consisting of two processors P0 and P1, two buses b0

and b1 (interfaced by a bridge B), and (j + k) cores. Access
to the buses is regulated by the arbiters Ai. The resource graph

Bus

Core A
Core B

Stage 1

Stage 2

Time

Fig. 3. Concurrent test application

7C-2

721

P0

C1 C2

b0

b1 ∧ b0

Cj

P1

Cj+1 Cj+2 Cj+k

b1

b0 ∧ b1

Fig. 4. MPSOC resource graph

P0 C1 C2

b0

Cj P1

b1

Cj+1 Cj+2 Cj+k

BA0
A1

Fig. 5. Hierarchical bus based MPSOC

provides information about processor-core connectivity. For
example, cores C1 to Cj are connected to bus b0 and can be
reached by P0 directly. The cores can also be reached by P1

through a bus hierarchy b1 ∧ b0. The AND operator (∧) indi-
cates that data delivery passes through a bridge.

Definition: A test configuration graph (TCG) is a processor
[test source] - core [test sink] pair that specifies the delivery
path on the functional bus(es) for test data delivery.

Figure 6 shows five types of basic TCGs (top half) and their
corresponding bus architecture (bottom half). For each TCG,
Pq is the test source, and Ci and Cj are the CUTs. Other sec-
ondary TCGs can be formed by expanding and merging the
primary TCGs. Type IV and Type V are broadcast TCGs when
Ci and Cj are identical cores with identical test requirements.
For example, the resource graph in Fig. 4 can be decomposed
into 2 × (j + k) TCGs of Type I and Type II.

B. Power-Constrained Scheduling

Power constrained scheduling for core tests are performed
using various methods, which include preemptive [17], 2D
[18], and 3D bin packing [19] algorithms. The resulting test
schedule is typically similar to Fig. 7(a). When we consider
packet-based test delivery utilizing the functional bus (similar
to Fig. 3), five distinct delivery patterns are required for every
combination of cores tested concurrently for the schedule in
Fig. 7(a). This is because at time t0, C1 and C2 are scheduled.
At t1, the test application of C2 is completed and C3 is started.
The schedule change also takes place at t2 and t3. The more
frequent the schedule changes, the higher the complexity of the
test program. To avoid the additional complexity, the cores are

bu

bu

Pq

Ci

bu ∧ bv bu ∨ bv

Pq

bv

bu

B

CiCi

Pq Pq

Pq

Ci

bu

Pq

Ci

bv

Ci

(II) (III)

Ci

Pq

bu bu

Cj

bu

Pq

Ci Cj

(IV)

Ci

Pq

bu bv

Cj

buPq

Ci

Cj

(V)

bv

(I)

Fig. 6. Types of test resource graphs (TCG)

C1

C2

C4

C3 C5

C1

C2

C4

C3

C5

t0 t1 t2 t3 t0 t1

Pow
er

Time

Pmax

(a) (b)
Time

Pow
er

Fig. 7. Power-constrained test group assignment of CUTs

grouped into non-overlapping test groups as in Fig. 7(b). The
scan frequencies for C3 and C5 are halved, in order to match
the test application time (TAT) of core C1 [11].

Figure 8 shows the power constrained scheduling, in which
the test groups are formed. In step (1) of FormTestGroups, re-
dundant TCGs are eliminated. A TCG of core Ci is said to be
redundant if the set of buses in the TCG is a complete superset
of another TCG of Ci. For example, in Fig. 6, the Type II TCG
is a redundant TCG (relative to Type I) for Ci because the set
{bu, bv} is a complete superset of {bu}. The redundant TCGs
are eliminated from the list of candidate TCGs of Ci because
their delivery costs are always greater and unnecessary.

When forming the test groups, the core with the largest TAT
amongst the remaining unscheduled cores is first scheduled to
the group and assigned the maximum scan frequency, fmax.
The TAT (at fmax) of the remaining unscheduled cores is less
than the TAT of the first core in the test group. When schedul-
ing the subsequent cores, the core scan frequencies are reas-
signed (step 4c) to the highest frequency less than fmax such
that the TAT of the new group member is less than or equal to
the TAT of the first member of the group. The choices of fre-
quency values are constrained by the maximum scan frequency,
fmax, and the resolution of the frequency divider [11].

In step 4a of FormTestGroups, for each TCG of Ci, the max-
imum resulting bus utilization of all buses in the TCG is deter-
mined. The TCG which results in the minimum of the max-
imum total bus utilization is chosen. Step 4 seeks to evenly
distribute the bus utilization. This is achieved by dynamically
selecting the best TCG for each core during scheduling based
on the current bus utilization by other cores.

Function: FormTestGroups
1. For each Ci, eliminate all redundant TCGs
2. Set the total power, Ptotal = 0 for current group
3. Amongst unscheduled cores, select a core with maximum TAT

and not yet attempted for scheduling in current group
4. For the currently selected Ci

(a) If Ci has multiple TCGs, select the TCG which results
in min{max{bus utilization of all buses in TCG}}

(b) If Ci has unique TCG, schedule Ci in current group if
• at least one of the buses in TCG has minimum uti-

lization, and
• Ptotal ≤ Pmax after scheduling Ci

(c) If Ci is scheduled,
• reassign the scan frequency for Ci

• update Ptotal and bus utilization of current group
(d) If Ci cannot be scheduled,

• if all cores are attempted in the current group, cre-
ate a new group and go to step (2)

• else, go to step (3)
Note: Ci ≡ Ci and all broadcast pairs (if any) sharing a TCG

Fig. 8. Assigning cores to test groups

7C-2

722

Core A
Core B

Stage 1

Stage 2

Time
Core C

Bus

Fig. 9. Variable packet sizes

C. Packet Set Scheduling (PASS) [11]

The main objective of PASS methodology [11] is to find, for
a processor, a repetitive delivery sequence and the correspond-
ing packet sizes for each core (for a given maximum total buffer
size) that minimize the test application time. The limitation of
such a cyclic delivery sequence is that the job of all members in
the repetitive group must be completed before the next (identi-
cal) job can be started. In other words, if there is one member
of the group who is late in completing the current job, all other
members stall while waiting for the slowest member to com-
plete, prior to initiating a new group delivery sequence.

In the scan-based testing perspective, the cores with the
smaller number of scan chains (Ns) or those tested at lower
scan frequency (fs) take longer time to complete, for the same
amount of test data. Therefore, cores with larger Ns × fs re-
quire a larger test packet (therefore, larger buffer) in order for
the test application of each packet of each core to have equal
scan time (Stage 2) as shown in Fig. 9. Equal scan time is nec-
essary to avoid stalling.

To reduce the total buffer size required, the packet size for
core B can be halved and the delivery sequence changed from
A-B-C (Fig. 9) to B-A-B-C (Fig. 10). Both figures show three
repetitions of the smallest subset of delivery sequence, called
packet set. In Fig. 10, cores A and C are said to belong to the
split-1 group because only one packet is delivered in the packet
set. Similarly, core B is said to belong to the split-2 group [11].

If three different split groups are used, the delivery sequence
(or packet set schedule, PASS) can be specified as in Fig. 11,
for k, d × k/r, and q cores assigned to split-1, split-r, and
split-2k respectively. Each entry represents a time slot on the
bus allocated for the delivery of packet pg

i,j , where

g = module number (1 to n) from split-i group
i = split group to which module g belongs
j = packet sequence number for module g, and j ≤ i

D. Optimizing PASS for Hierarchical Bus MPSOC (MPPASS)

The delivery sequence specified by Fig. 11 is optimized for
a flat-bus architecture. For a hierarchical bus, the delivery time
of some packets may be longer than others. Strictly follow-
ing the delivery sequence in Fig. 11 may result in stalling the
delivery of some packets, as shown in [11]. Due to the bus con-
tention and the store-and-forward operation by the bridges, the
completion time of a packet delivery cannot be independently

Core B
Core A

Stage 1

Time
Core C

Bus

Stage 2

Fig. 10. Improved delivery sequence for packet size minimization

1 (1) /1 /1 2 1
2 ,1 2 ,1 2 ,1 ,1 ,1 ,1

1 2 1
2 ,2 2 ,2 2 ,2 1,1

2 (1) /2 /1 2 2
2 ,3 2 ,3 2 ,3 ,1 ,1 ,1

1 2 2
2 ,4 2 ,4 2 ,4 1,1

/ / /1 2
2 ,2 1 2 ,2 1 2 ,2 1 , ,

...

...

..

q d k rk r
k k k r r r

q
k k k

q d k rk r
k k k r r r

q
k k k

q k r k r k r
k k k k k k r r r r

p p p p p p

p p p p

p p p p p p

p p p p

p p p p p

+ −+

+ −+

+
− − −

/ (1) /
,

1 2
2 ,2 2 ,2 2 ,2 1,1

.
k r d k r
r r

q k
k k k k k k

p

p p p p

+ −

Fig. 11. Packet delivery sequence for three split groups [11]

calculated without considering the events on other processors
and bridges. Fig. 12 shows the possible contention scenario
on bus b1 between data packets originating from processors on
buses b0 and b2.

The delivery sequence of Fig. 11 only requires that, for each
time slot, the packet belong to a specific split group, not a spe-
cific module. For example, the delivery sequence of B-A-B-C
(Fig. 10) can as well be changed to B-C-B-A without affecting
the scan in operation at each core.

The flowchart in Fig. 13 shows the process of determining
the best PASS (i.e. B-A-B-C or B-C-B-A) for a hierarchical
MPSOC by simulating all delivery sequences that do not vio-
late the group delivery sequence in Fig. 11 as specified by the
index i in each pg

i,j . The PASS can be formed by randomly
permuting the delivery ordering within each split group. For
every permutation of PASS, the test application is simulated
(explained in Sect. V). If the new PASS returns a smaller TAT,
it is recorded as the current best PASS.

In order to minimize the simulation time, each PASS is sim-
ulated only for w packet sets (i.e. w repetitions of B-A-B-C).
Furthermore, if NPASS,max consecutive PASS is tried without
any improvement, the simulation is stopped, and the current
best PASS is returned. The value of w is chosen under the as-
sumption that the interaction between the data packets is cyclic
after several repetitions of packet set delivery. The values for
w and NPASS,max of 5 and 10, respectively, were used for the
results presented in Sect. VI.

V. SIMULATING THE TEST APPLICATION

In order to determine the test application time for each PASS,
an event-driven MPSOC simulation environment (Fig. 14) was
implemented in C++ under the following constraints:
• The delivery sequence by each processor follows the

PASS repeatedly. A new test packet for core Ci is deliv-
ered by the processor only when the test response of the
previous packet of Ci is received.

• Bus arbitration follows the functional arbitration scheme.
• Every event requires a separate bus arbitration.

In Fig. 14, the middle (shaded) blocks are the main simula-
tion engine, which keeps track of the simulation time and pro-

b0

b1

b2 Time

Arbitration delay

Fig. 12. Bus contention in an MPSOC

7C-2

723

ST
A

R
T

If (newTATPS < bestTATPS) ,
bestTATPS = newTATPS

bestPASS = newPASS
Else

NPASS++

Return best PASSFINISH

Y

N

NPASS = 0

bestTATPS = ∞

More PASS? or

•Generate a new PASS
not yet simulated

•Simulate for new PASS.
newTATPS = total TAT for w
consecutive packet sets NPASS < NPASS,max

Fig. 13. Optimizing the packet delivery sequence (MPPASS)

cesses the events based on their time stamp. The left and right
sections show the steps for handling the processor-initiated
events and bridge-initiated events respectively. For both types
of events, the packets are forwarded to either the next bridge
(vector or response packets), directly to the core (vector pack-
ets), or back to the processor (response packet). The next desti-
nation of each packet is determined by the TCG chosen for the
packet owner (the core/CUT).

VI. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed
methodology, we have conducted experiments on several mod-
ified ITC’02 benchmark circuits [20]. The power dissipation
information for the selected circuit is obtained from [18, 19]1.
We have additionally added the functional bus information to
the selected circuits as follows:
• A bus b0 is added to connect all the cores. A processor

core is assumed attached to b0. This modified circuit is
named NXh1, where NX is the original circuit name.

• For circuits which have level-2 hierarchy, a single shared
bus b0 is added to connect all the level-1 cores. The def-
inition for level is defined in the benchmark suite [20].
Additionally, a local bus bi is added within each hierar-
chical level-1 core. Bus bi is interfaced to bus b0 through
a bridge. This modified circuit is named NXh2.

When comparing the test application time with a TAM-based
approach, the processor cores are assumed to be tested using
software-based self-test prior to the test application of other

1The unit for maximum power, Pmax, is based on an estimate given by
[18]. We utilized the same power values in order to offer a comparison with
TAM-based scheduling approaches.

START
Init. Processor &

Bridge States

GetNextEvent
(Next earliest event)

Bridge/Processor
Event?

Deliver to core and
retrieve response

Core on
local bus?

Forward to
next bridge

Y

N

Schedule next
processor event

Processor

Dest. on
local bus?

Deliver to destination
(retrieve response)

Forward to
next bridge

Y

Schedule next
bridge event

Bridge

More events?

Y

END
N

N

Processor Events Bridge EventsMain Simulation Engine

Fig. 14. MPSOC event-driven simulation flowchart

TABLE I
FLAT BUS SOC (P93791H1)

fb=2*fs fb=2*fs
Pmax Pouget IPASS IPASS Pouget IPASS IPASS
10,000 18.28 18.44 9.04 11.17 8.94 5.34

15,000 18.28 17.34 8.85 10.15 8.85 4.70

20,000 18.28 17.35 8.89 9.58 8.93 4.59

25,000 18.28 17.63 9.07 9.65 9.05 4.75

30,000 18.28 17.78 9.08 9.45 9.07 4.67

BW = 64
fb = fs

p93791h1
flat-bus

BW = 32
fb = fs

TABLE II
HIERARCHICAL BUS MPSOC (P93791H2)

Pmax P@b0 P@All P@b0 P@All P@b0 P@All P@b0 P@All
10,000 18.28 26.97 15.51 13.47 7.83 11.17 13.47 7.83 7.13 5.69

15,000 18.28 20.15 9.51 10.07 4.83 10.15 10.07 4.83 5.05 3.79

20,000 18.28 20.39 7.37 10.20 4.27 9.58 10.21 4.23 5.11 3.51

25,000 18.28 18.95 5.31 9.47 3.24 9.65 9.50 3.20 4.72 2.82

30,000 18.28 18.89 5.31 9.44 3.24 9.45 9.44 3.20 4.78 2.82

fb = 2*fs
BW = 64

IPASS IPASS IPASS IPASS
Pouget

fb = fs

Pouget

BW = 32
fb = 2*fs

p93791h2
hierarchy fb = fs

non-processor cores. Therefore, the TATs for the processor
cores are assumed to be equal for both TAM-based and our
IPASS approach. The TAT for the processors is therefore not
included in the results presented in this section. IPASS dynam-
ically chooses the PASS algorithm [11] for scheduling, when
the target system is a single processor SOC with a flat bus ar-
chitecture. Alternatively, it will use MPPASS algorithm for
multiprocessor SOCs with hierarchical buses.

The following tables show the TATs (in millisecond) when
the maximum scan frequency is set to fmax = 100 MHz. TAM-
based approaches make use of the fmax for all cores. They also
disregard the functional buses; their TATs are the same for an
SOC with either a flat bus or a hierarchical bus implementation.

Table I shows the TAT for a single processor SOC with a flat
functional bus and bus widths (BW) of 32 and 64 bits. The
test applications are simulated for several values of Pmax. In
the table, fb=fs represents the circuit configurations when the
maximum scan frequency (fs) and the bus frequency (fb) are
set to 100 MHz. The second and fifth columns show the TATs
for a TAM-based approach [18]. The third and sixth columns
show the results of our IPASS approach. The TATs of our ap-
proach and of the TAM-based approach are comparable when
the bus frequency is the same as the scan frequency (i.e. same
as TAM approach). However, much shorter TATs are achieved
when we allow the bus frequency to be higher than the scan
frequency, which is not possible for the TAM-based approach,
without adding similar buffers, in addition to the TAMs. The
fourth and seventh columns (fb=2*fs) illustrate this advantage.

In Table II, P@b0 represents a hierarchical bus SOC with
one processor. The elevated TATs are due to the hierarchy
overhead in the delivery time of each test packet. The effect
of hierarchical buses is evident when comparing p93791h1 and
p93791h2 since in both cases, there is one test processor on the
level-0 bus (b0). In order to show the benefit of using multi-
ple processors, we analyzed the best case scenario, where there
is a processor in every isolated bus region (P@All). The bus
hierarchy allows simultaneous delivery of the test data and re-
duces contention on the bus access. For typical MPSOC con-
figurations, the TAT is expected to be between the best case
(P@All) and the worst case (P@b0). Simulation results for

7C-2

724

TABLE III
FLAT BUS SOC (P22810H1)

fb=2*fs fb=2*fs
Pmax Pouget IPASS IPASS Pouget IPASS IPASS

3,000 4.83 4.34 3.06 3.09 3.06 2.93

4,000 4.80 4.34 2.93 3.24 2.94 2.65

5,000 4.72 4.53 2.74 3.22 2.74 2.33

6,000 4.76 4.67 2.46 2.50 2.49 1.88

10,000 4.73 4.32 2.21 2.36 2.20 1.36

BW = 64
fs = fb

p22810h1
flat-bus

BW = 32
fs = fb

TABLE IV
HIERARCHICAL BUS MPSOC (P22810H2)

Pmax P@b0 P@All P@b0 P@All P@b0 P@All P@b0 P@All
3,000 4.83 4.89 4.23 3.79 3.66 3.09 3.59 3.72 3.54 3.72

4,000 4.80 4.61 3.06 2.65 2.67 3.24 3.16 2.67 3.05 2.67

5,000 4.72 4.81 2.88 2.47 1.87 3.22 2.48 1.87 1.93 1.87

6,000 4.76 4.65 2.96 2.35 1.87 2.50 2.35 1.87 1.68 1.82

10,000 4.73 4.69 2.70 2.30 1.37 2.36 2.37 1.37 1.30 1.33

fb = 2*fs
IPASS

BW = 64

IPASS
Pouget

fs = fb

Pouget
IPASS

fb = 2*fs
IPASS

p22810h2
hierarchy fs = fb

BW = 32

some randomly assigned number and locations of processors
demonstrate this expected trend.

Table III and Table IV show the TATs for flat-bus p22810h1
and hierarchical bus p22810h2 SOC, respectively. Similar
trends are observed for this circuit. However, smaller variations
are observed between P@b0 and P@All because p22810h2 has
only three bus regions, as compared to eight bus regions for
p93791h2. Correspondingly small variations are also observed
between the flat and hierarchical bus SOCs for the same reason.

The area overhead of the proposed buffer-based test archi-
tecture is estimated in terms of the number of flip-flops for the
buffers. The overhead on the controller and the boundary scan
cells are comparable to the IEEE 1500 wrapper architecture
[11]; therefore, it is not included. For all the circuits in Table I
to Table IV, the buffer sizes per core (for BW=32), averaged
over all Pmax, are shown in Table V.

VII. CONCLUSION

We have proposed a test scheduling methodology for core-
based testing of SOCs based on the utilization of the functional
buses. The proposed method can handle both flat bus single
processor architectures and hierarchical bus multiprocessor ar-
chitectures. The bus hierarchy information is efficiently in-
corporated into the methodology by representing the resource
graph with the test configuration graphs—a concept introduced
in this paper.

It was shown that the hierarchical bus architecture introduces
a delay overhead in the delivery of a test packet, which pro-
longs the overall test application time. Subsequently, the use of
multiple processors embedded within the bus hierarchy annuls
the negative effects of the hierarchical bus architecture on the
overall test application time. Incorporating the bus hierarchy in
the test scheduling algorithm is an important step in promoting
the use of the functional bus based test methodology.

ACKNOWLEDGEMENTS

This work was supported in part by 21st Century COE Pro-
gram (Ubiquitous Networked Media Computing) and in part
by Japan Society for the Promotion of Science (JSPS) under

TABLE V
AVERAGE BUFFER SIZES PER CORE

Circuit p93791h1 p93791h2 p22810h1 p22810h2
Min 99.20 89.79 106.06 107.65
Max 99.39 98.00 112.00 113.15

Grants-in-Aid for Scientific Research B (No.15300018) and for
Young Scientists B (No.18700046).

REFERENCES

[1] C. A. Papachristou, F. Martin, and M. Nourani, “Microprocessor based
testing for core-based system on chip”, In Proc. IEEE Design Automation
Conference, 1999, pp. 586-591.

[2] P. Harrod, “Testing reusable IP - A case study”, In Proc. International Test
Conference, 1999, pp. 493-498.

[3] D. Flynn, “AMBA: Enabling reusable on-chip designs”, IEEE Micro, Vol.
17, No. 4, July/Aug. 1997, pp. 20-27.

[4] A. Krstic, L. Chen, W-C. Lai, K-T. Cheng, and S. Dey, “Embedded
software-based self-test for programmable core-based designs”, IEEE
Design & Test of Computers, Vol. 19, Issue 4, Jul/Aug. 2002, pp. 18-27.

[5] L. Chen and S. Dey, “Software-based self-testing methodology for pro-
cessor cores”, IEEE Transactions On Computer-Aided Design Of Inte-
grated Circuits And Systems, Vol. 20, No. 3, March 2001, pp. 369-380.

[6] A. M. Paschalis, D. Gizopoulos, N. Kranitis, M. Psarakis, and Y. Zorian,
“Deterministic software-based self-testing of embedded processor cores”,
In Proc. Design, Automation & Test in Europe, 2001, pp. 92-96.

[7] J-R. Huang, M. K. Iyer, and K-T. Cheng, “A self-test methodology for
IP cores in bus-based programmable SOCs”, In Proc. IEEE VLSI Test
Symposium, 2001, pp. 198-203.

[8] M. K. Iyer and K-T. Cheng, “Software-based weighted random testing
for IP cores in bus-based programmable ICs”, In Proc. IEEE VLSI Test
Symposium, 2002, pp. 139-144.

[9] M. Nahvi and A. Ivanov, “A packet switching communication-based test
access mechanism for system chips”, In Proc. IEEE European Test Work-
shop, 2001, pp. 81-86.

[10] A. Larsson, E. Larsson, P. Eles, and Z. Peng, “Optimization of a bus-
based test data transportation mechanism in system-on-chip”, In Proc.
Euromicro Conference on Digital Systems Design, 2005, pp. 403-411.

[11] F. A. Hussin, T. Yoneda, A. Orailoglu, and H. Fujiwara, “Power-
constrained SOC test schedules through utilization of functional buses”,
In Proc. IEEE International Conference on Computer Design, 2006, pp.
230-236.

[12] K. K. Ryu, E. Shin, and V. J. Mooney, “A comparison of five different
multiprocessor SOC bus architectures”, In Proc. Digital Systems Design
Conference, 2001, pp. 202-209.

[13] W. O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. A. Jer-
raya, L. Gauthier, and M. Diaz-Nava, “Multiprocessor SOC platforms: A
component-based design approach”, IEEE Design & Test of Computers,
Vol. 19, Issue 6, Nov/Dec. 2002, pp. 52-63.

[14] V. Salapura, C. J. Georgiou, and I. Nair, “An efficient system-on-a-chip
design methodology for networking applications”, In Proc. International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, 2004, pp. 212-219.

[15] R. Rajsuman, “Design and test of large embedded memories: An
overview”, IEEE Design & Test of Computers, Vol. 18, Issue 3, May/June
2001, pp. 16-27.

[16] E. J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, M. Ricchetti, and
Y. Zorian, “On IEEE P1500 standard for embedded core test”, Journal of
Electronic Testing: Theory and Applications, Aug. 2002, pp. 365-383.

[17] E. Larsson and H. Fujiwara, “System-on-chip test scheduling with recon-
figurable core wrappers”, IEEE Trans. on VLSI Systems, Vol. 14, No. 3,
March 2006, pp. 305-309.

[18] J. Pouget, E. Larsson, and Z. Peng, “Multiple-constraint driven system-
on-chip test time optimization”, Journal of Electronic Testing: Theory
and Applications, Vol. 21, 2005, pp. 599-611.

[19] Y. Huang, S. M. Reddy, W-T. Cheng, P. Reuter, N. Mukherjee, C-C. Tsai,
O. Samman, and Y. Zaidan, “Optimal core wrapper width selection and
SOC test scheduling based on 3-D bin packing algorithm”, In Proc. Inter-
national Test Conference, 2002, pp. 74-82.

[20] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A set of benchmarks
for modular testing of SOCs”, In Proc. International Test Conference,
2002, pp. 519-528.

7C-2

725

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

