
An Interconnect-Centric Approach to Cyclic Shifter Design
Using Fanout Splitting and Cell Order Optimization

Haikun Zhu, Yi Zhu, Chung-Kuan Cheng
CSE Dept., UCSD

La Jolla, CA 92093-0404, USA

Email: {hazhu,y2zhu,kuan}@cs.ucsd.edu

David M. Harris
Harvey Mudd Colledge

Claremont, CA 91711

Email: David Harris@hmc.edu

Abstract— We propose two orthogonal approaches to logarithmic

cyclic shifter design. The first method, called fanout splitting, replaces

multiplexers in a conventional design with demultiplexers which have

two fanouts driving the shifting and non-shifting paths separately. The

use of demultiplexers has a two-fold effect; it cuts the accumulated wire

load on the critical path from O(N log2(N)) to O(N), and reduces the

switching probabilities on the inter-stage long wires from 1/4 to 3/16. We

then perform cell order optimization to further improve the delay, and

formulate it as an integer linear programming problem. For the 64-bit

case, the two approaches together reduce the total delay by 67.1% and

dynamic power consumption by 17.6%, respectively.

General Terms: Performance, Power, Design

Keywords: cyclic shifter, interconnect, fanout splitting, permutation,

integer linear programming

1. INTRODUCTION

Binary shifters, similar to adders and multipliers, are indispensable

in high performance microprocessors, especially in those that support

floating-point operations. For communication applications such as

encryption and error control coding, the cyclic shifter is a critical

component because rotation operations are enormously needed. Yet

the simplicity of the shifter logic misleadingly disguises its impor-

tance in circuit design; Literature on shifter design is relatively scarce

compared to that of adders and multipliers, and textbooks typically

cover shifter in just one or two pages [1], [2]. The main reason

is that the complexity of the shifters comes from the internal wire

connections which does not fit into the traditional logic-centric design

methodology.

It is well-known that in terms of design style there are two types

of shifters for circuit designers to choose from: array shifter or

logarithmic shifter [1]. The former is noted for its high speed because

in theory every data signal only passes through one transmission gate.

However, in practice the capacitance presented to the input signals

increases linearly with the word length, and the number of transistors

grows quadratically with the word length. Moreover, for array shifter

an additional decoder for control signals is required. These factors

make the array shifter less appealing for large word length. As an

attractive alternative, the logarithmic shifter completes the shifting

in log2(N) stages, where N = 2n is the word length. At each

stage the data signals either uniformly pass through or shift by 2i

bits, where 0 ≤ i ≤ n − 1. However, the logarithmic shifter has its

own weakness. The amount of inter-stage interconnect wires roughly

double from one stage to the next. The situation is even aggravated

with the aggressive technology scaling due to which the interconnect

is dominant for both delay and power consumption.

There were few attempts to improve the shifter by optimizing the

interconnect wires. M. A. Hillebrand et al. [3] proposed to half the

wire length in a cyclic shifter (rotator) by permuting the cell positions

in the intermediate stages. In [4], a two-dimensional folding strategy

is suggested for the layout of a cyclic shifter. However, since the

shifter is usually aligned with the adder and multiplier in a datapath

module and can not decide the module width on its own, the approach

is hardly useful in practice. At the logic level, ternary shifting [5] is

proposed to replace binary shifting so that the number of stages is

reduced. In essence, this method uses 3-to-1 MUXes (multiplexer)

to build the shifter network. In [6] Yih et al. proposed a multilevel

approach to reduce the number of transmission gates in the barrel

shifter.

We propose two methods to alleviate the interconnect burden in

the logarithmic cyclic shifter (rotator). Our main contributions can

be summarized as follows.

• We propose fanout splitting to decouple the shifting and non-

shifting behaviors at each stage so that the non-shifting paths

can be saved from switching when the data signals are config-

ured to pass through, and vice versa. In practice, this idea is

realized by replacing the MUXes in a traditional design with

DEMUXes (demultiplexer) which have two outputs governing

the shifting and non-shifting paths separately, giving rise to

the term “fanout splitting”. We show that by doing so the

accumulated wire load on the critical path is reduced from

O(N log2(N)) to O(N). Moreover, the switching probabilities

on the inter-stage wires of the new design is lower than that of

the conventional MUX-based design, resulting in smaller overall

switched capacitance.

• We apply cell order optimization to our DEMUX-based design

to further reduce the delay. We formulate the optimization as an

Integer Linear Programming (ILP) problem and solve it using

commercial ILP solver CPLEX 9.1. For 32- and 64-bit cases

a sliding window heuristic is devised to tackle the complexity

issue.

• Using the ILP formulation framework we also study the power-

delay tradeoff for cell ordering. We show that linear order

placement is inherently inefficient in terms of longest path delay.

The experimental results show that for 64-bit case the total delay

is reduced by 67.1%, and the dynamic power consumption is reduced

by 17.6%, when both fanout splitting and cell order optimization are

applied.

The rest of the paper is organized as follows: In Section 2

we formally state the shifter design problem. Section 3 gives the

motivation of our work and describes the fanout splitting technique

in detail. The cell order optimization and its ILP formulation are

presented in Section 4. In Section 5 we give the experiment results.

Section 6 concludes the paper.

2. NOTATIONS AND PROBLEM STATEMENT

We confine our discussion to the logarithmic cyclic shifter. In the

rest of the paper, “shifter” refers to the logarithmic cyclic shifter un-

less otherwise noted. We may sometimes use rotator interchangeably.

A shifter takes as inputs an N-bit binary data word D[N − 1 : 0]
and an n-bit control word S[n−1 : 0], and produces an output word

Z[N − 1 : 0] with N = 2n for some positive integer n. The binary

value of the control word is denoted by |S| :=
∑n−1

i=0
S[i] · 2i. The

1-4244-0630-7/07/$20.00 ©2007 IEEE.

6C-3

616

(7,1) (6,1) (5,1) (4,1) (3,1) (2,1) (1,1) (0,1)

(7,2) (6,2) (5,2) (4,2) (3,2) (2,2) (1,2) (0,2)

(7,3) (6,3) (5,3) (4,3) (3,3) (2,3) (1,3) (0,3)

(7,0) (6,0) (5,0) (4,0) (3,0) (2,0) (1,0) (0,0)

Fig. 1. 8-bit conventional MUX-based shifter.

(7,1) (6,1) (5,1) (4,1) (3,1) (2,1) (1,1) (0,1)

(7,2) (6,2) (5,2) (4,2) (3,2) (2,2) (1,2) (0,2)

(7,3) (6,3) (5,3) (4,3) (3,3) (2,3) (1,3) (0,3)

(7,0) (6,0) (5,0) (4,0) (3,0) (2,0) (1,0) (0,0)

Fig. 2. Proposed DEMUX-based (fanout splitting) shifter.

shifter implements the function ROTATE:

Z[N − 1 : 0] = ROTATE(D[N − 1 : 0], S[n − 1])

:= (D[|S| − 1 : 0], D[N − 1 : |S|])

where (A, B) represents the concatenation of two binary strings A

and B.

Since the logarithmic shifter is an interconnect intensive compo-

nent, the main design objective is to come up with a scheme that

reduces both power dissipation and delay induced by the wires.

3. FANOUT SPLITTING SHIFTER DESIGN

3.1. Motivation

Fig. 1 shows an example of a conventional 8-bit rotator using

MUXes (hereafter referred to as MUXSHIFTER). The MUXes are

arranged in an array where the MSB cells are on the left. Assuming

there is an input buffer stage, the whole MUX network including

the input buffers can be mapped onto a grid graph G = (V, E)
where V := {(column, row) = (i, j)|(i, j) ∈ 〈0, 1, ..., N − 1〉 ×
〈0, ..., n〉}. From each node (i, j) with j < n there are two outgoing

edges: (i, j) → (i, j + 1) and (i, j) → (i − 2j mod N, j + 1).

Following the terminology used in [3], we call (i, j+1) the unshifted

child and (i−2j mod N, j +1) the shifted child of (i, j). Likewise,

each node (i, j) with j > 0 has two incoming edges from (i, j − 1)
and (i + 2j mod N, j − 1), the former called the unshifted parent

and the latter called the shifted parent.

The issue with MUXSHIFTER is that the way the MUXes are

interconnected is unaware of the functionality of the shifter. The two

edges coming out of node (i, j) are electrically hard-wired together.

In the grid graph, this can be modeled by assigning weight 2j + 1
to both (i, j) → (i, j + 1) and (i, j) → (i − 2j mod N, j + 1). As

a result, when the shifter is configured to shift 0 bit, all the lateral

wires have to be switched as well, unnecessarily consuming more

10

A B A B

S

S S’

ZZ

0 1

A

A

B

B

S

S S’

Z1 Z2
Z2Z1

Z1 Z2

S S’A B

a

b

S A B S’

refactoring
Z

Z2Z1

Fig. 3. The gate level implementation of (a) MUX; and (b) OR+DEMUX
(cross switch).

power. This is clearly against the intuitive switch-only-when-needed

low power design principle.

Even worse, the longest lateral wires at each stage in

MUXSHIFTER are accumulated on the critical path. Consider the path

from D0 to Z0 in Fig. 1. The accumulated wire load (highlighted

by heavy lines) on this path is 20, assuming 1 unit wire length per

column and per row. In general, the accumulated wire load on the

critical path for MUXSHIFTER is Ω(N log2(N)) [3] where N is the

word length.

3.2. Fanout Splitting Approach

Motivated by the above observations, we propose to use DE-

MUXes to build the shifter in lieu of the MUXes in conventional

designs. Each DEMUX has two outputs, the left one is the unshifted

signal while the right one is the shifted signal. At the next stage, we

precede each DEMUX with an OR gate which collects the shifted

and unshifted signals from the previous stage. Such a design is shown

in Fig. 2. Since a DEMUX has separate outputs, this technique is

termed “fanout splitting”. We call the new design DEMUXSHIFTER.

Similar to MUXSHIFTER, DEMUXSHIFTER can be represented by

exactly the same grid graph. The difference is that the two edges

coming out of node (i, j) are now independent. Edge (i, j) → (i, j+
1) has weight 1 while edge (i, j) → (i−2j mod N, j+1) has weight

2j + 1.

3.2.1. Impact on Longest Delay Path

Because of fanout splitting, the shifting and non-shifting behaviors

are now decoupled. This directly reduces the accumulated wire load

on the critical path. For the 8-bit case shown in Fig. 2, the wire

load of the critical path is now 16. In fact, we have the following

conclusion.

Claim 1: The wire length of the critical path in DEMUXSHIFTER

is O(N).

Proof: We show a lower bound for the critical path wire length.

From level j to j +1 there are two types of horizontal wires. Those

go to the lower bits have length 2j . Those wrap around to the higher

bits have length N − 2j . The key observation is that any path from

a topmost node (i1, 0) to a bottommost node (i2, n) shall contain at

most one horizontal wire that wraps around. Therefore,

critical path wire length

≤ max
0≤j≤n−1

{(n−1∑
k=0

k �=j

2k
)

+ N − 2j + n
}

= max
0≤j≤n−1

{(n−1∑
k=0

2k
)

+ N − 2j+1 + n
}

≤ 2N − 3 + n

6C-3

617

D6 D5 D4 D3 D2 D1D7 D0

P01 =3/16
P1=3/4

P1

P01 =1/4
=1/2

P01 =3/16
P1=3/4

P1

P01 =1/4
=1/2

P1

P01 =1/4
=1/2

P01 =3/16
P1=3/4

Z5Z6Z7 Z4 Z3 Z2 Z1 Z0

S1 S1’ S1 S1 S1 S1 S1 S1S1’ S1’ S1’ S1’ S1’ S1’ S1’S1

S2 S2’

S0 S0’ S0 S0 S0 S0 S0 S0 S0S0’ S0’ S0’ S0’ S0’ S0’ S0’

S2 S2 S2 S2 S2 S2 S2S2’S2’ S2’ S2’ S2’ S2’ S2’

Fig. 4. 8-bit MUXSHIFTER using NAND gates.

P1

P01 =1/4
=1/2

P01 =3/16
P1=3/4

P1

P01 =1/4
=1/2

P01 =3/16
P1=3/4

P1

P01 =1/4

P01 =3/16
P1=3/4

=1/2
D6 D5 D4 D3 D2 D1D7

Z5Z7 Z6 Z4 Z3 Z2 Z1 Z0

D0

S2’S2 S2 S2’ S2 S2 S2 S2S2 S2S2’ S2’ S2’ S2’ S2’ S2’

S1 S1’S1’ S1 S1 S1 S1 S1 S1 S1S1’ S1’ S1’ S1’ S1’ S1’

S0’S0 S0 S0 S0 S0 S0 S0 S0S0’ S0’ S0’ S0’ S0’ S0’ S0’

Fig. 5. 8-bit DEMUXSHIFTER using NAND gates.

This proves the claim.

To understand the gate complexity, we give the gate implementa-

tions of the MUX and the OR+DEMUX conglomerate (essentially

a 2-input/2-output switch box) in Fig. 3. Interestingly, at gate level

the fanout splitting design is really like re-factoring the OR function

in the MUXes later to be combined with the logic of the next stage.

Note the NAND gate version of the cross switch does not really

implement a cross switch; it is derived from the NAND gate version

of the MUX by utilizing the re-factoring observation. Fig. 4 and

Fig. 5 illustrate the NAND gate implementations of MUXSHIFTER

and DEMUXSHIFTER, respectively. From the figures we see the fun-

damental difference between MUXSHIFTER and DEMUXSHIFTER is

the organization of the inter-stage wires. They both have the same

gate complexity O(N log2(N)).

3.2.2. Impact on Dynamic Power Consumption

At a first glance, the total inter-stage wire length in DE-

MUXSHIFTER is the same or even a little bit more than that of

MUXSHIFTER. Nevertheless, as we will show in the next, the

switching probability on the wires decreases from 1/4 to 3/16, which

leads to less overall power consumption.

It is well-known that the dynamic power consumption of a circuit

is proportional to the effective switched capacitance Ceff,

Pdynamic = CeffV
2

supply/2 = (CloadP0→1)V
2

supply/2 (1)

where P0→1 is the switching probability on the load capacitance.

In general, predicting the signal switching probabilities in a circuit

is difficult because of signal correlation due to re-convergent paths.

However, the shifter is a strictly levelized design and does not contain

re-convergent fanouts, hence its switching probabilities can be easily

calculated.

Define the 1-probability PX to be the probability that a signal X
is one. The 0 → 1 switching probability of signal X can be written

as

PX|0→1 = PX(1 − PX) (2)

TABLE I

TRUTH TABLE OF THE MUX USING NAND GATES

S S’ A B Z1 Z2 Z

0 1 0 0 1 1 0
0 1 0 1 1 0 1
0 1 1 0 1 1 0
0 1 1 1 1 0 1
1 0 0 0 1 1 0
1 0 0 1 1 1 0
1 0 1 0 0 1 1
1 0 1 1 0 1 1

We start by assuming that all the primary input signals [D7:D0],

[S2:S0] are equal probable at 0 or 1. Consider the NAND gate

implementation of a MUX in Fig. 3(a). From the truth table (Table

I) we see that

PZ1 = PZ2 = 3/4; PZ = 1/2

We then propagate the 1-probabilities downward across the shifter

network, and calculate the switching probabilities using Eqn. (2). The

MUXSHIFTER (Fig. 4) and DEMUXSHIFTER (Fig. 5) are annotated

with both 1-probabilities and switching probabilities. From the

figures we clearly see that DEMUXSHIFTER has lower switching

probabilities on the inter-stage long wires.

4. CELL ORDER OPTIMIZATION BY INTEGER LINEAR

PROGRAMMING

M. A. Hillebrand et al. [3] observed that the longest delay path

in a cyclic logarithmic shifter can be reduced by permuting the

cells within each row in the intermediate stages, and they applied

this technique to a MUX-based design. Apparently, our DEMUX-

based shifter can benefit from this technique as well. Different

from their constructive approach, we formulate the cell permutation

optimization as an Integer Linear Programming (ILP) problem, and

use the state-of-the-art CPLEX solver to obtain the results.

4.1. ILP Formulation

Assuming the word length N = 2n, an N -bit DEMUXSHIFTER

consists of n + 1 levels. Level 0 is the input stage while level n is

the output stage (see Fig. 5). The cell order of the input and output

stages are fixed to be linear with MSB on the left and LSB on the

right. For each intermediate stage, a set of binary decision variables

specifying the permutation order is introduced.

• xl
ij ∈ {0, 1}: 1 if and only if logic cell i is placed at physical

position j on level l (0 ≤ i, j ≤ N − 1, 1 ≤ l ≤ n − 1).

Since each logic cell occupies one and only one physical position,

the following constraints naturally hold:

N−1∑
i=0

xl
ij = 1 (0 ≤ j ≤ N − 1, 1 ≤ l ≤ n − 1) (3)

N−1∑
j=0

xl
ij = 1 (0 ≤ i ≤ N − 1, 1 ≤ l ≤ n − 1) (4)

Note that the set of decision variables xl
ij and constraints (3), (4)

completely define the permutation solution space. The rest of the

problem is to represent the objective, i.e., minimizing the longest

path.

Denote a cell with logic index i at level l as Cl
i . Pick a cell C0

i at

the input stage and a cell Cn
j at the output stage, there is an unique

delay path from C0
i to Cn

j . Put another way, from cell Cn
j there are

exactly N path tracing back to the input level. The scenario for the

8-bit case is shown in Fig. 6. The logic indices of the cells on each

delay path are annotated on the graph, while the physical positions

of the cells are for illustration purpose only — they can be anywhere

in their respective rows. Thus for an N -bit shifter, there are in total

6C-3

618

C0
j

C3
j

C2
j

C1
j

Pi1

Po2

Pi2

Po1

Pi1
Pi2
Po1
Po2 :shiftedoutputpin

:unshiftedoutputpin
:unshiftedinputpin
:shiftedinputpin

C C0
(j+6)%N C0

(j+5)%N C0
(j+7)%N
0 C0 C0 C0

C(j+6)%N
1

(j+4)%N (j+3)%N (j+2)%N (j+1)%N

C(j+4)%N
1 C(j+2)%N

1

C(j+4)%N
2

Fig. 6. Delay paths ending at C3
j .

N2 delay paths. The length of the longest path, call it Tmax, is given

by

Tmax = max
{
length of the delay path from

C0
i to Cn

j |0 ≤ i, j ≤ N
}

(5)

which can be expanded into N2 linear constraints as

Tmax ≥ length of the delay path from C0
i to Cn

j

for 0 ≤ i, j ≤ N − 1 (6)

with the objective

obj : minimize Tmax (7)

Each input-to-output delay path consists of n wire segments. We

show the technique to represent the length of a single wire segment

as a set of linear constraints. Without loss of generality, suppose

C0
i1

is connected to C1
i2

, yet their respective physical locations are

unknown. The length of the wire segment connecting them can be

written as

d =
∣∣∣

N−1∑
j=0

j · x0
i1j −

N−1∑
j=0

j · x1
i2j

∣∣∣ (8)

which can be converted into linear constraints

d −

N−1∑
j=0

j · x0
i1j +

N−1∑
j=0

j · x1
i2j ≥ 0 (9)

d +

N−1∑
j=0

j · x0
i1j −

N−1∑
j=0

j · x1
i2j ≥ 0 (10)

Note that constraints (9) and (10) only set the lower bound for

d, hence are not entirely equivalent to Eqn. (8). However, since our

objective is to minimize Tmax, and Tmax is non-decreasing w.r.t. d,

we conclude that the lower bound for d must be achieved in the

optimal solutions.

Once we know how to represent the length of a single wire

segment, it is straightforward to express the length of an input-to-

output delay path. In modelling the delay paths we have neglected

the gate delay and vertical wire length, since they equally contribute

to all paths.

In a nutshell, our minimum delay ILP formulation comprises

constraints (3), (4), (6) and objective (7). We also consider the

minimum power formulation which seeks to minimize the total wire

length Ttotal subject to a given constraint on maximum delay.

obj : minimize Ttotal (11)

s.t. Tmax ≤ Constant (12)

31 30 2829 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 2829 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 7. Sliding window scheme for the 32-bit case.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

31 30 2829 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 2829 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 31 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

28 27 26 25 24 23 22 21 20 19 18 17 16 31 15 14 30 13 12 29 11 10 9 8 7 6 5 4 3 2 1 0

24 23 22 21 20 19 18 17 16 15 14 31 13 12 30 29 28 27 26 11 10 25 9 8 7 6 5 4 3 2 1 0

15 14 13 12 1116 10 31 9 8 30 29 28 27 26 25 24 23 22 21 20 19 18 7 6 17 5 4 3 2 1 0

1bit

2bit

4bit

8bit

16bit

(c)32bitShifter

(b)16bitShifter

14 11 10 7 6 5 0

2 1 0

2

12 9 8 1513 3 4 21

11 12 7 10 9 15 14 6 13 5 8 3 4

104891011131231415567

1bit

2bit

4bit

8bit

(a)8bitShifter

1 0

2 1 06 5 4 3 7

43 2 6 7 5

1bit

2bit

4bit

Fig. 8. Optimal cell order for minimum delay.

The minimum power formulation helps to study the tradeoff between

delay and power, since total wire length is an indicator of the dynamic

power consumption.

4.2. Sliding Window Scheme

The CPLEX solver uses a branch and bound method with linear

relaxation [7], thus the running time greatly depends on the problem

size. In our ILP formulation, the number of decision variables is

(n − 1)N2, which grows more than quadratically. As a result, the

8-bit case was solved in seconds while the 16-bit case took almost

one day to find an optimal solution. For 32- and 64-bit cases, treating

the problem as a whole becomes infeasible. We now describe a

sliding window heuristic to tackle the complexity issue of our ILP

formulation.

The sliding window scheme optimizes the shifter in multiple

passes. In each pass, a sliding window is superimposed on the shifter

layout, as shown in Fig. 7. Only cells within the sliding window are

allowed to permute freely, with the goal to minimize Tmax (min-

delay formulation) or Ttotal (min-power formulation). The window

then moves from left to right and top to bottom until it reaches

the bottom-right corner. The procedure terminates when there is no

improvement between two passes.

Within each pass four parameters control the optimization process:

window width WW, window height WH, horizontal sliding step HS

and vertical sliding step VS. Tradeoff must be made to balance the

runtime and result quality when selecting these parameters. In our

experiments we have empirically found that the following set of

parameters to be satisfying:

• WW = 8 columns

• WH = 3 rows

• HS = 4 columns

• VS = 1 row

In particular, HS is set to 4 columns so that the cells have large

chance to move across the entire row; and WH is set to 3 rows to

allow adequate interaction between rows, thus avoiding being trapped

in the local minima. The same set of parameters is used for both 32-

and 64-bit cases.

Fig. 8 shows delay-optimal cell orders for 8-bit, 16-bit and 32-bit

cases. Note the solutions for 8-bit and 16-bit are global optimum

6C-3

619

evaluationroutine
Delayandpower

MuxShifter
baseline

estimationresult

optimizedcellorder

CPLEXCallableLibrary
minimumpower
optimizationengine

DemuxShifter

optimizationengine
minimumdelay

layout

parameters

Fig. 9. Estimation flow.

TABLE II

DEVICE/WIRE PARAMETERS

2λ 0.18 0.15 0.13 0.10 0.07

Cg 0.234 0.220 0.135 0.072 0.066

Ca 0.0589 0.0540 0.0462 0.0720 0.0611

Cf 0.0302 0.0248 0.0183 0.0141 0.0148

Cx 0.0583 0.0494 0.0428 0.0453 0.0416

hw 0.63 0.92 1.06 1.54 1.03

2λ(µ m): technology feature size;
Cg(fF): input capacitance of minimum size inverter;

Ca(fF/µm2): unit area capacitance of wire;
Cf (fF/µm): unit fringing capacitance of wire;
Cx(fF/µm): unit coupling capacitance of wire.
Note: All wire capacitance are obtained assuming 2x

minimum width and 2x minimum spacing.

while the solution for 32-bit is suboptimal with the sliding window

scheme. The result for 64-bit case is not shown here for it is too

small to display.

5. DELAY AND POWER ANALYSIS

5.1. Estimation Flow

We implemented the sliding window scheme in C using the

CPLEX Callable Library [8]. For both min-delay formuation and

min-power formulation, the optimized cell order is fed into a delay

and power evaluation routine. The evaluation routine takes in a set of

parameters based on a technology independent layout model, which

we will describe in the next, and produces the estimation results. The

whole process is illustrated in Fig. 9.

5.2. Technology Independent Layout Model

We use the logical effort method [9] for fast, technology inde-

pendent delay/power estimation for both MUXSHIFTER and DE-

MUXSHIFTER. For a single stage gate, logical effort measures its

delay in unit of τ , the delay of an ideal inverter with no parasitic

driving an identical inverter.

D = Dabs/τ = gh + p (13)

where g is the logical effort of the gate, which is defined as the ratio

of the input gate capacitance to the input capacitance of an inverter

with the same unit effective resistance; h is the electrical effort of

the gate, that is, the ratio of load capacitance to input capacitance.

p characterizes the parasitic (intrinsic) delay of the gate. For a static

CMOS NAND gate, g = 4/3 and p = 2.

We consider the wire load effect by incorporating wire capacitance

into h. Thus the electrical effort of a NAND gate is written as

h = hfanout + hw · lw (14)

where hfanout is the number of load gates and lw is the length of

the driven net normalized to the width of a MUX/DEMUX cell, or

simply the number of columns the wire spanned. Natually, hw is the

electrical effort contributed by the wire per column spanned.

Assuming all the NAND gates in the shifter are 2x of the minimum

size uniformly and the MUX/DEMUX cell width is 80λ, we directly

 0

 100

 200

 300

 400

 500

8-bit 16-bit 32-bit 64-bit

D
e
la

y

Delay reduction of min-delay solutions
M uxShifter

Dem uxShifterw/o ILP
Dem uxShifterw/ILP

50.7

102.7

218.7

484.0

45.3

76.0

128.0

224.0

38.6
60.0

97.3

159.3

Improvement Ratio of DemuxShifter

8-bit
16-bit
32-bit
64-bit

10.7%
26.0%
41.5%
53.7%

23.9%
41.6%
55.5%
67.1%

w/ ILPw/o ILP

Fig. 10. Delay comparison of MUXSHIFTER and DEMUXSHIFTER; in unit
of τ (intrinsic delay of a minimum sized inverter).

 0

 1000

 2000

 3000

 4000

 5000

 6000

8-bit 16-bit 32-bit 64-bit

T
o

ta
l
S

w
it
c
h
e
d
 C

a
p
a
c
it
a
n
c
e

Power consumption of min-delay solutions
M uxShifter

Dem uxShifterw/o opt
Dem uxShifterw/opt

150.7

484

1561.3

5220

146.9

453.7

1397.6

4458.9

143.2

442.7

1349.9

4299.8

Improvement Ratio of DemuxShifter

8-bit

16-bit

32-bit

64-bit

2.5%

6.3%

10.5%

14.6%

5.0%

8.5%

13.5%

17.6%

w/ ILPw/o ILP

Fig. 11. Power comparison of MUXSHIFTER and DEMUXSHIFTER; in unit
of Cg (input capacitance of a minimum sized inverter).

borrow the technology parameters from [10], and use the following

formula to estimate hw for each technology node:

hw =
Capacitance of wire per column spanned

Input capacitance of a 2x NAND gate

=
(Ca · 4λ + Cf + Cx) · 80λ

Cg · 2 · 4/3
(15)

From Table II we see that it is safe to assume hw = 1 across different

technology nodes, as it is used in [11].

Note that in the analysis we have assumed that the resistive RC

delay of the wires is negligible. This assumption is supported by the

work of Huang and Ercegovac [10].

The overall path delay is then simply the sum of the stage delays:

Dpath =
∑

i

Di =
∑

i

gihi +
∑

i

pi (16)

Since the shifter does not contain re-convergent paths we can simply

search the N2 input-to-output paths and pick the longest one.

The dynamic power is estimated by summing up all the switched

capacitance Ceff in the shifter, including gate input capacitance and

wire capacitance. The input gate capacitance of a 2x NAND gate

is 8Cg/3, which is also the capacitance of the wire of one column

span.

5.3. Results

Fig. 10 shows the delay estimation results. Comparing to con-

ventional MUXSHIFTER, the DEMUXSHIFTER without cell order

optimization reduces the delay by 41.5% for 32-bit case and 53.7%

for 64-bit case. When cell order optimization is applied, the reduction

further increases to 55.5% and 67.1%, respectively.

Fig. 11 shows the power estimation results. For 32-bit and 64-

bit cases, the dynamic power improvement is 13.5% and 17.6%,

respectively. This is less than the reduction of switching probabilities

on the wires (from 1/4 to 3/16) because the gate power is also

included.

To study the power-delay tradeoff in the shifters, we also solved the

min-power ILP problem (Eqn. (11) and Eqn. (12)) for our proposed

6C-3

620

 126

 128

 130

 132

 134

 136

 138

 140

 142

 38 39 40 41 42 43 44 45 46

T
o
ta

l
S

w
it
c
h
e
d
 C

a
p
a
c
it
a
n
c
e

Delay

Delay reduction of min-delay solutions
8-bit

(a) 8-bit

 405

 410

 415

 420

 425

 430

 435

 440

 60 62 64 66 68 70 72 74 76

T
o
ta

l
S

w
it
c
h
e
d
 C

a
p
a
c
it
a
n
c
e

Delay

Delay reduction of min-delay solutions
16-bit

(b) 16-bit

 1140

 1160

 1180

 1200

 1220

 1240

 1260

 1280

 1300

 1320

 100 105 110 115 120 125 130

T
o
ta

l
S

w
it
c
h
e
d
 C

a
p
a
c
it
a
n
c
e

Delay

Delay reduction of min-delay solutions
32-bit

(c) 32-bit

 3850

 3900

 3950

 4000

 4050

 4100

 4150

 4200

 4250

 175 180 185 190 195 200 205 210 215 220 225

T
o
ta

l
S

w
it
c
h
e
d
 C

a
p
a
c
it
a
n
c
e

Delay

Delay reduction of min-delay solutions
64-bit

(d) 64-bit

Fig. 12. Power-delay tradeoff; power is in unit of Cg and delay is in unit
of τ .

DEMUXSHIFTER, and the results are shown in Fig. 12. It seems that

the power (total switched capacitance) is much harder to optimize.

For example, in the 64-bit case relaxing the delay constraint from

176.6τ to 224τ only results in 8.4% reduction in power. Nevertheless,

the results make sense, because intuitively the shifting path and non-

shifting path could be conflict objectives when moving a cell. This

indicates that the linear cell order is inherently inferior in terms of

worst case delay.

Note that in all the experiments, we have assumed uniform sizing

for the DEMUXSHIFTER. In fact, one can size up the NAND gate

that drives the longer wire in each DEMUX cell to further improve

the delay. This enhancement is applicable to both the permuted and

non-permuted DEMUXSHIFTER, and it is interesting to study which

scheme benefits more from sizing.

6. CONCLUSIONS AND FUTURE WORK

We presented two orthogonal methods to improve the critical path

delay and power consumption in logarithmic cyclic shifters. The first

method, called fanout splitting, relies on using DEMUXes to reduce

accumulated wire load on the critical path, as well as the switching

probabilities of the inter-stage wires. We then optimize the cell order

of the intermediate stages by integer linear programming (ILP) to

further reduce the delay. Using the ILP formulation we also study

the delay-power tradeoff in the shifter, and our results show that

linear cell placement is inherently inferior in terms of critical path

delay.

For simplicity, the delay and power analysis in this paper have

assumed a logical effort based approach, which ignores the dynamic

characteristics of the circuits such as glitching power. To remedy

this deficiency an extensive layout-extraction-simulation design flow

is desired, as conducted in [12]. Nevertheless, our estimation is

meaningful in that it provides a fast high level comparison.

Another possible future work is to extend fanout splitting and cell

order optimization to the ternary shifter design [5].

ACKNOWLEDGMENT

The work is supported in part by National Science Foundation

under the agreement number CCF-0618163.

REFERENCES

[1] N. H. Weste and D. Harris, CMOS VLSI Design : A Circuits and Systems

Perspective, 3rd ed. Addison-Wesley Publisher, May 2004.

[2] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated

Circuits - A Design Perspective, 2nd ed. Prentice-Hall Publisher, Dec.
2002.

[3] M. A. Hillebrand, T. Schurger, and P.-M. Seidel, “How to half wire
lengths in the layout of cyclic shifter,” in Proc. of the Intl. Conf. on

VLSI Design, 2001, pp. 339–344.

[4] P.-M. Seidel and K. Fazel, “Two-dimensional folding strategies for
improved layouts of cyclic shifters,” in Proc. of the IEEE annual

Symposium on VLSI, 2004, pp. 277–278.
[5] G. M. Tharakan and S. M. Kang, “A new design of a fast barrel switch

network,” IEEE Journal of Solid-State Circuits, vol. 27, no. 2, pp. 217–
221, 1992.

[6] S.-J. Yih, M. Cheng, and W.-S. Feng, “Multilevel barrel shifter for cordic
design,” Electronics Letters, vol. 32, no. 13, pp. 1178–1179, June 1996.

[7] ILOG CPLEX 9.1 Reference Manual, ILOG Inc., Apr. 2005.
[8] ILOG CPLEX Callable Library 9.1 Reference Manual, ILOG Inc., Apr.

2005.
[9] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast

CMOS Circuits. Morgan Kaufmann, Feb. 1999.
[10] Z. Huang and M. Ercegovac, “Effect of wire delay on the design of

prefix adders in deep submicron technology,” in Proc. of the Asilomar

Conf. on Signals Systems and Computers, vol. 2, 2000, pp. 1713–1717.
[11] D. Harris and I. Sutherland, “Logical effort of carry propagate adders,”

in Proc. of the Asilomar Conf. on Signals Systems and Computers, vol. 1,
2003, pp. 873–878.

[12] K. P. Acken, M. J. Irwin, and R. M. Owens, “Power comparisons for
barrel shifter,” in Proc. of the Intl. Symp. on Low Power Electronics and

Design (ISLPED), 1996, pp. 209–212.

6C-3

621

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

