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Abstract— Parallel prefix adder is the most flexible and widely-used binary
adder for ASIC designs. Many high-level synthesis techniques have been
developed to find optimal prefix structures for specific applications. However,
the gap between these techniques and back-end designs is increasingly large.
In this paper, we propose an integer linear programming method to build
minimal-power prefix adders within given timing and area constraints. It
counts both gate and wire capacitances in the timing and power models,
considers static and dynamic power consumptions, and can handle gate
sizing and buffer insertion to improve the performance further. The proposed
method is also adaptive for non-uniform arrival time and required time on
each bit position. Therefore our method produces the optimum prefix adder
for realistic constraints.

I. INTRODUCTION

Binary addition is the most fundamental and frequently used arithmetic
operation in datapath design. Among the adder structures that have been
proposed, parallel prefix adder provides remarkable flexibility. Based
on the formulation of prefix computation several regular prefix adders
have been developed. These classic prefix networks include Sklansky [1],
Kogge-Stone [2] and Brent-Kung [3] adders. They achieve three extreme
cases: minimal logic levels and wire tracks, minimal max-fanout and
logic levels, and minimal wire tracks and max-fanout, respectively. In
addition, Ladner-Fischer [4], Han-Carlson [5] and Knowles [6] imple-
mented the tradeoff between each pair of the extreme cases. Therefore,
the design space of prefix adders is usually viewed as a triangle with
three vertices: max-fanout, wire tracks, and logic levels, as shown in
figure1(a) [7]. Besides the regular structures, a few irregular networks
are also proposed to explore the solution space. Zimmermann developed
a non-heuristic algorithm [8] with the capability to handle non-uniform
input arrival times. Zero-deficiency adder [9] is defined and constructed
to reach the lower-bound of number of components for given number of
logic levels.

Fig. 1. Views of the Prefix Adder Design Space

Although the design space of prefix adder seems to have been well-
studied, the common timing/area model in these previous works is still
idealistic. The concept of logic levels is used to estimate timing, area,
and even input arrival time. However, the real delay is not proportional
to the number of logic levels. It highly depends on gate size and total
load capacitance including both gate capacitance and wire capacitance.
Furthermore, power consumption becomes an important design issue
which is not studied in previous works. These changes demand a

comprehensive timing/area/power model and a new methodology for
prefix adder synthesis, to reduce the gap between high-level synthesis and
back-end design. Therefore, the new model should incorporate physical
placement to accurately estimate area and wire capacitance, count both
gate and wire capacitance in timing and power estimation, and consider
static power and dynamic power with activity probability. The revised
prefix adder design space is shown in figure1(b).

In this paper, we formulate the prefix adder synthesis problem to an
integer linear programming problem with prefix network and physical
placement as decision variables. Prefix properties and gate/wire capaci-
tance are represented in a set of linear formula of the decision variables.
Based on the gate and wire capacitance, a linear timing model derived
from logical effort [10] is applied, while the power model follows
the activity analysis proposed in [11]. Finally, the feasibility of each
variable assignment is checked by prefix property constraints, timing
constraints and area constraints, and the objective is to minimize total
power consumption. Therefore the ILP solution represents the minimal
power prefix adder with placement information for given constraints. This
method has been extended to handle gate sizing and buffer insertion.
Compared with previous works, the proposed method concerns most of
the essential factors on timing, area and power, and produces the most
realistic candidate to back-end design. A drawback of this method is the
unscalable computation load. For high bit-width applications, this method
can be utilized as local optimization step in a divide-and-conquer strategy.

The rest of the paper is organized as follows. The prefix problem and
area/timing/power model are defined in Section II. The ILP formulation
is proposed in Section III. Section IV shows the experimental results
on both numerical analysis and ASIC implementations, while Section V
presents the conclusions.

II. PRELIMINARIES

A. Prefix Addition & Prefix Adders

The binary addition problem can be defined as follows: given an n-
bit augend A, an n-bit addend B, and a 1-bit carry-in c0, generate the
n-bit sum S and the 1-bit carry-out cn. We denote A = an . . . a2a1

and B = bn . . . b2b1. The sum bit si and carry bit ci are computed as
follows:

si = ai ⊕ bi ⊕ ci−1 (1)

ci = aibi + aici−1 + bici−1 (2)

In prefix addition, we need to use the generate bit gi and propagate
bit pi, where gi = 1 means that a carry is generated at bit i and pi = 1
means that a carry is propagated through bit i. They are defined as:

gi =

{
c0 if i=0

aibi otherwise
(3)

pi =

{
0 if i=0

ai ⊕ bi otherwise
(4)

(Pre-processing)
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The concept of generate and propagate can be extended to multiple
bits. Let’s define G[i:k] and P[i:k] (i ≥ k) as:

G[i:k] =

{
gi if i=k

G[i:j] + P[i:j]G[j−1:k] otherwise
(5)

P[i:k] =

{
pi if i=k

P[i:j]P[j−1:k] otherwise
(6)

(Prefix computation)

Sum si and carry ci can be calculated from G and P :

si = pi ⊕ ci−1 (7)

ci = G[i:0] (8)

(Post-processing)

To simplify the representation of G and P , an operator • is defined
in (G, P ) computation:

(G, P )[i:k] = (G, P )[i:j] • (G, P )[j−1:k] (9)

Fig. 2. Brent-Kung Prefix Adder

Figure2 shows the logical topology of an 8-bit Brent-Kung prefix adder
with 4 logic levels. The symbols , • and � represent gp generators,
GP adders and sum generators respectively. In the rest part, we denote
the max number of logic levels as d.

B. Area Model

As a datapath component, prefix adder will keep the bit-slice structure
in the placement, which is consistent with the logical structure. However,
with each column each GP adder can take advantage of any empty space
in the same bit-slice. When all the empty bubbles are below the GP
adders in one bit-slice, it’s called “compact placement”. Figure3 shows
the compact placement of the 8-bit Brent-Kung adder.

Fig. 3. Compact Placement of the 8-bit Brent-Kung Adder

It can be observed that the physical depth required to hold a prefix
adder can be smaller than the logical depth. The lower bound of physical
depth is the max number of GP adders in one bit-slice. Known the
physical depth, denoted as m, the physical area is formulated to n×m.

Area = n × m (10)

C. Timing Model

We adopt a linear timing model following the concept of logical effort,
which decomposes the gate delay into two parts: a constant part and a
linear part. The constant part is due to parasitic capacitance of the gate
itself, so it is also called parasitic delay (PD). On the other hand, the
linear part is due to the load capacitance. The coefficient is defined as
Logical Effort (LE), and it depends on the complexity of the gate. Figure4
shows the structure and logical effort of an inverting CMOS GP adder
in [12].

Fig. 4. Structure and Logical Effort of Inverting CMOS GP Adder

In figure4, it contains the logical efforts and parasitic delays for both
G and P outputs. In practical, G network is always more complicated
and slower than P network. Hence the previous model can be simplified
to a two-inputs (left and right G inputs) one-output (G output) format.
The logical effort formulation is written as:

LEl = 4.5/3 = 1.5 (11)

LEr = 6/3 = 2 (12)

PD = 7.5/3 = 2.5 (13)

Given the logical effort and the parasitic delay, the gate delay depends
on the ratio of output load and input capacitance. When gate size is
uniform, the gate delay can be calculated from load capacitance. The
result unit is 1

5
FO4 delay, denoted as 1

5
DFO4. Accordingly, the timing

model of an GP adder is shown as follows:

Delayl = 1.5 · Cload + 2.5 (14)

Delayr = 2 · Cload + 2.5 (15)

In terms of load capacitance, it is composed of gate capacitance and
wire capacitance. Gate capacitance can be derived directly from the
number of fanouts, when every GP adder has unit input capacitance.
Wire capacitance is linear to the wire length, which depends on the
physical placement. For given physical placement, the total wire length
driven by a GP adder is estimated by the number of columns and rows
occupied by the bounding box around all the fanouts. It matches with
the daisy-chain interconnect structure. Hence the wire capacitance can be
calculated as the total wire length scaled by a scaling factor. We pick 0.5
as the scaling factor for current technology. Note that all the parameters
can be various for different technology .

D. Power Model

Power consumption of CMOS circuit includes two parts: (a) dynamic
power consumption (b) static power consumption. The dynamic power
consumption is mainly due to the charge and discharge of capacitance.
Hence the activity probability of each GP adder is an essential factor in
dynamic power estimation. Vanichayobon [11] analyzes the activity of
prefix adder and proposes a power consumption model, shown as follows,
where d is the logical depth of the prefix network and wi is the number
GP adders in level i.

d∑
i=1

i · wi (16)
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The equation demonstrates the switching probability of each node in
level i. For the primary inputs of prefix network, the switching probability
can be considered as 0.5 for general cased. Therefore, incorporating with
load capacitance, the equation (16) is revised to equation (17), where Ci

is the total load capacitance in level i.

Pdyn = (

d∑
i=1

i · Ci) + 0.5 · C0 (17)

Nowadays static power consumption grows fast with the technology
development. It is independent from switching activities but proportional
to the number of GP adders when gate size is uniform. We measure the
static power consumption of one GP adder as half of the power unit,
which is corresponding to 1

4
FO4 switching power consumption, denoted

as 1
4
PFO4. Thus the total power consumption is calculated by:

Power = (

d∑
i=1

i · Ci) + 0.5 · C0 + 0.5 ·
d∑

i=1

wi (18)

Note that the parameters introduced in this section can be various
for different technology. For given technology, the parameters can be
updated. It won’t compromise the validity of the proposed methodology.

III. BASIC ILP FORMULATION

In this section we present the ILP formulations to describe the prefix
adder problem according to the area/timing/power models proposed in
the previous section. The first subsection demonstrates the representations
of a prefix adder and its physical placement, followed by GP property
constraints described in subsection 2. Subsection 3 characterizes the
calculation of load capacitance for each GP adder. Based on the load
capacitance, timing constraints and power optimization objective are
displayed in the following subsections.

A. Structural Constraints and Physical Placement

The ILP representation of a prefix adder is quite straightforward to
match with the logic view of a prefix adder. It describes GP adders and
interconnections in the n×d array, where n is the operand bit-width and
d is the logical depth.

• Bit-slice principle: The bit-slice structure is kept for each column:
the left fanin of each GP adder is always from some one above in
the same column, and the right fanin is connected from the top-right
quadrant. Also, at least one input is from the previous logical level.
Finally each column has one primary output to the postprocessing
stage.

• GP principle: To guarantee the described structure is a feasible
prefix network, the GP property and GP operation principles must
be satisfied. That is, each GP adder should cover a certain segment
which is determined by the left and right inputs. In additional, the
two inputs must cover two adjacent segments. The primary output
at column i should cover the certain segment [i,1].

• Overlap principle: This step is to place a prefix network in a
physical n×m array, where m is the physical depth. As mentioned
in the area model, all GP adders in one logical column are placed
in the same physical column. The only constraint is that no two GP
adders are placed on the same physical position.

According to the previous discussion, we define the following vari-
ables:

• x(i,j) ∈ {0, 1}: 1 if and only if an GP adder is in the ith bit and
jth level 1, for every (i, j) in the n × d array.

• wL
(i,j,h) ∈ {0, 1}: 1 if and only if there is a left fanin wire to position

(i,j) from position (i,h), and h < j.
• wR

(i,j,k,l) ∈ {0, 1}: 1 if and only if there is a right fanin wire to
position (i,j) from position (k,l), and k < i, l < j.

1We call this column i and row j, or simply position (i,j) later on

• wZ
(i,j) ∈ {0, 1}: 1 if and only if the output of the GP adder (i,j)

connects to the primary output in column i.
• yL

(i,j), y
R
(i,j) ∈ [1, n]: the left and right segment bounds of GP adder

(i,j). That means the GP adder in position (i,j) covers the segment
[yL

(i,j):y
R
(i,j)].

• p(i,j) ∈ [0, m]: the physical level of GP adder (i,j). Then its
physical position will be (i,p(i,j)).

The following constraints correspond with the Bit-slice principle, GP
principle and Overlap principle:

Bit-slice principle:∑
h

wL
(i,j,h) = x(i,j) ∀ j > h (19)

∑
(k,l)

wR
(i,j,k,l) = x(i,j) ∀ i > k&j > l (20)

wL
(i,j,j−1) +

∑
k

wR
(i,j,k,j−1) ≥ x(i,j) (21)

∑
j

wZ
(i,j) = 1 (22)

GP principle:

yL
(i,j) = yL

(i,h) if wL
(i,j,h) = 1 (23)

yR
(i,j) = yR

(k,l) if wR
(i,j,k,l) = 1 (24)

yR
(i,h) = yL

(k,l) + 1 if wL
(i,j,h) = wR

(i,j,k,l) = 1 (25)

yL
(i,j) = i if wZ

(i,j) = 1 (26)

yR
(i,j) = 1 if wZ

(i,j) = 1 (27)

Overlap principle:

p(i,j) �= p(i,h) ∀ j �= h (28)

A problem in the GP principle is that these constraints are conditional,
which cannot be handled by ILP solver directly. They have to be
transformed to strict linear constraints. Equation (29) and (30) shows
the linear format of equation (23).

yL
(i,j) ≥ yL

(i,h) − n · (1 − wL
(i,j,h)) (29)

yL
(i,j) ≤ yL

(i,h) + n · (1 − wL
(i,j,h)) (30)

It can be observed that when wL
(i,j,h) = 1, yL

(i,j) is restricted to yL
(i,h),

otherwise these constraints are cancelled by the product term. It is
important to notice that these constraints may not be effective until
variable wL is integerized. We call them “pseudo-linear” constraints.
Pseudo-linear constraint is harmful to the performance of ILP solver,
because it will reduce the chance to cut off infeasible solutions before
every integer variable has been exactly determined.

B. Capacitance Constraints

Load capacitance is the essential parameter for both timing and power
estimation. It includes gate load capacitance and wire load capacitance.

• Gate principle: Gate load capacitance depends on all the logical
connections from a GP adder. Assume each GP adder has a unit
input capacitance, the gate load capacitance can be calculated by
the number of fanouts from a GP adder.

• Wire principle: The wire capacitance highly depends on the
physical positions of each GP adders. As mentioned in timing
model, we use the half perimeter of the bounding box covering
all fanouts as the measure of wire length, as shown in figure5.
The height/width of the bounding box is the max vertical/horizontal
distance of each fanout. Based on the known wire length, wire
capacitance is the product of a scaling factor and the wire length.
We pick 0.5 as the scaling factor to represent the ratio of unit-length
wire capacitance to unit gate capacitance.

Following variables are defined for capacitance calculation:
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Fig. 5. Wire Length Estimation

• cG
(i,j) ∈ [0, Cmax]: The gate load capacitance on GP adder

(i,j). And Cmax is a large constant representing the max load
capacitance value.

• cWV
(i,j) ∈ [0, Cmax]: The wire load capacitance from the vertical

height of the fanout bounding box.
• cWH

(i,j) ∈ [0, Cmax]: The wire load capacitance from the horizontal
width of the fanout bounding box.

• c(i,j) ∈ [0, Cmax]: The total load capacitance on GP adder (i,j).

The Gate principle and Wire principle in ILP formulation list as
follows:

Gate principle:

cG
(i,j) =

∑
h

wL
(i,h,j) +

∑
(k,l)

wR
(k,l,i,j) + wZ

(i,j) (31)

Wire principle:

cWV
(i,j) ≥ 0.5(p(i,h) − p(i,j)) if wL

(i,h,j) = 1 (32)

cWV
(i,j) ≥ 0.5(p(k,l) − p(i,j)) if wR

(k,l,i,j) = 1 (33)

cWH
(i,j) ≥ 0.5(k − i) if wR

(k,l,i,j) = 1 (34)

Total load capacitance:

c(i,j) = cG
(i,j) + cWV

(i,j) + cWH
(i,j) (35)

Note that the constraint of gate principle is linear, while the constraints
in wire principle are all pseudo-linear. Hence the capacitance calculation
is partial linear to the structure variables.

C. Timing Constraints

The timing analysis on the prefix structure is performed from top to
bottom. The start points are the primary inputs with input arrival times,
while the end points are the primary outputs, whose output times should
be smaller than output required times.

• Output principle: The output time of each GP adder is the max
path delay from input, which depends on the left and right input
arrival times and the gate delay described in the previous section.

• Input principle: Input arrival times are obtained from the output
times of two fanins.

We define following variables for input arrival times and output times:

• tL
(i,j), t

R
(i,j) ∈ [0, Tmax]: the left and right input arrival times of

GP adder (i,j).
• t(i,j) ∈ [0, Tmax]: The output time of GP adder (i,j). Tmax is a

large constant.
• tZ

i ∈ [0, Tmax]: The primary output arrival time at each bit-slice.

The Input principle and Output principle are formulated as:
Input principle:

tL
(i,j) = t(i,h) if wL

(i,j,h) = 1 (36)

tR
(i,j) = t(k,l) if wR

(i,j,k,l) = 1 (37)

tZ
i = t(i,j) if wZ

(i,j) = 1 (38)

Output principle:

t(i,j) ≥ tL
(i,j) + 1.5 · c(i,j) + 2.5 (39)

t(i,j) ≥ tR
(i,j) + 2.0 · c(i,j) + 2.5 (40)

tZ
i ≤ OutputRequiredT ime(i) (41)

Among these timing constraints, the input arrival time constraints
are pseudo-linear, and they are critical to the entire timing analysis.
Conceptually the timing analysis cannot be finished until all structural
variables are integerized.

D. Power Consumption Objective

Following equation (18), the total power consumption objective can
be easily described as follow:

Minimize (
∑
(i,j)

j · c(i,j)) + 0.5 ·
∑

i

c(i,0) + 0.5 ·
∑
(i,j)

x(i,j) (42)

The first term represents the dynamic power consumption and the second
term corresponds to the static power consumption. Note that the static
power is linear to the total number of GP adders, but the dynamic
power is not entirely linear to all the structural variables. The wire
load capacitance is pseudo-linear to connection variables. However, the
gate load capacitance is linear to the structural variables. Overall, the
linear components still dominate the total power consumption. With this
property, ILP solver can efficiently search the solution space and find the
optimal solutions quickly.

E. Extended ILP Formulations

While the basic ILP formulation already supports the comprehensive
area, timing and power model, it can be further extended to support gate
sizing and buffer insertion. This sub-section gives a brief introduction on
the basic ideas to handle gate sizing and buffer insertion.

Gate sizing is a popular logical optimization technique to improve
performance. For a given prefix structure, gate sizing has no effect on
interconnect relations or GP property. So the structural constraints and
GP property constraints keep unchanged. However it changes the input
load capacitance and the driving strength of a GP adder.

• Sizing-cap principle: If the size of an GP adder is enlarged x
times, the input load capacitance will increase by x times too.

• Sizing-delay principle: The logical effort delay will decrease x
times while the parasitic delay keeps the same.

• Beside the effect on capacitance and timing analysis, gate sizing
also increases the static power consumption linearly.

The extension to support buffer insertion, is more complicated than
handling gate sizing. Because the buffer insertion will compromise the
consistency between logical and physical connections, and consequently
change the constraints on load capacitance, timing analysis and power
estimation. In this case, it is not enough to present the logical structure
only by structural variables. A complete explicit physical view of each
solution is necessary. On the other hand, logical structure is essential to
provide linear constraints on the objective function. So the extension
supporting buffer insertion will operate on both logical and physical
structural variables.

Fig. 6. Logical View and Physical View with Buffers

A prefix structure is completely represented in both logical view and
physical view, as shown in figure6. There is no buffer in the logical
view. It keeps the pure prefix network with logical interconnections.
The logical network is placed in the physical view, and each logical
interconnection can be physically implemented through one or multiple
buffers. The physical view must be consistent with the logical view.
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Fig. 7. Fastest Adder (Depth:2) Fig. 8. Fastest Adder (Depth:3) Fig. 9. Fastest Adder (Depth:4)

There are mainly two steps to maintain the consistency between the
logical and physical views.

• Matching principle: The matching information must be recorded.
That is, where each GP adder in logical view is placed in physical
view, and for each GP adder or buffer in physical view, which GP
adder in logical view it represents for.
Note that due to the appearance of buffer, a GP adder in logical
view may be represented by one GP adder and multiple buffers in
physical view.

• Interconnect principle: Known the matching information, every
physical interconnect can be checked if it represents a valid logical
interconnect.

IV. EXPERIMENTAL RESULTS

We implement the ILP formulation of the optimum prefix adders
and solve the problem by CPLEX 9.1 with various timing and area
configurations. For uniform signal arrival/required time profile, the entire
8-bit prefix adder design space is explored. We then apply this method
to non-uniform signal arrival time applications. Also, for high-bit-
width applications, the ILP method can be employed in a hierarchical
design methodology. Finally we implement 64-bit ILP prefix adders with
Synopsys datapath design flow, and compare the resulting designs with
fast carry-look-ahead adders produced by Synopsys Module Compiler.

A. Uniform Input Arrival Time

To fully demonstrate the tradeoff between timing, power and area for
8-bit prefix adder design, we test every timing point with different area
settings. The first starting point is the slowest but smallest structure:
ripple carry structure. Then the timing requirement gradually becomes
smaller, which implies tighter timing constraint, until no more feasible
solution can be found. At each time point different physical depths are
applied as area constraints. However, if they produce the same result,
we only record the result associated with the smallest area constraint. In
addition, all of the basic ILP, the extension supporting gate sizing and
the extension supporting buffer insertion are tried. Again, if they produce
the same solution, it is counted as no gate sizing. The timing and power
results are normalized to FO4 delay (DFO4) and FO4 switching power
(PFO4).

Note that the number of logical levels is not a parameter any more.
Instead, it is adjusted by the ILP algorithm automatically. TableI shows
the ILP results and three classic regular prefix adders, and figure10
demonstrates the optimum prefix adders in the design space correspond-
ing to the data in the table. All the data in the table are based on the
area/timing/power model in Section II.

According to the data, there are several observations:

• The ripple carry adder with the minimal area can be faster by gate
sizing, but the power overhead is huge. On the other hand, physical
depth 2 and 3 provide great flexibility for 8-bit prefix adders. When

TABLE I
OPTIMUM PREFIX ADDERS

Method Timing Depth Power CPU Time
(DF O4) (PF O4) (s)

ILP 10.0 1 27.1 0.31
ILP 10.0 2 24.6 124
ILP (sizing) 9.0 1 32.3 2.83
ILP 9.0 2 24.6 83.4
ILP (sizing) 8.6 1 34.2 1.28
ILP 8.6 2 24.6 93.2
Brent-Kung 7.8 3 26.9 -
ILP 7.6 2 25.1 112
ILP 7.0 2 25.7 99.6
Sklansky 6.8 3 27.8 -
Kogge-Stone 6.2 3 35.6 -
ILP 6.0 2 34.5 259
ILP 5.6 2 29.7 45.7
ILP (sizing) 5.6 2 28.5 756
ILP 5.6 3 28.8 1237
ILP (sizing) 5.0 2 30.4 1208
ILP 5.0 3 32.3 4563
ILP 4.6 3 32.8 7439
ILP (sizing) 4.2 3 34.5 9654
ILP (sizing) 4.0 4 42.6 20211
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Fig. 10. Optimum Timing-Power Curves in the Design Space

timing requirement is loose, gate sizing is not necessary. With the
increase of timing requirement, either gate sizing or larger area will
help to meet the timing constraint and reduce power. For extremely
high performance adders, both gate sizing and large area are needed,
while the power consumption increases sharply.

• None of the three classic prefix adders is optimal in terms of either
area or power consumption for the given timing constraints. Figure7
to figure9 presents three fastest prefix adders with physical depth 2,
3 and 4 respectively. They all have 4 logical levels.

• Big gate size is not very helpful for 8-bit prefix adder. Although the
max gate size allowed by the program is 3, only size 2 has appeared
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Fig. 11. 64-bit Hierarchy Prefix Adder Fig. 12. Hierarchical ILP (level 1) Fig. 13. Hierarchical ILP (level 2)

in the solutions. Also there is no buffer insertion in all 8-bit optimal
prefix adders with uniform input arrival and output required time.
One possible reason is that for 8-bit prefix addition, load capacitance
is not big enough to take advantage of buffer insertion.

• The CPU time of the ILP solver is the main drawback of the
proposed method. It raises quickly with the increasing timing
requirement. The timing analysis is defined by pseudo-linear con-
straints. Therefore when timing constraint is too tight, ILP solver
cannot efficiently verify the feasibility of each variable assignments.
So the proposed method is more suitable for power optimization
problem with moderate timing requirement.

B. Non-uniform Arrival and Required Times

Besides uniform signal arrival profile, some applications need non-
uniform signal arrival/required times. Binary Multiplier is an example.
A binary adder is used as final adder to sum up two partial product
reduced from partial products reduction tree. The middle bits arrive later
than most and least significant bits. We build the optimum prefix adders
for three representative arrival time profiles: arrival times increase with
bit significance (increasing), arrival times decrease with bit significance
(decreasing) and the middle bits arrive later (convex). Table II lists the
physical depth and power consumption of each case. These three cases
have various structures, which shows the flexibility of the proposed
method.

TABLE II
NON-UNIFORM ARRIVAL/REQUIRED TIME CASES

Case Power Depth
Increasing arrival time 27.8 3
Decreasing arrival time 31.8 3
Convex arrival time 28.5 2

C. Hierarchical Design

The previous experiments have shown the advantage of ILP method on
8-bit prefix addition applications. For high-bit-width applications, the ILP
method can be applied in a hierarchical design methodology. There are
two reasons to use hierarchical design methodology instead of pure ILP
method. The first reason is that data-path design favors global regular
structures. Global irregular structure increases the difficulty on detail
routing and compromises the circuit reliability. The second reason is
that ILP method is not scalable. The computation load of ILP solver
increase exponentially with the operand bit-width.

ILP is applied to design a 64-bit two level hierarchical prefix adder.
Sparse tree structure [13] is selected as global structure, and each 8-
bit prefix block is generated by ILP method. Figure11 demonstrates the
hierarchy structure.

In both hierarchy levels, each prefix block is 8-bit. The boundary
timing requirement can be negotiated between the two levels. We
build 64-bit hierarchical prefix adder for various timing requirement

and compare them with 64-bit Kogge-Stone, Brent-Kung and Sklansky
adders. TableIII shows the results in terms of delay and power. The
Hierarchical ILP method not only achieves at least 16% power saving
compared with 64-bit Brent-Kung and Sklansky adders, but also reach
the same performance as 64-bit Kogge-Stone adder.

TABLE III
64-BIT PREFIX ADDERS

Timing Power
ILP Hierarchy 28 414
Brent-Kung 27 513
ILP Hierarchy 26 416
ILP Hierarchy 24 418
ILP Hierarchy 22 420
ILP Hierarchy 20 424
ILP Hierarchy 18 431
Sklansky 17 531
ILP Hierarchy 16 446
ILP Hierarchy 15 459
Kogge-Stone 15 2944
ILP Hierarchy 14 513

Figures 12 and 13 demonstrate the two level physical structures in
the fastest 64-bit ILP adder. The level-1 structure has fast paths from
inputs to the MSB output (critical path), but save power for other bits
(non-critical path). The level-2 network utilizes gate-sizing to improve
the drive strength for large fanouts. They all show the flexibility of the
ILP method.

D. ASIC Implementation

To demonstrate the advantage of the proposed ILP methodology, we
implement 64-bit prefix adders produced by hierarchical ILP method in
Synopsys Data-path design flow. The flow starts from Module Compiler.
The synthesized netlist with relative placement is then placed and routed
by Astro. Based on all the necessary physical information including
parasitic and coupling capacitance, the delay, area and power (both static
and dynamic) are reported by Prime Power. The results are compared
with 64-bit fast carry-look-ahead adders generated by Synopsys Module
Compiler. The library is TSMC 90nm standard cell library.

Figure14 shows the ILP and Module compiler implementations after
detail routing. They have the same physical boundary and pin locations.
Two operands come from the left edge, while the sum result goes out at
the right edge. It can be observed that the ILP structure consumes fewer
cells and wires, especially long wires at right hand side.

TableIV summarizes the timing and power consumption of ILP and
Module Compiler designs, and shows the percentage of ILP power to
Module Compiler. These results shows more than 50% total power saving
on ILP prefix adder for high-performance applications. Note that the
power saving on net switching power is even larger. It is because the
consideration of wire load in the ILP formulation.
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Fig. 14. ASIC Implementations (a) ILP (b) MC

TABLE IV
TIMING POWER COMPARISON

ILP: Tim-
ing (ns)

ILP: Total
Power (mW)
[Net Power]

MC: Tim-
ing (ns)

MC: Total
Power (mW)
[Net Power]

Power
Saving
(%) [Net]

0.74 1.9 0.75 4.9 61%
[0.93] [2.8] [67%]

0.76 1.8 0.83 3.5 49%
[0.90] [2.1] [57%]

1.13 1.15 1.24 2.3 50%
[0.65] [1.5] [57%]

V. CONCLUSIONS

In this paper we first introduce a comprehensive area/power/timing
model. Compared with the idealistic model used in previous works, the
new model can capture the key characters of CMOS circuit, especially
the effect of physical design. Based on the model, we propose an Integer
Linear Programming method to build optimal prefix adder with minimal
power consumption. By keeping the linear relation from decision vari-
ables to power objective, the ILP formulation can be solved efficiently.
This method can handle non-uniform input arrival times and output
required times for each application. The extension of the method can even
support gate sizing and buffer insertion. The experiments demonstrate the
complete 8-bit prefix adder solution space and the optimum area, timing
and power tradeoff curves which outperform previous classic structures.
For high-bit-width applications, the hierarchical ILP method shows a
great flexibility and significant power saving comparing with several
classical prefix adders.
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