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ABSTRACT 

Turbo decoding architectures have greater error correcting 

capability than any other known code. Due to their 

excellent performance turbo codes have been employed in 
several transmission systems such as CDMA2000, 

WCDMA (UMTS), ADSL, IEEE 802.16 metropolitan 

networks etc. The computation kernel of the algorithm is 

very similar and we have exploited this commonality for a 

turbo decoder VLSI design suitable for deployment using 

platform based system on chip methodologies. Turbo and 

viterbi components of the unified array are also individually 

reconfigurable for different standards. This supports the 4G 

concept that user can be simultaneously connected to 

several access technologies (for example Wi-Fi, 3G, GSM 

etc) and can seamlessly move between them. A new 

normalization scheme for turbo decoding is presented to 
suit reconfigurable mappings. We have also shown 

dynamic reconfiguration methodology for a context switch 

between Turbo and Viterbi decoders which does not waste 

any clock cycles. The reconfigurable Turbo decoder fabric 

is implemented reusing components of Viterbi decoder on a 

180 nm UMC process technology.  

1. INTRODUCTION 

In 1993, a parallel concatenated convolution code (PCCC) 

decoding scheme was proposed by Berrou et al., which 

consists of two SISO (soft input soft output) decoders 

concatenated through an interleaver - deinterleaver structure 

[1]. These component decoders are individually matched to 

corresponding encoders as shown in figure 1. The 

interleaver allows the low-weight code words produced by 

a single encoder to be transformed into high-weight code 

words for the overall encoder. This iterative decoding 

achieves transmission performance of a few tenths of a dB 

from Shannon limit when applied to BPSK transmission 

over channel with memory less noise. 
The conventional VLSI implementation of a Map decoder 

(operating in Log Domain) involves complex 

multiplication, exponentials and logarithm computations. 

Suboptimal varieties of Map, Max-Log-Map, Linear Log 

Map, log Map [2-3] are usually used for VLSI 

implementations.  

Figure 1. PCCC (Parallel Concatenated Convolution) 

Encoder and Decoder. 

The aim of the paper is not to rigorously derive these 

algorithms but to identify critical issues related to a 

reconfigurable turbo decoder array with the aim to facilitate 

various viterbi decoding mappings. Our previous work [4] 

showed viterbi component details for the platform. This 

paper extends these concepts to reconfigurable turbo 

decoder domain. The block diagram of the communication 

platform is shown below 

Figure 2. Platform showing Turbo/Viterbi Array. 

2. OVERVIEW OF THE ALGORITHM 

For coherence of representation and to show essential 

components of turbo decoders the Map algorithm is briefly 

described.  

The MAP algorithm gives, for each decoded bit uK in step 

k, the probability that the bit was +1 or -1, Let 

),...,,,( 2100 N

N yyyyy =
 is the received distorted 

symbol sequence. Let SK denote the state of the encoder at 

the time instant k. Assuming events after time index k are 

not influenced by observation yo and bit uk, if Sk is known, 

the log likelihood ratio value is calculated as: 
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where  is the forward state metrics,  is the reverse state 

metrics and  is the branch metrics.  

The conventional VLSI implementation of a Map decoder 

(operating in Log Domain) involves complex 
multiplication, exponentials and logarithm computations. 

Suboptimal varieties of Map, Max-Log-Map, Linear Log 

Map, log Map [10,11] are usually used for VLSI 

implementations.  

3. VLSI DESIGN 

The block diagram of unified multi standard Turbo-Viterbi 

array is shown below and essential components of the array 
are explained in subsequent sections. 
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Figure 3. Block diagram 

3.1 INPUT RAMS: 

Input RAMs store input metrics for two window lengths 

(WLs). In viterbi mode the same input RAMs store the 

Branch Metrics configuration bits [4]. We have used Write-
After-Read (WAR) RAMs to implement two memory 

architecture compared with three memory architecture 

proposed in [5]. We had shown in our previous work [4] 

that in viterbi mode the write and read operation on these 

RAMs is done without wasting any clock cycles resulting in 

dynamic context switch for multi standard viterbi mappings 

and continuous decoding operation for turbo mode. 

Both viterbi and turbo decoders use forward and reverse 

state metrics processing. To improve the latency typically 

windowed versions of the algorithm are employed for VLSI 

implementations, largely known as sliding window BCJR 
algorithm [6]. The basic effect is that the equations will be 

applied separately to portions (window lengths- WLs) of 

the global block of data. In its simplistic form the algorithm 

uses two reverse processors Reverse Processor Dummy B2 

and Reverse Processor B1 in parallel with on forward 

processor (shown by ACS0-ACS7 in figure 3). B2 can start 

cold in any state (initializing each state as equi – probable) 

but after a few iterations (equal to WL) the state metrics are 

as reliable as if the process had been started at the final 

known correct node of trellis. B2 initializes the start state of 

B1. The state machine controls the writing of input metrics 

and for Turbo mode it is shown in figure 4 for (WL =32). 
The RAMs can be read and written in either forward or 

reverse direction by state machine using the 5 bit forward 

and reverse counters. This is shown by the scheduling 

diagram below 

Figure 4. Read/Write FSM Control for RAMs 

In Viterbi mode the write and read controls by FSM are 

much simpler and explained in [4]. For Turbo mode these 

are explained with the help of figure 4 and figure 5 below:  

3.1.1 WINDOW LENGTH 0-L (FIGURE 4A): 

Input metrics corresponding to first window length 0-L are 

written in RAM1. The last metric is saved in first memory 
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location and first metric in last memory location as shown 
in figure 4a. 

3.1.2 TIME SLOT L-2L (FIGURE 4B): 

Input metrics corresponding to second WL (L-2L) are 

written in RAM2. Reverse Processor Beta (RP2) uses these 

input values to calculate reverse state metrics (RSMs) 

Forward processor (FP) calculates forward state metrics 

(FSMs) by reading the RAM1 in reverse direction as shown 

in figure4b. Calculated FSMs are saved in FSM RAM in 
the reverse direction i.e., last state metric in first memory 

location and the first metric in last memory location. 
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Figure 5.Scheduling diagram. 

3.1.3 TIME SLOT 2L-3L (FIGURE 4C): 

After the latency of the two WLs, the LLR values 

corresponding to WL ‘0-L’ are calculated.  

LLR calculates the decoded bits by reading FSM RAMs in 

forward direction as shown in figure 4c. Reverse Processor 

(RP1) is initialized by RP2. RAM1 is read in forward 

direction to provide input metrics (corresponding to WL 0-
L) for RP1 calculations. FP calculation is now performed 

on WL L-2L, which is done by reading the RAM2 in 

reverse direction as shown in fig 4c. Calculated FSM values 

are saved in FSM RAM (Write-After-Read). Since FSM 

RAM was read in forward direction the write will also be 

performed in forward direction and first FSM value is saved 

in first memory location and last FSM value saved in last 
memory location. 

RAM1 is read for RP2 calculations (corresponding to frame 

2L-3L). The input metrics (for frame 2L-3L) are written on 

RAM1 after the old values are read by RP1. This is shown 

by solid red arrow in figure5. 

3.1.4 TIME SLOT 3L-4L (FIGURE 4D): 

This slot provides the LLR decoded outputs for second WL 

L-2L. LLR calculator calculates the decoded bits by reading 
FSM RAMs in reverse direction as shown in figure 4d. 

RAM2 is read in forward direction for RP1 calculation (for 

window length L-2L). RAM1 is read in reverse direction 

for FP calculation (for WL, 2L-3L). This is shown in fig 4d. 

Calculated FSM values are saved in FSM RAM after read 

operation. Since FSM RAM was read in reverse direction 

the write will also be performed in reverse direction and last 

FSM is saved in first memory location and first FSM saved 

in last. 

RAM2 is read to calculate RP2 values (corresponding to 

frame 3L-4L). 
The cycle repeats after this where time slot 4L-5L is similar 

to time slot 2L-3L and time slot 5L-6L is similar to time 

slot 3L-4L. 

4. BRANCH METRICS CALCULATOR (BMC) 

Branch metrics are computed by computing the Euclidian 

distance of the soft input metrics. One of the key points in 

the implementation of channel decoders is the fixed point 

representation for all quantities involved in the decoding 
algorithm. The finite precision of input metrics directly 

affects the capacity of input buffers. The input metrics are 

represented in 4Q2 signed two’s complement format which 

provides an acceptable trade-off between error correcting 

performance and area. In Viterbi mode only BMC1 is used. 

In this mode the input metrics to BMC1 are provided 

directly bypassing the input memory arrangement (used in 

Turbo mode) by using multiplexer as shown in figure 3. In 

the turbo mode BMC1 calculates Branch metrics for FP, 

BMC2 for RP2 and BMC3 for RP1.  

BMC1 and BMC2 are connected to input RAMS 1 and 2 by 
using multiplexers which are controlled by finite state 

machine (FSM) as per the scheduling algorithm explained 

in section 3 and table 1 below: 

BMC2 which provides branch metrics for RP2 is directly 

connected to input metrics. 

Time Slot BMC1(FP) BMC3(RP1) 

0-L RAM2 RAM1 

L-2L RAM1 RAM2 

2L-3L RAM2 RAM1 

3L-4L RAM1 RAM2 
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4L-5L RAM2 RAM1 

Table 1. Input RAMs connections to BMC blocks.  

5. FORWARD AND REVERSE PROCESSOR 

CALCULATION: 

The main kernel of the Turbo-Viterbi algorithm is ADD-

COMPARE-SELECT (ACS) operation which is preformed 

by FP, RP1 and RP2 blocks. These blocks have similar 

designs and are shown in figure 6. There are 8 parallel ACS 

blocks and hence 8 states can be processed in parallel. 

Therefore for ADSL (generator matix [1,17octal/15octal]), 

Metropolitan Area Network IEEE 802.16 (Tail biting 
Circular Convolution codes), DVB-RCS (similar to 802.16-

Duo Binary), and 3GPP turbo mappings on the array will 

work in fully parallel schemes. Fully parallel architectures 

assign one ACS for each state to meet the performance 

constraints on speed and latency. In Viterbi mode however 

since number of states (N) are higher (256 states for 3GPP) 

therefore P(P=8) ACS are used to process N (up to 256) 

states[4]. Similarly CCSDS (Consultative Committee for 

Space Data Systems) turbo decoder family has 16 states 

which will be decoded 8 states at a time is a similar fashion 

as GSM Viterbi mappings on Viterbi array as was 
explained in our previous work in [4]. 
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Figure 6. Normalization scheme and BM, FSM units  

5.1 NORMALIZATION / SATURATION: 

We have adopted a new normalization scheme to support 

the mappings that do not use state parallel architectures. 

These include all viterbi mappings and for all turbo 

mappings on the array that has greater than 8 states (for 

example decoders for CCSDS telemetry operations). 
State metrics (FSMs and RSMs) are accumulated within a 

block as they are recursively computed for sliding window 

ACS computations. To avoid overflow metrics 

normalization is usually employed as shown in figure 6a. 
We have adopted a very efficient normalization scheme 

where at each time instant we check if any of the state 

metrics is greater than 2q-2, then a fixed value 2q-2 is 

subtracted from all state metrics. This is shown by 

normalization (N) block shown in figure 6. The block 

comprises of a subtractor that subtracts a fixed value (2q-2)

from state metrics and a multiplexer that selects the 

subtracted value if the normalization has to be employed.

The multiplexer select signal is provided by each ACS 

block and in case of state serial architecture mappings 

(states >8) the select signal is provided after all the states 
are processed. In figure 6a the normalized FSMs were 

saved in the FSM RAM, this new scheme the normalization 

is applied after reading the state metrics from FSM RAM. 

The critical path delay of Branch Metric and State Metrics 

component is shown in figure 6 with blue arrows. Note that 

this adjustment keeps the critical path still exactly the same, 

however now the same Processor blocks can be used for 

decoders with states greater than 8.  

6. LLR CALCULATION: 

As shown in figure above LLR block require the values of 

forward, backward state metrics and branch metrics. It 

consists of two identical blocks (block A) calculating the 

LLR of bit 0 and bit1 respectively. The maximum 

calculated value of LLR1 and LLR0 is subtracted to find 

the final LLR output value. The sign of a posteriori value 

gives the value of decoded bit 1 or 0. LLR block is used in 

turbo mode only and is disabled in viterbi mode. The LLR 

block is pipelined to reduce the critical path delay. The 

position of pipeline registers is shown by dotted line. 
Insertion of this pipeline reduces LLR components 

bottleneck on critical path (delay in ns shown in blue 

arrows). However ACS still remains in critical path and 

cannot be further pipelined due to recursive nature of 

mapped algorithms. 
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7. RECONFIGURABLE INTERCONNECT 

The reconfiguration topology for viterbi mappings were 

explained in our previous work [4]. We have used a fully 

flexible trellis processing for Turbo decoding as well. This 
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allows mappings of decoder with any generator 
polynomials. Each branch metrics and FSM connection to 

ACS block is done through a multiplexer. For example for 

Rate ½, there are four possible branch metrics that can be 

connected to each BM branch of ACS block. Similarly for 

8 states, there will be 8 possible ACS values that can be 

fed back to each FSM branch of ACS (refer figure 6 for 

these connections). These flexible connections are 

provided through multiplexer network as shown in figure 

1. The multiplexer network is therefore a multiplexer bank 

providing 4x1 and 8x1 multiplexer connections for each 

BM and FSM branch of ACS operation of Forward and 
Reverse processors. Viterbi blocks in the array are shown 

in white in figure 1 and these are clocked down by using 

an active clocking gating strategy throughout the chip.  

8. INTERLEAVER: 

One challenge in the design of turbo decoders is the length 

of the interleaver. The near Shannon performance of turbo 

codes is directly linked with the length of the interleaver. 

3GPP defines an interleaver of the order greater than 5 
thousand bits. Interleavers are usually implemented storing 

the interleaved address patterns in LUTs or ROMs. This 

storage will amount to interleaver memories equivalent to 

frame length (for example 5114x6 bits for 3GPP). This is a 

major overhead on area and power and we have addressed 

this in our previous work [7]. We have shown performance 

improvements by an alternative memory less 

implementation of 3GPP S-Random Interleaver.  

9. RESULTS 

The design is synthesized using Synopsys Design 

Compiler for 0.18 microns CMOS UMC cell library and 

the chip layout is done on Silicon ensemble. Post layout 

power figures are taken from Synopsys Design Power by 

capturing the toggle activity of each node and then back 

annotating this in the circuit. Synopsys designware 

SRAMs were used for Forward Processor RAMs. Virtual 

Silicon 2K x 8 synchronous (separate read and write port) 

macro RAMs were used for Output/Path history memory 

consuming 110 uW/MHz/Port.  
The overall results are summarized in table 2 below. 

Technology UMC 0.18 microns standard cell 

CMOS 

Supported code rates ½,1/3 Turbo, ½,1/3,1/4,1/5 Viterbi 

Representation Signed fixed point  

Constraint length Max 4 in parallel mode and max 9 

(256 states) for state sequential (8 

states at a time) 

Generator 

Polynomial 

Flexible for both turbo and viterbi 

Survivor (Trace Up to 6 times the constraint length 

back length) 

Decision level 4 bit soft decision 

A posteriori 
estimation 

6 bit soft decision. 

Supply Voltage 1.8V 

Interleaver  Memory less-supports frames upto 

5114 (3GPP) 

Max Operating 

Frequency 

84 MHz 

Max Throughput 

Turbo @ 6 iterations 

14 Mbits / sec (overall for 6 

iterations) 

Latency 2 window lengths 

Total area 1.67mm2 (without output RAMs) 

2.88mm2 (with output RAMs) 

Power @ 20 

MHz(Turbo mode) 

78.54 mW 

Table 2. Results 

The components of turbo decoder array contributing in the 

critical path delay (without LLR pipeline) are : Input 

Rams, BMC and LLR. The total delay for the critical path 

will be 15.01 ns. The insertion of LLR pipeline changes 

the critical path and the components in the path are: Input 

Rams, BMC and FP. The overall path delay will be 11.92 
ns. This can be further improved if CLA adders are used 

instead of Full Adders in BMC and FP blocks. The critical 

path and the delay of the individual components is shown 

in figure 8 below: 

TIMING DIAGRAM SHOWING CRITICAL PATH
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e
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Figure 8. Timing diagram  

The overall area and power results of individual 

components can be compared in figure 9. 

The turbo decoder array is compared with the following 

reconfigurable categories: ASIP (application specific 

instruction set processor), implementations on general 

purpose processors, implementations on FPGAs and 

ASICs. In ASIP flexibility is provided by the use of 

embedded processors specifically targeted to the decoding 

application. ASIP being software controlled is broader in 

domains of reconfigurability and hence more flexible than 

our design. However power, area and speed figures are 

much lower. For example in [8] there would be 8 XiRisc 
processors needed in order to achieve a through put of 
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2Mbps. They are also required to run in parallel on 
successive blocks of data.  

Area-Power Comparisons
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Figure 9. Area-Power Comparisons. 

Table3 below lists some Turbo decoder implementations 

on general purpose processors and also lists the maximum 

through put possible. Results are worse than ASIP however 

flexibility will be higher. 

Processor Clock 

Speed 

Throughput 

possible 

Ref 

Motorola 

56603 DSP 

Not quoted 48.6 

kbps/iteration 

[9]

ST120 200MHz 540 

kbps/iteration 

[9]

Intel 
Pentium III 

933 MHz 262 
kbps/iteration 

[10]

DSP SP-5 

SIMD 

Not quoted 227kbps/iterati

on 

[11]

Table 3. Throughput quoted for general processors. 

Dedicated implementation on general reconfigurable logic 

for example FPGAs can achieve higher throughput 

however consume higher power than ASIC 

implementation.. For example, in [12] implementation on 

Xilinx Vitex XCV300E (almost 50% resource utilization) 

consumes 695mW(25 Mhz) for 1Mbps.  

A more exact ASIC comparison of our IP can be made 

with the work in [14], where we have achieved similar area 

and power figures, however the reported unified array 

targets 3GPP standard only. Our design is more flexible as 

it can target multiple standards both on viterbi and turbo 
mode. 

10. CONCLUSION 

We have presented a unified FEC IP solution that can be 
used either independently or as a Co – Processor for 

increased flexibility. Decoder consumes 78.5 mW 

occupying 2.824 mm2. We have shown the benefits of 

domain specific reconfigurable platform in terms of area, 
power and speed as compared to more general purpose 

Processor or FPGA based solutions. 
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