
VLSI DESIGN OF MULTI STANDARD TURBO DECODER FOR 3G AND BEYOND

Imran Ahmed, Tughrul Arslan

School of Electronics and Engineering. University of Edinburgh, King’s Buildings Mayfield Rd, Edinburgh, EH9 3JL, UK

Institute for System Level Integration, The Alba Campus, The Alba Centre, Livingston, Scotland, EH54 7EG, UK

ABSTRACT

Turbo decoding architectures have greater error correcting

capability than any other known code. Due to their

excellent performance turbo codes have been employed in
several transmission systems such as CDMA2000,

WCDMA (UMTS), ADSL, IEEE 802.16 metropolitan

networks etc. The computation kernel of the algorithm is

very similar and we have exploited this commonality for a

turbo decoder VLSI design suitable for deployment using

platform based system on chip methodologies. Turbo and

viterbi components of the unified array are also individually

reconfigurable for different standards. This supports the 4G

concept that user can be simultaneously connected to

several access technologies (for example Wi-Fi, 3G, GSM

etc) and can seamlessly move between them. A new

normalization scheme for turbo decoding is presented to
suit reconfigurable mappings. We have also shown

dynamic reconfiguration methodology for a context switch

between Turbo and Viterbi decoders which does not waste

any clock cycles. The reconfigurable Turbo decoder fabric

is implemented reusing components of Viterbi decoder on a

180 nm UMC process technology.

1. INTRODUCTION

In 1993, a parallel concatenated convolution code (PCCC)

decoding scheme was proposed by Berrou et al., which

consists of two SISO (soft input soft output) decoders

concatenated through an interleaver - deinterleaver structure

[1]. These component decoders are individually matched to

corresponding encoders as shown in figure 1. The

interleaver allows the low-weight code words produced by

a single encoder to be transformed into high-weight code

words for the overall encoder. This iterative decoding

achieves transmission performance of a few tenths of a dB

from Shannon limit when applied to BPSK transmission

over channel with memory less noise.
The conventional VLSI implementation of a Map decoder

(operating in Log Domain) involves complex

multiplication, exponentials and logarithm computations.

Suboptimal varieties of Map, Max-Log-Map, Linear Log

Map, log Map [2-3] are usually used for VLSI

implementations.

Figure 1. PCCC (Parallel Concatenated Convolution)

Encoder and Decoder.

The aim of the paper is not to rigorously derive these

algorithms but to identify critical issues related to a

reconfigurable turbo decoder array with the aim to facilitate

various viterbi decoding mappings. Our previous work [4]

showed viterbi component details for the platform. This

paper extends these concepts to reconfigurable turbo

decoder domain. The block diagram of the communication

platform is shown below

Figure 2. Platform showing Turbo/Viterbi Array.

2. OVERVIEW OF THE ALGORITHM

For coherence of representation and to show essential

components of turbo decoders the Map algorithm is briefly

described.

The MAP algorithm gives, for each decoded bit uK in step

k, the probability that the bit was +1 or -1, Let

),...,,,(2100 N

N yyyyy =
 is the received distorted

symbol sequence. Let SK denote the state of the encoder at

the time instant k. Assuming events after time index k are

not influenced by observation yo and bit uk, if Sk is known,

the log likelihood ratio value is calculated as:

1-4244-0630-7/07/$20.00 ©2007 IEEE.

6B-4

589

−==>
−

+==>
−

=
−=
+=

=

1)`,(

1

1)`,(

1

)().,'(`).(

)().,'(`).(

log

)|1Pr(

)|1Pr(
log)|(

k

k

uss

kkk

uss

kkk

ok

ok

ok

ssss

ssss

yu

yu
yuL

βγα

βγα (1)

where is the forward state metrics, is the reverse state

metrics and is the branch metrics.

The conventional VLSI implementation of a Map decoder

(operating in Log Domain) involves complex
multiplication, exponentials and logarithm computations.

Suboptimal varieties of Map, Max-Log-Map, Linear Log

Map, log Map [10,11] are usually used for VLSI

implementations.

3. VLSI DESIGN

The block diagram of unified multi standard Turbo-Viterbi

array is shown below and essential components of the array
are explained in subsequent sections.

FSM

BMC1
INTERLEAVER

D

FORWARD

PROCESSOR

RAM A

LLR

CALCULATOR

FSM

FSM

INPUT

RAM 1
L

INPUT

RAM 2
L

INPUT

RAM 3
L

INPUT

RAM 4
L

B

A

C

D

BMC2

BMC3

INPUT VITERBI B C D

C
D

B
A

C

D

B
A

REVERSE

PROCESSOR

REVERSE

PROCESSOR

DUMMY

D

E

F (TO PATH HISTORY/

OUTPUT RAM

FORWARD

PROCESSOR

RAM B

WC

RC

1

RC

2

G-FROM

FSM RAM

G

SWITCHING NETWORK

ACS

0
ACS

7

H-ACS

OUTPUT O-ACS

OUTPUT

H..0

E

DATA OUT READ

PORT 1 AND 2

DATA

IN

H

.

.

O

DATA

IN

H

.

.

O

P-BINARY DECSION

BIT FOR WINNINNG

STATE

W-BINARY

DECSION

 BIT FOR

 WINNINNG

STATE

TURBO

CONFIGURATION BITS FOR BRANCH METRIC MUXES

BM0

SM1

BM1

SM1

PATH HISTORY

MEMORY

RP

DUMMY

VITERBI

RP

VITERBI

VITERBI

DECODED

OUTPUTS

WC

COMBINED VITERBI AND TURBO

BLOCKS

VITERBI DECODER BLOCKS

TURBO DECODER BLOCKS

FSM -> FINITE STATE MACHINE

ACS – ADD COMPARE SELECT

BMC -> BRANCH METRIC CALCULATOR

SM -> STATE METRICS, BM -> BRANCH METRICS

RC1,RC2 -> READ ADDRESS COUNTERS

WC -> WRITE ADDRESS COUNTER

LLR -> LOG LIKELIHOOD RATIO CALCULATOR

R/W

CONTROLS

Figure 3. Block diagram

3.1 INPUT RAMS:

Input RAMs store input metrics for two window lengths

(WLs). In viterbi mode the same input RAMs store the

Branch Metrics configuration bits [4]. We have used Write-
After-Read (WAR) RAMs to implement two memory

architecture compared with three memory architecture

proposed in [5]. We had shown in our previous work [4]

that in viterbi mode the write and read operation on these

RAMs is done without wasting any clock cycles resulting in

dynamic context switch for multi standard viterbi mappings

and continuous decoding operation for turbo mode.

Both viterbi and turbo decoders use forward and reverse

state metrics processing. To improve the latency typically

windowed versions of the algorithm are employed for VLSI

implementations, largely known as sliding window BCJR
algorithm [6]. The basic effect is that the equations will be

applied separately to portions (window lengths- WLs) of

the global block of data. In its simplistic form the algorithm

uses two reverse processors Reverse Processor Dummy B2

and Reverse Processor B1 in parallel with on forward

processor (shown by ACS0-ACS7 in figure 3). B2 can start

cold in any state (initializing each state as equi – probable)

but after a few iterations (equal to WL) the state metrics are

as reliable as if the process had been started at the final

known correct node of trellis. B2 initializes the start state of

B1. The state machine controls the writing of input metrics

and for Turbo mode it is shown in figure 4 for (WL =32).
The RAMs can be read and written in either forward or

reverse direction by state machine using the 5 bit forward

and reverse counters. This is shown by the scheduling

diagram below

Figure 4. Read/Write FSM Control for RAMs

In Viterbi mode the write and read controls by FSM are

much simpler and explained in [4]. For Turbo mode these

are explained with the help of figure 4 and figure 5 below:

3.1.1 WINDOW LENGTH 0-L (FIGURE 4A):

Input metrics corresponding to first window length 0-L are

written in RAM1. The last metric is saved in first memory

6B-4

590

location and first metric in last memory location as shown
in figure 4a.

3.1.2 TIME SLOT L-2L (FIGURE 4B):

Input metrics corresponding to second WL (L-2L) are

written in RAM2. Reverse Processor Beta (RP2) uses these

input values to calculate reverse state metrics (RSMs)

Forward processor (FP) calculates forward state metrics

(FSMs) by reading the RAM1 in reverse direction as shown

in figure4b. Calculated FSMs are saved in FSM RAM in
the reverse direction i.e., last state metric in first memory

location and the first metric in last memory location.

R
P

B
2

R
P

B
1

F
S

M
W

R
IT

E

F
S

M
W

R
IT

E

A
F
T
E

R
R

E
A

D

T
im

e

R
P

B
2

R
P

B
2

F
S

M
W

R
IT

E

A
F
T
E

R
R

E
A

D

R
P

B
1

Figure 5.Scheduling diagram.

3.1.3 TIME SLOT 2L-3L (FIGURE 4C):

After the latency of the two WLs, the LLR values

corresponding to WL ‘0-L’ are calculated.

LLR calculates the decoded bits by reading FSM RAMs in

forward direction as shown in figure 4c. Reverse Processor

(RP1) is initialized by RP2. RAM1 is read in forward

direction to provide input metrics (corresponding to WL 0-
L) for RP1 calculations. FP calculation is now performed

on WL L-2L, which is done by reading the RAM2 in

reverse direction as shown in fig 4c. Calculated FSM values

are saved in FSM RAM (Write-After-Read). Since FSM

RAM was read in forward direction the write will also be

performed in forward direction and first FSM value is saved

in first memory location and last FSM value saved in last
memory location.

RAM1 is read for RP2 calculations (corresponding to frame

2L-3L). The input metrics (for frame 2L-3L) are written on

RAM1 after the old values are read by RP1. This is shown

by solid red arrow in figure5.

3.1.4 TIME SLOT 3L-4L (FIGURE 4D):

This slot provides the LLR decoded outputs for second WL

L-2L. LLR calculator calculates the decoded bits by reading
FSM RAMs in reverse direction as shown in figure 4d.

RAM2 is read in forward direction for RP1 calculation (for

window length L-2L). RAM1 is read in reverse direction

for FP calculation (for WL, 2L-3L). This is shown in fig 4d.

Calculated FSM values are saved in FSM RAM after read

operation. Since FSM RAM was read in reverse direction

the write will also be performed in reverse direction and last

FSM is saved in first memory location and first FSM saved

in last.

RAM2 is read to calculate RP2 values (corresponding to

frame 3L-4L).
The cycle repeats after this where time slot 4L-5L is similar

to time slot 2L-3L and time slot 5L-6L is similar to time

slot 3L-4L.

4. BRANCH METRICS CALCULATOR (BMC)

Branch metrics are computed by computing the Euclidian

distance of the soft input metrics. One of the key points in

the implementation of channel decoders is the fixed point

representation for all quantities involved in the decoding
algorithm. The finite precision of input metrics directly

affects the capacity of input buffers. The input metrics are

represented in 4Q2 signed two’s complement format which

provides an acceptable trade-off between error correcting

performance and area. In Viterbi mode only BMC1 is used.

In this mode the input metrics to BMC1 are provided

directly bypassing the input memory arrangement (used in

Turbo mode) by using multiplexer as shown in figure 3. In

the turbo mode BMC1 calculates Branch metrics for FP,

BMC2 for RP2 and BMC3 for RP1.

BMC1 and BMC2 are connected to input RAMS 1 and 2 by
using multiplexers which are controlled by finite state

machine (FSM) as per the scheduling algorithm explained

in section 3 and table 1 below:

BMC2 which provides branch metrics for RP2 is directly

connected to input metrics.

Time Slot BMC1(FP) BMC3(RP1)

0-L RAM2 RAM1

L-2L RAM1 RAM2

2L-3L RAM2 RAM1

3L-4L RAM1 RAM2

6B-4

591

4L-5L RAM2 RAM1

Table 1. Input RAMs connections to BMC blocks.

5. FORWARD AND REVERSE PROCESSOR

CALCULATION:

The main kernel of the Turbo-Viterbi algorithm is ADD-

COMPARE-SELECT (ACS) operation which is preformed

by FP, RP1 and RP2 blocks. These blocks have similar

designs and are shown in figure 6. There are 8 parallel ACS

blocks and hence 8 states can be processed in parallel.

Therefore for ADSL (generator matix [1,17octal/15octal]),

Metropolitan Area Network IEEE 802.16 (Tail biting
Circular Convolution codes), DVB-RCS (similar to 802.16-

Duo Binary), and 3GPP turbo mappings on the array will

work in fully parallel schemes. Fully parallel architectures

assign one ACS for each state to meet the performance

constraints on speed and latency. In Viterbi mode however

since number of states (N) are higher (256 states for 3GPP)

therefore P(P=8) ACS are used to process N (up to 256)

states[4]. Similarly CCSDS (Consultative Committee for

Space Data Systems) turbo decoder family has 16 states

which will be decoded 8 states at a time is a similar fashion

as GSM Viterbi mappings on Viterbi array as was
explained in our previous work in [4].

+ +

++

INPUT SYMBOL

DATA

APRIORI

DATA
APRIORI

DATA

+

MULTIPLEXER NETWORK

BM

+

c
s

N

PIPELINE D FLIP FLOPS

FSMK

FSM0K-1

FSMK-1

COMPARE

SELECT

NORMALIZE

ACS 0 ACS 7

FSM7K-1

+ +

++

INPUT SYMBOL

DATA

APRIORI

DATA

APRIORI

DATA

+

MULTIPLEXER NETWORK

BM

+

c
s

PIPELINE D FLIP FLOPS

FSMK-1

FSM0K-1

BM

FSMK-1

COMPARE

SELECT

ACS 0 ACS 7

FSM7K-1

N

(b)(a)

2.43

4.64

Figure 6. Normalization scheme and BM, FSM units

5.1 NORMALIZATION / SATURATION:

We have adopted a new normalization scheme to support

the mappings that do not use state parallel architectures.

These include all viterbi mappings and for all turbo

mappings on the array that has greater than 8 states (for

example decoders for CCSDS telemetry operations).
State metrics (FSMs and RSMs) are accumulated within a

block as they are recursively computed for sliding window

ACS computations. To avoid overflow metrics

normalization is usually employed as shown in figure 6a.
We have adopted a very efficient normalization scheme

where at each time instant we check if any of the state

metrics is greater than 2q-2, then a fixed value 2q-2 is

subtracted from all state metrics. This is shown by

normalization (N) block shown in figure 6. The block

comprises of a subtractor that subtracts a fixed value (2q-2)

from state metrics and a multiplexer that selects the

subtracted value if the normalization has to be employed.

The multiplexer select signal is provided by each ACS

block and in case of state serial architecture mappings

(states >8) the select signal is provided after all the states
are processed. In figure 6a the normalized FSMs were

saved in the FSM RAM, this new scheme the normalization

is applied after reading the state metrics from FSM RAM.

The critical path delay of Branch Metric and State Metrics

component is shown in figure 6 with blue arrows. Note that

this adjustment keeps the critical path still exactly the same,

however now the same Processor blocks can be used for

decoders with states greater than 8.

6. LLR CALCULATION:

As shown in figure above LLR block require the values of

forward, backward state metrics and branch metrics. It

consists of two identical blocks (block A) calculating the

LLR of bit 0 and bit1 respectively. The maximum

calculated value of LLR1 and LLR0 is subtracted to find

the final LLR output value. The sign of a posteriori value

gives the value of decoded bit 1 or 0. LLR block is used in

turbo mode only and is disabled in viterbi mode. The LLR

block is pipelined to reduce the critical path delay. The

position of pipeline registers is shown by dotted line.
Insertion of this pipeline reduces LLR components

bottleneck on critical path (delay in ns shown in blue

arrows). However ACS still remains in critical path and

cannot be further pipelined due to recursive nature of

mapped algorithms.

+ +

++

BM
FSM

RSM RSM

BM
FSM

+ +

++

BM
FSM

RSM RSM

BM
FSM

+ +

++

BM
FSM

RSM RSM

BM
FSM

+ +

++

BM
FSM

RSM RSM

BM
FSM

COMPARE AND SELECT MAX

LLR1
COMPARE AND

SELECT MAX
-

LLR0

DECODED

OUTPUT

BLOCK A

BLOCK A

1.44 ns

4.19 ns

2.1 ns

PIPE LINE

Figure 7 LLR Computation Unit.

7. RECONFIGURABLE INTERCONNECT

The reconfiguration topology for viterbi mappings were

explained in our previous work [4]. We have used a fully

flexible trellis processing for Turbo decoding as well. This

6B-4

592

allows mappings of decoder with any generator
polynomials. Each branch metrics and FSM connection to

ACS block is done through a multiplexer. For example for

Rate ½, there are four possible branch metrics that can be

connected to each BM branch of ACS block. Similarly for

8 states, there will be 8 possible ACS values that can be

fed back to each FSM branch of ACS (refer figure 6 for

these connections). These flexible connections are

provided through multiplexer network as shown in figure

1. The multiplexer network is therefore a multiplexer bank

providing 4x1 and 8x1 multiplexer connections for each

BM and FSM branch of ACS operation of Forward and
Reverse processors. Viterbi blocks in the array are shown

in white in figure 1 and these are clocked down by using

an active clocking gating strategy throughout the chip.

8. INTERLEAVER:

One challenge in the design of turbo decoders is the length

of the interleaver. The near Shannon performance of turbo

codes is directly linked with the length of the interleaver.

3GPP defines an interleaver of the order greater than 5
thousand bits. Interleavers are usually implemented storing

the interleaved address patterns in LUTs or ROMs. This

storage will amount to interleaver memories equivalent to

frame length (for example 5114x6 bits for 3GPP). This is a

major overhead on area and power and we have addressed

this in our previous work [7]. We have shown performance

improvements by an alternative memory less

implementation of 3GPP S-Random Interleaver.

9. RESULTS

The design is synthesized using Synopsys Design

Compiler for 0.18 microns CMOS UMC cell library and

the chip layout is done on Silicon ensemble. Post layout

power figures are taken from Synopsys Design Power by

capturing the toggle activity of each node and then back

annotating this in the circuit. Synopsys designware

SRAMs were used for Forward Processor RAMs. Virtual

Silicon 2K x 8 synchronous (separate read and write port)

macro RAMs were used for Output/Path history memory

consuming 110 uW/MHz/Port.
The overall results are summarized in table 2 below.

Technology UMC 0.18 microns standard cell

CMOS

Supported code rates ½,1/3 Turbo, ½,1/3,1/4,1/5 Viterbi

Representation Signed fixed point

Constraint length Max 4 in parallel mode and max 9

(256 states) for state sequential (8

states at a time)

Generator

Polynomial

Flexible for both turbo and viterbi

Survivor (Trace Up to 6 times the constraint length

back length)

Decision level 4 bit soft decision

A posteriori
estimation

6 bit soft decision.

Supply Voltage 1.8V

Interleaver Memory less-supports frames upto

5114 (3GPP)

Max Operating

Frequency

84 MHz

Max Throughput

Turbo @ 6 iterations

14 Mbits / sec (overall for 6

iterations)

Latency 2 window lengths

Total area 1.67mm2 (without output RAMs)

2.88mm2 (with output RAMs)

Power @ 20

MHz(Turbo mode)

78.54 mW

Table 2. Results

The components of turbo decoder array contributing in the

critical path delay (without LLR pipeline) are : Input

Rams, BMC and LLR. The total delay for the critical path

will be 15.01 ns. The insertion of LLR pipeline changes

the critical path and the components in the path are: Input

Rams, BMC and FP. The overall path delay will be 11.92
ns. This can be further improved if CLA adders are used

instead of Full Adders in BMC and FP blocks. The critical

path and the delay of the individual components is shown

in figure 8 below:

TIMING DIAGRAM SHOWING CRITICAL PATH

4.85

2.43

4.64

7.73

0

1

2

3

4

5

6

7

8

9

INPUT RAMS BMC FP LLR

ti
m

e
 (

n
s
)

Figure 8. Timing diagram

The overall area and power results of individual

components can be compared in figure 9.

The turbo decoder array is compared with the following

reconfigurable categories: ASIP (application specific

instruction set processor), implementations on general

purpose processors, implementations on FPGAs and

ASICs. In ASIP flexibility is provided by the use of

embedded processors specifically targeted to the decoding

application. ASIP being software controlled is broader in

domains of reconfigurability and hence more flexible than

our design. However power, area and speed figures are

much lower. For example in [8] there would be 8 XiRisc
processors needed in order to achieve a through put of

6B-4

593

2Mbps. They are also required to run in parallel on
successive blocks of data.

Area-Power Comparisons

0

10

20

30

40

50

60

F
P
1

L
LR

0

L
LR

1

R
P
1

R
P
B
E
T
A

F
S
M

 R
A
M

F
S
M

 R
A
M

 2

B
M

C

IN
P
U
T
 R

A
M

S

O
U
T
P
U
T
 R

A
M

S
T
A
T
E
 M

C

O
TH

E
R

Percent Power

Percent Area

Figure 9. Area-Power Comparisons.

Table3 below lists some Turbo decoder implementations

on general purpose processors and also lists the maximum

through put possible. Results are worse than ASIP however

flexibility will be higher.

Processor Clock

Speed

Throughput

possible

Ref

Motorola

56603 DSP

Not quoted 48.6

kbps/iteration

[9]

ST120 200MHz 540

kbps/iteration

[9]

Intel
Pentium III

933 MHz 262
kbps/iteration

[10]

DSP SP-5

SIMD

Not quoted 227kbps/iterati

on

[11]

Table 3. Throughput quoted for general processors.

Dedicated implementation on general reconfigurable logic

for example FPGAs can achieve higher throughput

however consume higher power than ASIC

implementation.. For example, in [12] implementation on

Xilinx Vitex XCV300E (almost 50% resource utilization)

consumes 695mW(25 Mhz) for 1Mbps.

A more exact ASIC comparison of our IP can be made

with the work in [14], where we have achieved similar area

and power figures, however the reported unified array

targets 3GPP standard only. Our design is more flexible as

it can target multiple standards both on viterbi and turbo
mode.

10. CONCLUSION

We have presented a unified FEC IP solution that can be
used either independently or as a Co – Processor for

increased flexibility. Decoder consumes 78.5 mW

occupying 2.824 mm2. We have shown the benefits of

domain specific reconfigurable platform in terms of area,
power and speed as compared to more general purpose

Processor or FPGA based solutions.

11. REFERENCES

[1] C.Berrou, et al. “Near Shannon limit error-correcting coding

and decoding: Turbo-Codes,” In Proc. ICC `93, Pages 1064-

1070, Geneva, Switzerland, May 1993.

[2] P. Robertson, E. Villerbrun and P. Hoeher, “ A comparison

of optimal and sub-optimal MAP decoding algorithm

operating in the log domain,” in porc. ICC’95, pp. 1009-

1013

[3] Shahram Talakoub et al., “ A Linear Log-MAP Algorithm

for Turbo Decoding and Turbo Equalization”, IEEE

Conference WiMob’2005, vol. 1, pp. 182–186, Aug. 2005.

[4] I Ahmed, T Arslan, “ A Reconfigurable Viterbi decoder for

a communication platform”. IEEE FPL

[5] Masera et al, “VLSI architectures for turbo codes”; IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, Sept. 1999 Page(s):369 - 379

[6] S. Benedetto et al, “Soft-output decoding algorithms for

continuous decoding of parallel concatenated convolutional

codes”, Proceedings of ICC’96, Dallas, Texas, June 1996.

[7] I Ahmed, T Arslan,“ A low energy VLSI design of Random

Block Interleaver for 3GPP Turbo Decoding”. ISCAAS

2006

[8] A. La Rosa, et al, “ Implementation of a UMTS turbo-

decoder on a dynamcially reconfigurable platform”, Design,

Automation and Test in Europe, Volume 2, 16-20 Feb. 2004

pp. 1218-1223 Vol 2.

[9] H. Michel, A.Worm et al, “Hardware/Software trade-offs for

advanced 3G channel coding”, in Proc. Design, Automation,

Test Eur. Conf., Mar 2002, pp. 396-401.

[10] M.C. Valenti and J.Sun,“ The UMTS turbo code and

efficient decoder implementation suitable for software-

defined radios,” Int. J. Wireless Inform. Netwoks, vol. 8, no.

4, pp. 203-216, 2001.

[11] J. harrison, “Implementation of a 3GPP turbo decoder on a

programmable DSP core,” Commun. Design Conf., San

Jose, CA, Oct. 2001.

[12] S. Sharm et al, “ A simplified and efficient implementation

of FPGA-based turbo decoder” Proceedings of the 2003

IEEE Intl. Conf. on Perf,Computing and Communications”,

9-11 April 2003 pp. 207-213.

[13] Xiao-Jun et al, “Design and implementation of a turbo

decoder for 3G W-CDMA systems” Consumer Electronics,

IEEE Transaction, Volume 48, Issue: 2, May 2002 pp. 284-

291.

[14] Mark A. Bickerstaff et. al., “ A Unified Turbo/Viterbi

Channel Decoder for 3GPP mobile wireless in 0.18-um

CMOS”, IEEE J. Solid-State Circuits, vol 37, no. 11, pp.

1555-1564, Nov. 2002.

6B-4

594

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

