
Abstract - This paper presents a real time programmable 
irregular Low Density Parity Check (LDPC) Encoder as 
specified in the IEEE P802.16E/D7 standard. The encoder is 
programmable for frame sizes from 576 to 2304 and for five 
different code rates. H matrix is efficiently generated and stored 
for a particular frame size and code rate. The encoder is 
implemented on Reconfigurable Instruction Cell Architecture 
(RA) which has recently emerged as an ultra low power, high 
performance, ANSI-C programmable embedded core. Different 
general and architecture specific optimization techniques are 
applied to enhance the throughput. With RA, a throughput from 
10 to 19 Mbps has been achieved.  

I. Introduction 

Low Density Parity Check (LDPC) codes are attributed to 
Gallager who proposed them in his 1960 PhD dissertation [1]. 
The research was lying in dormant due to high complex 
computation for encoders, introduction of the Reed-Solomon 
codes and the concatenation of RS and convolutional codes 
were considered perfectly suitable for error control coding. In 
1980, Tanner [2] introduced graphical representation for 
LDPC codes well known as Tanner graphs. In mid-1990s, 
Mackay, Luby and others [3], [4], and [5] resurrected them 
and noticed their importance apparently independently of the 
work of Gallager. 

LDPC provides transmission capacity approaching to 
Shannon’s limit with decoding complexity which is linear in 
the block length. LDPC can provide faster communication, 
longer communication ranges and better transmission due to 
its consistently high error correction performance. LDPC 
processing is most suitable for parallel implementation which 
if properly exploited can enhance the throughput significantly. 

In this paper, we present implementation of a real time 
programmable LDPC encoder that can support code lengths 
from 576 to 2304 and five different code rates which are ½, 
2/3A, 2/3B, 3/4A and 3/4B. Each code rate and code length 
are supported by different parity check matrices that are 
computed in real time from the model matrices stored in the 
memory. The proposed architecture can be implemented in 
ASIC, FPGA or DSP. We implemented it on the RA [6]. This 
architecture belongs to the emerging field of Reconfigurable 
Computing and is an effort to combine the flexibility and 
programmability of DSP, performance of FPGA and low 
power consumption of ASIC in one unified core so that the 
core can meet the requirement of next generation mobile 
systems. This paper implements the encoder using the 
established and RA specific optimization techniques to exploit 
the parallelism identified inside the algorithm [6]. 

The rest of the paper is organized such that section 2 
describes the encoding algorithm; section 3 presents the real 
time programmable encoder, section 4 discusses the 

implementation and optimization on RA while section 5 
concludes the paper. 

II. LDPC Encoding 

This section describes the basic steps of LDPC coding as 
described in the IEEE P802.16e/D7 standard for producing 
systematic code bits.  
• H is constructed from block circulant matrices using right 

circular shift permutation as specified by the model 
matrices inside the IEEE standard. 

• H is divided into sub-matrices (A, B, C, D, E, T) as 
according to the specification. Figure 1 describes the 
partition of H into sub-matrices. 
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Figure 1: (Parity Check Matrix H) 

• Encoding is performed as in the IEEE specifications. 

III. Real Time Programmable  LDPC Encoder 

It is often necessary in any type of wireless communication 
system to adapt its transmission and reception to the varying 
channel conditions for maintaining a good QoS. For such 
adaptation, it is necessary that both transmitting and receiving 
sections can configure themselves in real time. Such 
configuration or adaptation can be with respect to code length, 
code rate, modulation scheme and or different 
encoding/decoding algorithms. Inside a particular Forward 
Error Correction (FEC) module, the adaptation is with respect 
to code length and code rate. LDPC is an example of FEC and 
the IEEE standard defines a specific range of both code 
lengths and rates which a WiMax system must support. 

Such a real time adaptive architecture for IEEE specified 
LDPC Encoder is presented in Figure 2. This encoder consists 
of two parts, H matrix calculation, represented in Figure 2(B), 
and the actual encoding which is shown in Figure 2(A).  

 In previous work, H matrix calculation is done offline and 
the H matrix is then stored in the memory to be used for 
encoding. These designs can support only one code length and 
code rate and hence are not adaptable to real time systems. 

The IEEE P802.16e/D7 [7] specification defines LDPC code 
which is based on a set of one or more fundamental LDPC 
codes. Each of the fundamental codes supports code lengths 
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from 576 to 2304 with code rates 1/2, 2/3A, 2/3B, 3/4A and 
3/4B. Each LDPC code in the set of LDPC codes is defined 
by a matrix H of size m-by-n where n is the length of the code 
and m is the number of parity check bits in the code. The 
matrix H is constructed from a set of z-by-z permutation 
matrices or z-by-z zero matrix. The matrix H is expanded 
from a binary model matrix Hbm of size mb-by-nb where 
n=z*nb and m= z*mb where z is an integer 1. The model 
matrix has integer entries  -1. H matrix is constructed by 
replacing each ‘-1’ in the model matrix by z-by-z zero matrix. 
The ‘0’ entry is replaced by z-by-z identity matrix while any 
other entry greater than 0 is replaced by a z-by-z permutation 
matrix. The permutations used are circular right shifts and the 
set of permutation matrices contains the z-by-z identity matrix 
and its circular right shifted versions.  

The H matrix generate section in Figure 2(B) consists of 
three modules and memory arrays. One memory array stores 
the model matrices defined in the IEEE standard. Each code 
rate is represented by a unique    model matrix. Five model 
matrices are stored that correspond to five code rates (1/2, 
2/3A, 2/3B, 3/4A, 3/4B). The entire memory consumed by the 
five model matrices is 12*24 + 8*24 + 8*24 + 6*24 + 6*24 = 
960 bytes. All model matrices have 24 columns whereas the 
rows depend upon code rates with 12 rows for ½, 8 rows for 
2/3A, 2/3B, and 6 rows for 3/4A, 3/4B. The purpose of the 
Configuration Block is to compute the size of the H matrix, 
and the spreading factor ‘z’ for a particular code length and 
code rate. The spreading factor ‘z’ determines the size of the 
square matrix which is used to replace each entry in the model 
matrix to construct the H matrix. 

Each model matrix stores values that correspond to H 
matrix construction for the maximum code length of 2304. 
For any other code length, the entries in the model matrix is 
modified according to (1) and (2). 
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where z and z0 are the spreading factors for the H matrices of 
the desired code length and maximum code length 
respectively. The shift factor p(f,i,j) represents the shift sizes 
for the corresponding code size and p(i,j) is the shift size for 
code length of 2304 and this is the i,jth entry in the model 
matrix stored initially. The x  is flooring function giving 
the nearest integer towards - ∞ .   
 The purpose of the Base Matrix Generate module is to take a 
model matrix and spreading factor corresponding to a 
particular code size and then establish a base matrix of the 
same size as the size of the model matrix but with entries 
defined by equations 1 and 2. The output of this module is the 
base matrix which is the basis for the H matrix generation. 
This matrix is applied to the next module that generates the 
child matrices A, B, C, E, and T. These children of the H 
matrix are generated directly instead of the H matrix. The 
dimension of the child matrices are defined in Figure 1. If the 
child matrices are stored conventionally then the total memory 
consumed by all these matrices for a code size of 2304 and 
code rate ½ is 1152*2304 = 2.53Mbits = 316Kbytes, where 
1152 is the row size and 2304 is the column size of the H 
matrix. This is a very huge memory and dedicating this much 

memory to the H matrix alone is not recommend to be 
feasible for either DSP, FPGA or even ASIC implementation. 
This is for the reason that model matrices and intermediate 
vectors also require storage and the overall storage then 
becomes prohibitively high. The total memory required for an 
example code length of 2304 and code rate of ½ can be = 
2.53M(H matrix) +1152(information bits) + 
(1152+1152+96)(for storing intermediate results as well as 
parity bits) = 324.4Kbytes.   

   
Figure 2 :(Real Time Programmable LDPC Encoder) 

This huge memory storage requirement can be reduced by 
adopting the methodology in [8] for storing the child matrices. 
Since H is sparse regarding number of 1’s, a huge memory 
reduction is possible if only the indexes of the 1’s inside the H 
matrix or the child matrices are stored. As an example, the 
total number of 1’s in the H matrix for 2304 code length and 
½ code rate is 8024 or approximately 8K. If indexes of only 
the 1’s inside the H matrix are stored then only 8Kwords or 
16Kbytes of memory is needed in stead of 316Kbytes which 
is equivalent to a reduction of about 20 times in memory. The 
authors in [8] have stored the indexes of only 1’s inside the 
child matrices. Each child matrix is accompanied by another 
array which stores a 1 for the index of H and zero for the end 
of the row. Therefore, a zero in this array will indicate the end 
of the row of the associated child matrix. This is an extra 
overhead which is a 1-bit array of size 8K. 

Since the encoder is designed to support all code rates and 
code lengths, the maximum memory sizes are computed based 
on exhaustive MatLab simulation of the maximum code 
length and all code rates. The maximum memory sizes for A, 
B, C, E and T matrices are determined and then used in the 
design. 

The ‘A, B, C, E, T’ child matrices Generate’ module 
generates the child matrices and stores the indexes of the 1’s 
inside them in the corresponding memory array. The memory 
array x-row stores ‘0’ for each entry and ‘1’ for the end of 
each row.  Here x represents a child matrix. This array is used 
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as pointer to indicate the end of row for matrix-vector 
computation.  

After child matrices generation, they are applied to the 
encoder (figure 2(A)) together with the information bits. The 
processing in each block is similar to the processing defined 
in [8]. Here MVM is the matrix-vector-multiplication with a 
vector output. Forward Substitution is used to obtain y* T-1 =
x using y =T * x.

The first MVM module in Figure 2(A) generate F=C*uT

and G = A*uT. The vector G is applied to the next module to 
generate D=E*T-1*GT. D and F are vector added in the next 
VA module shown by the encircled plus sign. The output of 
the VA module is P1 which is a subset of the parity check bits 
that contribute to the code bits. The next MVM module 
generates the vector M=B*P1T. The VA adder module then 
adds using modulo-2 addition and generates N=M+G. The last 
module uses forward substitution to generate P2=T-1NT and 
the frame is then given by c = [u P1 P2].

The serial implementation can be implemented on either 
ASIC, FPGA or DSP. For speed improvement on either ASIC 
or FPGA a pipelined version of the encoder is also presented 
as shown in Figure 3. 

This is a four stage pipelined encoder which promises to 
improve the speed by approximately 2.5 times at the expense 
of increased memory of size (1152+1152)*3 bits. The 2.5 
times is because of the second stage as the second stage is the 
most time consuming block and cannot be divided into 
smaller blocks. RA can implement both due to its flexibility.  

IV. Implementation on RA 

RA [6] is a dynamic reconfigurable fabric which has coarse 
grained heterogeneous functional units (cells) connected to 
each other through a reconfigurable interconnect structure. 
The functional units support primitive operators that can 
perform addition/subtraction, multiplication, logic, multiplex, 
shift and register operations. Additional functional units 
(cells) are provided to handle control/branch operations. Each 
functional unit operates on 32-bit operands, however it can be 
configured for 8, 16 and 32-bit operands. Some of the 
functional units like shifts, logic and multiplexers can be 
configured to work as four 8-bit or two 16-bits functional 
units inside one functional unit. This implies that a 32-bit 
adder can work as four 8-bit or two 16-bit adders independent 
of each other. This type of reconfigurability is very useful in 
packed data computation for speed improvement. 

There are three major optimization techniques for increasing 
the throughput [10]. These are classified as Loop Unrolling, 
Split Computation and Multi Sampling. Loop unrolling is 
applied to independent iterations to use the resources as much 
as possible. 

The current implementation of RA is structured so that it 
can have 8 memory read and 8 memory write interfaces and 
16 memory banks. The memory width of each bank is 8-bit 
and 16 banks provide four 32-bit memory accesses in parallel. 
With each memory interface, 32-bit word can be accessed 
thus allowing four 32-bit memory access operations in 
parallel.   

RA has other optimizations like converting small 
conditional branches into simple multiplexing operations, 
storing intermediate results in distributed registers to avoid 
more costly memory access and providing more functional 
units for 

Figure 3: (Pipelined Real Time Encoder) 

parallel execution of operations. The functional units and 
interconnects in RA allow the possible exploitation of 
instruction level parallelism inside the code to as much as the 
number of functional units. In this paper, the objective is to 
exploit generic and RA specific optimizations for increased 
throughput. 

The code for the encoder consists of Vector_Add, 
Matrix_Vector_Mult, Forward_Substitution, 
Base_Matrix_Generate, and H_Matrix_Generate. Of all these 
modules Base_Matrix_Generate and H_Matrix_Generate are 
called once at start up or whenever the parameters on which H 
matrix generation depends get changed. These parameters are 
the code rate and the number of information bits used to 
produce code word of a particular length. The code is first 
simulated without applying any optimization techniques. The 
simulated result shows only 3.5 Mbps throughput using code 
length of 2304 with code rate ½. The throughput has been 
increased to 10 Mbps for the same rate and code length by 
applying generic and RA specific optimization to different 
modules. These are discussed below: 

A.    Optimization specific to algorithm    

This is carried out mainly in the T child matrix which 
consists of a combination of two types of sub-matrices. One 
set is the non-permutated zf x zf identity matrix and the other is 
the zf x zf zero matrix.  The construction of the T matrix inside 
a model matrix is given below by the red letters.
{ 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{ 0,  0, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{-1,  0,  0, -1, -1, -1, -1, -1, -1, -1, -1},
{-1, -1,  0,  0, -1, -1, -1, -1, -1, -1, -1},
{-1, -1, -1,  0,  0, -1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1,  0,  0, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1,  0,  0, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1,  0,  0, -1, -1, -1},
{-1, -1, -1, -1, -1, -1, -1,  0,  0, -1, -1},
{-1, -1, -1, -1, -1, -1, -1, -1,  0,  0, -1},
{-1, -1, -1, -1, -1, -1, -1, -1, -1,  0,  0},
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,  0},

Figure 4: (Only T matrix inside the model matrix is shown)

Here 0 is zf x zf identity matrix while -1 represents zf x zf
zero matrix. The T matrix is used in the forward substitution 
block in the encoder. Usually it is required to find Y in Y = T-

1x. 
In a conventional way, the indexes of the 1’s inside T matrix 

are stored in the PtrtoT array. This index (which is the 
location of 1 inside the T matrix) is then used as pointer to 
either the input array x which is represented by Ptrtovin or the 
output array Y represented by Ptrtovout. The equation           
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Y = T-1x is solved using forward substitution TY = x and the 
code for this equation is given below. 

for (i=0; i<zf; i+=4)                    
    {  *(Ptrtovout + i+0) = *(*(PtrtoT+i+0)+ Ptrtovin);  
       *(Ptrtovout + i+1) = *(*(PtrtoT+i+1)+ Ptrtovin); 
       *(Ptrtovout + i+2) = *(*(PtrtoT+i+2)+ Ptrtovin); 
       *(Ptrtovout + i+3) = *(*(PtrtoT+i+3)+ Ptrtovin);   } 

for (i=zf; i<indext; i+=8)    {                 
*(Ptrtovout + count+0) = *(*(PtrtoT+i+0)+Ptrtovout) ^ 
*(*(PtrtoT+i+1)+Ptrtovin);    
*(Ptrtovout + count+1) = *(*(PtrtoT+i+2)+Ptrtovout) ^ 
*(*(PtrtoT+i+3)+Ptrtovin); 
*(Ptrtovout + count+2) = *(*(PtrtoT+i+4)+Ptrtovout) ^ 
*(*(PtrtoT+i+5)+Ptrtovin); 
*(Ptrtovout + count+3) = *(*(PtrtoT+i+6)+Ptrtovout) ^ 
*(*(PtrtoT+i+7)+Ptrtovin);   } 

Figure 5:  (unmodified code for forward substitution) 

If we look at the model matrix then the distribution of 1’s 
inside the T matrix provides enough uniformity to avoid the 
computation of the T matrix. The first row and column of the 
T matrix starts with zf x zf identity matrix while the rest of the 
columns of the first row are zeros and can be ignored. This 
implies that there exists only a single 1 in each row of the T
matrix for the first zf rows. The second row of the model 
matrix has two 0’s which correspond to two zf x zf identity 
matrices. This shows that each of the zf rows represented by 
second row of the model matrix has two 1’s respectively at 
locations i and i+zf where i = 0, 1, 2, ……, zf The third and 
subsequent rows except the last one follow the same pattern as 
of the second row.  

This implies that there is no need to compute the indexes of 
the 1’s inside the T matrix. All we need is to remember the 
indexes from the start which is 0, the size of the spreading 
factor and the number of rows inside the T matrix which is 
dependent upon the code rate selected. By doing this the 
memory operations required to read the indexes from the T
array are eliminated which will result in subsequent saving of 
both energy and execution time. The following code has been 
written to implement the uniformity inside the T matrix.

index = m-zf;     // m is the total  rows and zf is the spreading factor   
for (i=0; i<zf; i+=4)     
    {  Ptrtovout[i]      =   Ptrtovin[i+0];   
          Ptrtovout[i+1]  =  Ptrtovin[i+1];  
          Ptrtovout[i+2]  =  Ptrtovin[i+2];  
          Ptrtovout[i+3]  =  Ptrtovin[i+3];     }         
count=0; //zf 
for (i=zf;i<index;i+=4) //8) 
   {  Ptrtovout[i]      = Ptrtovout[count]   ^ Ptrtovin[i]; 
  Ptrtovout[i+1]  = Ptrtovout[count+1] ^ Ptrtovin[i+1]; 
  Ptrtovout[i+2]  = Ptrtovout[count+2] ^ Ptrtovin[i+2]; 
  Ptrtovout[i+3]  = Ptrtovout[count+3] ^ Ptrtovin[i+3]; 
  count +=4;   } 

Figure 6:  (Forward Substitution) 
The code has been simulated on RA and the simulation time 

for unmodified and modified code came out to be 20.62 µsec 
and 14.224 µsec respectively. This corresponds to a reduction 
of 31% in execution time for the forward substitution module.  

B.   Optimization of Vector_Add 

The aim of this module is to provide modulo-2 addition of 
two input vectors. Since the addition is bit wise, enough 
parallelism is present inside the module. This parallelism is 
exploited for increased throughput through simple loop 
unrolling. The original code is as: 

for (i=0;i<zf;i++) {  // zf is spreading factor and is 24 to 96 
*(Ptrtovout+i) = *(Ptrtovin1+i) ^ *(Ptrtovin2+i) ; } 

The above code has 2*zf read and zf write memory 
operations. It will take 3*zf  cycles in any DSP processor and 
if 4 nsec is taken as the memory access time then its execution 
will take 12*zf nsec on a DSP Processor. If the code is 
expanded as below then all the four memory reads from the 
same memory array can be done in just one 4 nsec time and 
all the four writes to the same memory array can also be 
completed in just one 4 nsec time. The memory access time is 
then (zf/4 (read)+zf/4(read)+ zf/4 (write))*4 = 3*zf which is 
equivalent to a 4 times reduction in memory access time.  

for (i=0;i<zf;i+=4) { 
*(Ptrtovout+i+0)= *(Ptrtovin1+i+0) ^ *(Ptrtovin2+i+0) ; 
*(Ptrtovout+i+1)= *(Ptrtovin1+i+1) ^ *(Ptrtovin2+i+1) ; 
*(Ptrtovout+i+2)= *(Ptrtovin1+i+2) ^ *(Ptrtovin2+i+2) ; 
*(Ptrtovout+i+3)= *(Ptrtovin1+i+3) ^ *(Ptrtovin2+i+3) ;} 

In the case of packed computation in which four 
independent data bytes are accessed as one data pack and 
processed as separate and independent 4 data bytes, only two 
read interfaces and one write interfaces are required thus 
reducing the burden on the resources. RA also supports 8 
adders and 8 XOR operations. This implies that address 
calculation and XORing can be done in parallel thus saving 
more execution time. 

C.   Optimization of Matrix_Vector_Mult  

 This module performs multiplication of matrix (A) with a 
vector. The matrix consists of only 1’s and 0’s and only the 
indices of 1’s inside the matrix are stored in PtrtoA. In such a 
case, the multiplication becomes picking the bits in the array 
Ptrtovin at the location pointed by the indices of 1’s (inside 
the matrix) and XORing for one row of the matrix A. The 
code for this multiplication is given below: 
                  for (j=0;j<=index;j++) {    

                                 a = PtrtoA[j]; 
                                 *(Ptrtovout+j)  ^= *(a+Ptrtovin);}

The total memory access operations are 2*index (read)+ 
index(write) = 3*index. The memory access time is 
3*index*4. If the code is written as below: 

for (j=0;j<=index; j+=4) {  
a0 = *(PtrtoA+j+0);  a1 = *(PtrtoA+j+1); 
a2 = *(PtrtoA+j+0);  a3 = *(PtrtoA+j+1); 

*(Ptrtovout+i) = *(a0+Ptrtovin) ^ *(a1+Ptrtovin) ^ *(a2+Ptrtovin) ^  
*(a3+Ptrtovin);      } 

 In the modified code, 4 memory read operations a0 to a3 
take two memory read accesses (2*4 nsec). The next 4 
memory read operations take one memory access (4 nsec) and 
the write operation also takes 4 nsec. Thus 3*2*4*index/4= 
6*index nsec is the execution time of the code which is 
equivalent to a reduction of 12/6 = 2. 

D.   Optimization in initializing fixed arrays 

In situations where it is extremely necessary to initialize the 
fixed array, loop unrolling is used in array initialization. 
Significant reduction in memory access time has been 
achieved with this optimization.  

E.   Replacing Jumps with Multiplexing 
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RA executes the code in steps. A step is defined as 
combination of instructions that can be executed in the fabric 
provided by RA. The group of instructions need not be 
necessarily independent of each other. A step is determined by 
the number of available resources, conditional branch and the 
length of the critical path. 

RA is structured to support only one jump per step. If a 
function or a piece of code generates more than one jumps 
then RA places them in separate steps. The main idea behind 
optimization is to place as much code inside one step as 
possible. If the entire function is placed in one step then 
maximum utilization of resources can be achieved and the 
time of execution will most probably be less than the case in 
which the same function takes more than one step. For the 
jump to be replaced with multiplexing, the variables and the 
paths for the execution must be independent of each other and 
must not include a memory read in its conditioning. This can 
be explained from the following code. 

if(*(PtrtoMrow+j+4)) 
    {     *(Ptrtovout+i) = *(*(PtrtoM+j+4)+Ptrtovin) ^ *(Ptrtovout+i); 
        j++; 
    } 

The above code will definitely produce a jump as the 
memory access in the code inside the parenthesis is made 
dependent upon the ‘if’ condition. If the ‘if’ condition is true 
then there will be memory access otherwise not. The jump 
produced by this code will cause underutilization of resources. 
This code can be structured like the following to avoid the 
instantiation of the jump cell. 

temp1     =    *(PtrtoMrow+j+4) 
temp2     =    *(*(PtrtoM+j+4)+Ptrtovin) ^ *(Ptrtovout+i); 
temp3     =    *(Ptrtovout+i); 

*(Ptrtovout+i)  = temp1  ?  temp2  :  temp3; 

By storing the intermediate values in the registers and making 
the variables independent of each other, the instantiation of 
the jump cell has been avoided. The same strategy has been 
adopted in all other places inside the code to either reduce or 
eliminate the jumping and using multiplexers to perform the 
same functionality as is performed with jump cell. 

Loop unrolling has been used in addition to the above 
mentioned techniques  and the execution time and throughput 
has been calculated as follows: 

One time execution of LDPC Encoder              =  554.926 
Number of steps taken:                                    106129 
Two times execution of LDPC Encoder               =  666.232 µsec 
Number of steps taken:                                 123674 
Execution time of actual encoding  
to be used in real time                        =  666.232 – 554.926 = 111.3 µsec  
Number of steps of actual encoding   = 123674  – 106129 = 17545 
Execution time per bit                        = 111.3/1152 = 96.61 nsec/bit 
Throughput                                         = 1/96.61 = 10.4 Mbps (½ rate). 
For code rate ¾ , the throughput is measured to be 
approximately 19 Mbps. This is the highest code rate that 
IEEE 802.16 defines for the irregular LDPC codes. 

F.   Hardware Pipelining the code 

The hardware pipelining is about pipelining the memory 
read, computation and memory write operations inside a code. 
If a loop consists of all these processes and brought inside one 

step then the step will loop into itself. Such a step can be 
pipelined and using a two stage pipeline, the execution time 
can be reduced by about 2.5 times. 

An example of a harware pipeling is shown in Figure 7 and 
8. This is the graph of a data path that reads from the memory, 
adds together the words read from the memory and then 
writes the results to the same location inside the memory. The 
complete datapath has been brought into one RA step and it 
loops to itself. The execution time of this step has been 
measured to be 28 nsec and if the maximum iteration is 120, 
the execution time of the entire loop is 28*120 = 3.36 µsec.  

Using pipelining, the data path can be divided into three 
smaller data paths with critical path length not exceeding 10 
nsec. The time of execution of the step is now approximately 
2.5 times less than the total time and is about 3.36/2.5 = 1.344 
µsec. By using hardware pipelining, the throughput of the 
encoder is achieved in the range from 26 Mbps for ½ code 
rate to 47 Mbps for ¾ code rate. This is better than an FPGA 
[8] implementation which achieved 22 Mbps from a real time 
programmable LDPC encoder for regular codes.  

V. Conclusion 

In this paper, the authors have presented a novel 
architecture for the real time LDPC encoder as specified in the 
IEEE P802.16e/D7 standard targeting WiMax applications 
and discussed its optimization on a reconfigurable instruction 
cell architecture (RA). Several algorithmic and RA specific 
optimization techniques have been applied. The throughput 
achieved without pipelining is  in the range from 10 to 19 
Mbps while with pipelining, it is in the range from 26 to 
47Mbps. This is a considerable throughput while providing 
the flexibility and programmability from a high level such as 
‘C’ programming. 
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  Figure 7:(Non-pipelined RA Step) (rmem is read memory cell, wmem is write memory cell, const is a cell to store   
constant values, add is adder cell, reg is register cell and shift is shifter cell, comp_jump is logical cell) 

               Figure 8: (Pipelined RA Step) 
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