
Abstract - This paper presents a real time programmable
irregular Low Density Parity Check (LDPC) Encoder as
specified in the IEEE P802.16E/D7 standard. The encoder is
programmable for frame sizes from 576 to 2304 and for five
different code rates. H matrix is efficiently generated and stored
for a particular frame size and code rate. The encoder is
implemented on Reconfigurable Instruction Cell Architecture
(RA) which has recently emerged as an ultra low power, high
performance, ANSI-C programmable embedded core. Different
general and architecture specific optimization techniques are
applied to enhance the throughput. With RA, a throughput from
10 to 19 Mbps has been achieved.

I. Introduction

Low Density Parity Check (LDPC) codes are attributed to
Gallager who proposed them in his 1960 PhD dissertation [1].
The research was lying in dormant due to high complex
computation for encoders, introduction of the Reed-Solomon
codes and the concatenation of RS and convolutional codes
were considered perfectly suitable for error control coding. In
1980, Tanner [2] introduced graphical representation for
LDPC codes well known as Tanner graphs. In mid-1990s,
Mackay, Luby and others [3], [4], and [5] resurrected them
and noticed their importance apparently independently of the
work of Gallager.

LDPC provides transmission capacity approaching to
Shannon’s limit with decoding complexity which is linear in
the block length. LDPC can provide faster communication,
longer communication ranges and better transmission due to
its consistently high error correction performance. LDPC
processing is most suitable for parallel implementation which
if properly exploited can enhance the throughput significantly.

In this paper, we present implementation of a real time
programmable LDPC encoder that can support code lengths
from 576 to 2304 and five different code rates which are ½,
2/3A, 2/3B, 3/4A and 3/4B. Each code rate and code length
are supported by different parity check matrices that are
computed in real time from the model matrices stored in the
memory. The proposed architecture can be implemented in
ASIC, FPGA or DSP. We implemented it on the RA [6]. This
architecture belongs to the emerging field of Reconfigurable
Computing and is an effort to combine the flexibility and
programmability of DSP, performance of FPGA and low
power consumption of ASIC in one unified core so that the
core can meet the requirement of next generation mobile
systems. This paper implements the encoder using the
established and RA specific optimization techniques to exploit
the parallelism identified inside the algorithm [6].

The rest of the paper is organized such that section 2
describes the encoding algorithm; section 3 presents the real
time programmable encoder, section 4 discusses the

implementation and optimization on RA while section 5
concludes the paper.

II. LDPC Encoding

This section describes the basic steps of LDPC coding as
described in the IEEE P802.16e/D7 standard for producing
systematic code bits.
• H is constructed from block circulant matrices using right

circular shift permutation as specified by the model
matrices inside the IEEE standard.

• H is divided into sub-matrices (A, B, C, D, E, T) as
according to the specification. Figure 1 describes the
partition of H into sub-matrices.

n-m z m-z

m-z

z

A B

T

C D E

Figure 1: (Parity Check Matrix H)

• Encoding is performed as in the IEEE specifications.

III. Real Time Programmable LDPC Encoder

It is often necessary in any type of wireless communication
system to adapt its transmission and reception to the varying
channel conditions for maintaining a good QoS. For such
adaptation, it is necessary that both transmitting and receiving
sections can configure themselves in real time. Such
configuration or adaptation can be with respect to code length,
code rate, modulation scheme and or different
encoding/decoding algorithms. Inside a particular Forward
Error Correction (FEC) module, the adaptation is with respect
to code length and code rate. LDPC is an example of FEC and
the IEEE standard defines a specific range of both code
lengths and rates which a WiMax system must support.

Such a real time adaptive architecture for IEEE specified
LDPC Encoder is presented in Figure 2. This encoder consists
of two parts, H matrix calculation, represented in Figure 2(B),
and the actual encoding which is shown in Figure 2(A).

 In previous work, H matrix calculation is done offline and
the H matrix is then stored in the memory to be used for
encoding. These designs can support only one code length and
code rate and hence are not adaptable to real time systems.

The IEEE P802.16e/D7 [7] specification defines LDPC code
which is based on a set of one or more fundamental LDPC
codes. Each of the fundamental codes supports code lengths

Implementation of a Real Time Programmable Encoder for Low Density
Parity Check Code on a Reconfigurable Instruction Cell Architecture

Zahid Khan, Tughrul Arslan

System Level Integration Group,
The University of Edinburgh,

Mayfield Road, Edinburgh, EH9 3JL, Scotland, UK
z.khan@ed.ac.uk, Tughrul.Arslan@ee.ed.ac.uk

1-4244-0630-7/07/$20.00 ©2007 IEEE.

6B-3

583

from 576 to 2304 with code rates 1/2, 2/3A, 2/3B, 3/4A and
3/4B. Each LDPC code in the set of LDPC codes is defined
by a matrix H of size m-by-n where n is the length of the code
and m is the number of parity check bits in the code. The
matrix H is constructed from a set of z-by-z permutation
matrices or z-by-z zero matrix. The matrix H is expanded
from a binary model matrix Hbm of size mb-by-nb where
n=z*nb and m= z*mb where z is an integer 1. The model
matrix has integer entries -1. H matrix is constructed by
replacing each ‘-1’ in the model matrix by z-by-z zero matrix.
The ‘0’ entry is replaced by z-by-z identity matrix while any
other entry greater than 0 is replaced by a z-by-z permutation
matrix. The permutations used are circular right shifts and the
set of permutation matrices contains the z-by-z identity matrix
and its circular right shifted versions.

The H matrix generate section in Figure 2(B) consists of
three modules and memory arrays. One memory array stores
the model matrices defined in the IEEE standard. Each code
rate is represented by a unique model matrix. Five model
matrices are stored that correspond to five code rates (1/2,
2/3A, 2/3B, 3/4A, 3/4B). The entire memory consumed by the
five model matrices is 12*24 + 8*24 + 8*24 + 6*24 + 6*24 =
960 bytes. All model matrices have 24 columns whereas the
rows depend upon code rates with 12 rows for ½, 8 rows for
2/3A, 2/3B, and 6 rows for 3/4A, 3/4B. The purpose of the
Configuration Block is to compute the size of the H matrix,
and the spreading factor ‘z’ for a particular code length and
code rate. The spreading factor ‘z’ determines the size of the
square matrix which is used to replace each entry in the model
matrix to construct the H matrix.

Each model matrix stores values that correspond to H
matrix construction for the maximum code length of 2304.
For any other code length, the entries in the model matrix is
modified according to (1) and (2).

>

≤
= 0),(,*),(

0),(),,(
),,(

0

jip
z

zjip
jipjip

jifp
 (1)

>
≤

=
0),(),),,(mod(

0),(),,(
),,(

jipzjip
jipjip

jifp (2)

where z and z0 are the spreading factors for the H matrices of
the desired code length and maximum code length
respectively. The shift factor p(f,i,j) represents the shift sizes
for the corresponding code size and p(i,j) is the shift size for
code length of 2304 and this is the i,jth entry in the model
matrix stored initially. The x is flooring function giving
the nearest integer towards - ∞ .
 The purpose of the Base Matrix Generate module is to take a
model matrix and spreading factor corresponding to a
particular code size and then establish a base matrix of the
same size as the size of the model matrix but with entries
defined by equations 1 and 2. The output of this module is the
base matrix which is the basis for the H matrix generation.
This matrix is applied to the next module that generates the
child matrices A, B, C, E, and T. These children of the H
matrix are generated directly instead of the H matrix. The
dimension of the child matrices are defined in Figure 1. If the
child matrices are stored conventionally then the total memory
consumed by all these matrices for a code size of 2304 and
code rate ½ is 1152*2304 = 2.53Mbits = 316Kbytes, where
1152 is the row size and 2304 is the column size of the H
matrix. This is a very huge memory and dedicating this much

memory to the H matrix alone is not recommend to be
feasible for either DSP, FPGA or even ASIC implementation.
This is for the reason that model matrices and intermediate
vectors also require storage and the overall storage then
becomes prohibitively high. The total memory required for an
example code length of 2304 and code rate of ½ can be =
2.53M(H matrix) +1152(information bits) +
(1152+1152+96)(for storing intermediate results as well as
parity bits) = 324.4Kbytes.

Figure 2 :(Real Time Programmable LDPC Encoder)

This huge memory storage requirement can be reduced by
adopting the methodology in [8] for storing the child matrices.
Since H is sparse regarding number of 1’s, a huge memory
reduction is possible if only the indexes of the 1’s inside the H
matrix or the child matrices are stored. As an example, the
total number of 1’s in the H matrix for 2304 code length and
½ code rate is 8024 or approximately 8K. If indexes of only
the 1’s inside the H matrix are stored then only 8Kwords or
16Kbytes of memory is needed in stead of 316Kbytes which
is equivalent to a reduction of about 20 times in memory. The
authors in [8] have stored the indexes of only 1’s inside the
child matrices. Each child matrix is accompanied by another
array which stores a 1 for the index of H and zero for the end
of the row. Therefore, a zero in this array will indicate the end
of the row of the associated child matrix. This is an extra
overhead which is a 1-bit array of size 8K.

Since the encoder is designed to support all code rates and
code lengths, the maximum memory sizes are computed based
on exhaustive MatLab simulation of the maximum code
length and all code rates. The maximum memory sizes for A,
B, C, E and T matrices are determined and then used in the
design.

The ‘A, B, C, E, T’ child matrices Generate’ module
generates the child matrices and stores the indexes of the 1’s
inside them in the corresponding memory array. The memory
array x-row stores ‘0’ for each entry and ‘1’ for the end of
each row. Here x represents a child matrix. This array is used

6B-3

584

as pointer to indicate the end of row for matrix-vector
computation.

After child matrices generation, they are applied to the
encoder (figure 2(A)) together with the information bits. The
processing in each block is similar to the processing defined
in [8]. Here MVM is the matrix-vector-multiplication with a
vector output. Forward Substitution is used to obtain y* T-1 =
x using y =T * x.

The first MVM module in Figure 2(A) generate F=C*uT

and G = A*uT. The vector G is applied to the next module to
generate D=E*T-1*GT. D and F are vector added in the next
VA module shown by the encircled plus sign. The output of
the VA module is P1 which is a subset of the parity check bits
that contribute to the code bits. The next MVM module
generates the vector M=B*P1T. The VA adder module then
adds using modulo-2 addition and generates N=M+G. The last
module uses forward substitution to generate P2=T-1NT and
the frame is then given by c = [u P1 P2].

The serial implementation can be implemented on either
ASIC, FPGA or DSP. For speed improvement on either ASIC
or FPGA a pipelined version of the encoder is also presented
as shown in Figure 3.

This is a four stage pipelined encoder which promises to
improve the speed by approximately 2.5 times at the expense
of increased memory of size (1152+1152)*3 bits. The 2.5
times is because of the second stage as the second stage is the
most time consuming block and cannot be divided into
smaller blocks. RA can implement both due to its flexibility.

IV. Implementation on RA

RA [6] is a dynamic reconfigurable fabric which has coarse
grained heterogeneous functional units (cells) connected to
each other through a reconfigurable interconnect structure.
The functional units support primitive operators that can
perform addition/subtraction, multiplication, logic, multiplex,
shift and register operations. Additional functional units
(cells) are provided to handle control/branch operations. Each
functional unit operates on 32-bit operands, however it can be
configured for 8, 16 and 32-bit operands. Some of the
functional units like shifts, logic and multiplexers can be
configured to work as four 8-bit or two 16-bits functional
units inside one functional unit. This implies that a 32-bit
adder can work as four 8-bit or two 16-bit adders independent
of each other. This type of reconfigurability is very useful in
packed data computation for speed improvement.

There are three major optimization techniques for increasing
the throughput [10]. These are classified as Loop Unrolling,
Split Computation and Multi Sampling. Loop unrolling is
applied to independent iterations to use the resources as much
as possible.

The current implementation of RA is structured so that it
can have 8 memory read and 8 memory write interfaces and
16 memory banks. The memory width of each bank is 8-bit
and 16 banks provide four 32-bit memory accesses in parallel.
With each memory interface, 32-bit word can be accessed
thus allowing four 32-bit memory access operations in
parallel.

RA has other optimizations like converting small
conditional branches into simple multiplexing operations,
storing intermediate results in distributed registers to avoid
more costly memory access and providing more functional
units for

Figure 3: (Pipelined Real Time Encoder)

parallel execution of operations. The functional units and
interconnects in RA allow the possible exploitation of
instruction level parallelism inside the code to as much as the
number of functional units. In this paper, the objective is to
exploit generic and RA specific optimizations for increased
throughput.

The code for the encoder consists of Vector_Add,
Matrix_Vector_Mult, Forward_Substitution,
Base_Matrix_Generate, and H_Matrix_Generate. Of all these
modules Base_Matrix_Generate and H_Matrix_Generate are
called once at start up or whenever the parameters on which H
matrix generation depends get changed. These parameters are
the code rate and the number of information bits used to
produce code word of a particular length. The code is first
simulated without applying any optimization techniques. The
simulated result shows only 3.5 Mbps throughput using code
length of 2304 with code rate ½. The throughput has been
increased to 10 Mbps for the same rate and code length by
applying generic and RA specific optimization to different
modules. These are discussed below:

A. Optimization specific to algorithm

This is carried out mainly in the T child matrix which
consists of a combination of two types of sub-matrices. One
set is the non-permutated zf x zf identity matrix and the other is
the zf x zf zero matrix. The construction of the T matrix inside
a model matrix is given below by the red letters.
{ 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{ 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{-1, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1},
{-1, -1, 0, 0, -1, -1, -1, -1, -1, -1, -1},
{-1, -1, -1, 0, 0, -1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, 0, 0, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1},
{-1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1},
{-1, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1},
{-1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0},
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0},

Figure 4: (Only T matrix inside the model matrix is shown)

Here 0 is zf x zf identity matrix while -1 represents zf x zf
zero matrix. The T matrix is used in the forward substitution
block in the encoder. Usually it is required to find Y in Y = T-

1x.
In a conventional way, the indexes of the 1’s inside T matrix

are stored in the PtrtoT array. This index (which is the
location of 1 inside the T matrix) is then used as pointer to
either the input array x which is represented by Ptrtovin or the
output array Y represented by Ptrtovout. The equation

6B-3

585

Y = T-1x is solved using forward substitution TY = x and the
code for this equation is given below.

for (i=0; i<zf; i+=4)
 { *(Ptrtovout + i+0) = *(*(PtrtoT+i+0)+ Ptrtovin);
 *(Ptrtovout + i+1) = *(*(PtrtoT+i+1)+ Ptrtovin);
 *(Ptrtovout + i+2) = *(*(PtrtoT+i+2)+ Ptrtovin);
 *(Ptrtovout + i+3) = *(*(PtrtoT+i+3)+ Ptrtovin); }

for (i=zf; i<indext; i+=8) {
*(Ptrtovout + count+0) = *(*(PtrtoT+i+0)+Ptrtovout) ^
((PtrtoT+i+1)+Ptrtovin);
*(Ptrtovout + count+1) = *(*(PtrtoT+i+2)+Ptrtovout) ^
((PtrtoT+i+3)+Ptrtovin);
*(Ptrtovout + count+2) = *(*(PtrtoT+i+4)+Ptrtovout) ^
((PtrtoT+i+5)+Ptrtovin);
*(Ptrtovout + count+3) = *(*(PtrtoT+i+6)+Ptrtovout) ^
((PtrtoT+i+7)+Ptrtovin); }

Figure 5: (unmodified code for forward substitution)

If we look at the model matrix then the distribution of 1’s
inside the T matrix provides enough uniformity to avoid the
computation of the T matrix. The first row and column of the
T matrix starts with zf x zf identity matrix while the rest of the
columns of the first row are zeros and can be ignored. This
implies that there exists only a single 1 in each row of the T
matrix for the first zf rows. The second row of the model
matrix has two 0’s which correspond to two zf x zf identity
matrices. This shows that each of the zf rows represented by
second row of the model matrix has two 1’s respectively at
locations i and i+zf where i = 0, 1, 2, ……, zf The third and
subsequent rows except the last one follow the same pattern as
of the second row.

This implies that there is no need to compute the indexes of
the 1’s inside the T matrix. All we need is to remember the
indexes from the start which is 0, the size of the spreading
factor and the number of rows inside the T matrix which is
dependent upon the code rate selected. By doing this the
memory operations required to read the indexes from the T
array are eliminated which will result in subsequent saving of
both energy and execution time. The following code has been
written to implement the uniformity inside the T matrix.

index = m-zf; // m is the total rows and zf is the spreading factor
for (i=0; i<zf; i+=4)
 { Ptrtovout[i] = Ptrtovin[i+0];
 Ptrtovout[i+1] = Ptrtovin[i+1];
 Ptrtovout[i+2] = Ptrtovin[i+2];
 Ptrtovout[i+3] = Ptrtovin[i+3]; }
count=0; //zf
for (i=zf;i<index;i+=4) //8)
 { Ptrtovout[i] = Ptrtovout[count] ^ Ptrtovin[i];
 Ptrtovout[i+1] = Ptrtovout[count+1] ^ Ptrtovin[i+1];
 Ptrtovout[i+2] = Ptrtovout[count+2] ^ Ptrtovin[i+2];
 Ptrtovout[i+3] = Ptrtovout[count+3] ^ Ptrtovin[i+3];
 count +=4; }

Figure 6: (Forward Substitution)
The code has been simulated on RA and the simulation time

for unmodified and modified code came out to be 20.62 µsec
and 14.224 µsec respectively. This corresponds to a reduction
of 31% in execution time for the forward substitution module.

B. Optimization of Vector_Add

The aim of this module is to provide modulo-2 addition of
two input vectors. Since the addition is bit wise, enough
parallelism is present inside the module. This parallelism is
exploited for increased throughput through simple loop
unrolling. The original code is as:

for (i=0;i<zf;i++) { // zf is spreading factor and is 24 to 96
*(Ptrtovout+i) = *(Ptrtovin1+i) ^ *(Ptrtovin2+i) ; }

The above code has 2*zf read and zf write memory
operations. It will take 3*zf cycles in any DSP processor and
if 4 nsec is taken as the memory access time then its execution
will take 12*zf nsec on a DSP Processor. If the code is
expanded as below then all the four memory reads from the
same memory array can be done in just one 4 nsec time and
all the four writes to the same memory array can also be
completed in just one 4 nsec time. The memory access time is
then (zf/4 (read)+zf/4(read)+ zf/4 (write))*4 = 3*zf which is
equivalent to a 4 times reduction in memory access time.

for (i=0;i<zf;i+=4) {
*(Ptrtovout+i+0)= *(Ptrtovin1+i+0) ^ *(Ptrtovin2+i+0) ;
*(Ptrtovout+i+1)= *(Ptrtovin1+i+1) ^ *(Ptrtovin2+i+1) ;
*(Ptrtovout+i+2)= *(Ptrtovin1+i+2) ^ *(Ptrtovin2+i+2) ;
*(Ptrtovout+i+3)= *(Ptrtovin1+i+3) ^ *(Ptrtovin2+i+3) ;}

In the case of packed computation in which four
independent data bytes are accessed as one data pack and
processed as separate and independent 4 data bytes, only two
read interfaces and one write interfaces are required thus
reducing the burden on the resources. RA also supports 8
adders and 8 XOR operations. This implies that address
calculation and XORing can be done in parallel thus saving
more execution time.

C. Optimization of Matrix_Vector_Mult

 This module performs multiplication of matrix (A) with a
vector. The matrix consists of only 1’s and 0’s and only the
indices of 1’s inside the matrix are stored in PtrtoA. In such a
case, the multiplication becomes picking the bits in the array
Ptrtovin at the location pointed by the indices of 1’s (inside
the matrix) and XORing for one row of the matrix A. The
code for this multiplication is given below:
 for (j=0;j<=index;j++) {

 a = PtrtoA[j];
 *(Ptrtovout+j) ^= *(a+Ptrtovin);}

The total memory access operations are 2*index (read)+
index(write) = 3*index. The memory access time is
3*index*4. If the code is written as below:

for (j=0;j<=index; j+=4) {
a0 = *(PtrtoA+j+0); a1 = *(PtrtoA+j+1);
a2 = *(PtrtoA+j+0); a3 = *(PtrtoA+j+1);

*(Ptrtovout+i) = *(a0+Ptrtovin) ^ *(a1+Ptrtovin) ^ *(a2+Ptrtovin) ^
*(a3+Ptrtovin); }

 In the modified code, 4 memory read operations a0 to a3
take two memory read accesses (2*4 nsec). The next 4
memory read operations take one memory access (4 nsec) and
the write operation also takes 4 nsec. Thus 3*2*4*index/4=
6*index nsec is the execution time of the code which is
equivalent to a reduction of 12/6 = 2.

D. Optimization in initializing fixed arrays

In situations where it is extremely necessary to initialize the
fixed array, loop unrolling is used in array initialization.
Significant reduction in memory access time has been
achieved with this optimization.

E. Replacing Jumps with Multiplexing

6B-3

586

RA executes the code in steps. A step is defined as
combination of instructions that can be executed in the fabric
provided by RA. The group of instructions need not be
necessarily independent of each other. A step is determined by
the number of available resources, conditional branch and the
length of the critical path.

RA is structured to support only one jump per step. If a
function or a piece of code generates more than one jumps
then RA places them in separate steps. The main idea behind
optimization is to place as much code inside one step as
possible. If the entire function is placed in one step then
maximum utilization of resources can be achieved and the
time of execution will most probably be less than the case in
which the same function takes more than one step. For the
jump to be replaced with multiplexing, the variables and the
paths for the execution must be independent of each other and
must not include a memory read in its conditioning. This can
be explained from the following code.

if(*(PtrtoMrow+j+4))
 { *(Ptrtovout+i) = *(*(PtrtoM+j+4)+Ptrtovin) ^ *(Ptrtovout+i);
 j++;
 }

The above code will definitely produce a jump as the
memory access in the code inside the parenthesis is made
dependent upon the ‘if’ condition. If the ‘if’ condition is true
then there will be memory access otherwise not. The jump
produced by this code will cause underutilization of resources.
This code can be structured like the following to avoid the
instantiation of the jump cell.

temp1 = *(PtrtoMrow+j+4)
temp2 = *(*(PtrtoM+j+4)+Ptrtovin) ^ *(Ptrtovout+i);
temp3 = *(Ptrtovout+i);

*(Ptrtovout+i) = temp1 ? temp2 : temp3;

By storing the intermediate values in the registers and making
the variables independent of each other, the instantiation of
the jump cell has been avoided. The same strategy has been
adopted in all other places inside the code to either reduce or
eliminate the jumping and using multiplexers to perform the
same functionality as is performed with jump cell.

Loop unrolling has been used in addition to the above
mentioned techniques and the execution time and throughput
has been calculated as follows:

One time execution of LDPC Encoder = 554.926
Number of steps taken: 106129
Two times execution of LDPC Encoder = 666.232 µsec
Number of steps taken: 123674
Execution time of actual encoding
to be used in real time = 666.232 – 554.926 = 111.3 µsec
Number of steps of actual encoding = 123674 – 106129 = 17545
Execution time per bit = 111.3/1152 = 96.61 nsec/bit
Throughput = 1/96.61 = 10.4 Mbps (½ rate).
For code rate ¾ , the throughput is measured to be
approximately 19 Mbps. This is the highest code rate that
IEEE 802.16 defines for the irregular LDPC codes.

F. Hardware Pipelining the code

The hardware pipelining is about pipelining the memory
read, computation and memory write operations inside a code.
If a loop consists of all these processes and brought inside one

step then the step will loop into itself. Such a step can be
pipelined and using a two stage pipeline, the execution time
can be reduced by about 2.5 times.

An example of a harware pipeling is shown in Figure 7 and
8. This is the graph of a data path that reads from the memory,
adds together the words read from the memory and then
writes the results to the same location inside the memory. The
complete datapath has been brought into one RA step and it
loops to itself. The execution time of this step has been
measured to be 28 nsec and if the maximum iteration is 120,
the execution time of the entire loop is 28*120 = 3.36 µsec.

Using pipelining, the data path can be divided into three
smaller data paths with critical path length not exceeding 10
nsec. The time of execution of the step is now approximately
2.5 times less than the total time and is about 3.36/2.5 = 1.344
µsec. By using hardware pipelining, the throughput of the
encoder is achieved in the range from 26 Mbps for ½ code
rate to 47 Mbps for ¾ code rate. This is better than an FPGA
[8] implementation which achieved 22 Mbps from a real time
programmable LDPC encoder for regular codes.

V. Conclusion

In this paper, the authors have presented a novel
architecture for the real time LDPC encoder as specified in the
IEEE P802.16e/D7 standard targeting WiMax applications
and discussed its optimization on a reconfigurable instruction
cell architecture (RA). Several algorithmic and RA specific
optimization techniques have been applied. The throughput
achieved without pipelining is in the range from 10 to 19
Mbps while with pipelining, it is in the range from 26 to
47Mbps. This is a considerable throughput while providing
the flexibility and programmability from a high level such as
‘C’ programming.

VI. References

[1] R. Gallager, “Low-Density parity-check codes”, IRE Trans.
Information Theory, pp. 21-28, Jan. 1962

[2] R.M. Tanner, “A recursive approach to low complexity codes”,
IEEE Trans. Information Theory, pp. 533-547, Sept. 1981

[3] D. MacKay and R. Neal, “Good codes based on very sparse
matrices”, in Cryptography and coding, 5th IMA Conf.,
C.Boyd, Ed., Lecture Notes in Computer Science, pp. 100-111,
Berlin, Germany: Springer, 1995

[4] D. Mackay, “Good error correcting codes based on very sparse
matrices”, IEEE Trans. Information Theory, pp. 399-431,
March 1999

[5] N. Alon and M. Luby, “A linear time erasure-resilient code
with nearly optimal recovery”, IEEE Trans. Information
Theory, pp. 1732-1736, Nov. 1996.

[6] Yi. Ying, I. Nousias, M. Milward, S. Khawam, T. Arslan, I.
Lindsay, “System-level Scheduling on Instruction Cell Based
Reconfigurable Systems”, Design, Automation and Test in
Europe, 2006. DATE '06. Proceedings, Volume 1, 6-10 March
2006 Page(s):1 - 6

[7] IEEE P802.16E/D7 Specification published in 2006
[8] L. Dong-U, L. Wayne, W. Connie, J. Christopher, “A flexible

hardware encoder for low density parity check codes”, Proc.
IEEE Symp. Field-Programmable Custom Computing, 2004

[9] SC140 Application Note: How to implement a Viterbi Decoder
on the StarCore SC140. Application number ANSC140VIT:
Available on www.freescale.com

6B-3

587

 Figure 7:(Non-pipelined RA Step) (rmem is read memory cell, wmem is write memory cell, const is a cell to store
constant values, add is adder cell, reg is register cell and shift is shifter cell, comp_jump is logical cell)

 Figure 8: (Pipelined RA Step)

6B-3

588

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

