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Abstract - This paper presents a novel architectural 
mechanism and a power management structure for the design of 
an energy-efficient Gigabit Ethernet controller. Key 
characteristics of such a controller are low-latency and high-
bandwidth required to meet the pressing demands of extremely 
high frame and control data, which in turn cause difficulties in 
managing power dissipation. We propose a flow-through-queue 
(FTQ) based power management method, which allows some of 
the tasks involved in processing the frame data to be offloaded.  
This in turn enables utilization of multiple clock rates and 
multiple voltages for different cores inside the Ethernet 
controller. A modeling approach based on semi-Markov decision 
process (SMDP) and queuing models is employed, which allow 
one to apply mathematical programming formulations for 
energy optimization under performance constraints. The 
proposed Gigabit Ethernet controller is designed with a 130nm 
CMOS technology that includes both high and low threshold 
voltages. Experimental results show that the proposed power 
optimization method can achieve system-wide energy savings 
under tighter performance constraints. 

I. INTRODUCTION
A look at today1’s high-speed networking system trends reveals 
that as Internet link speeds continue to grow exponentially, a 
Gigabit Ethernet controller is becoming more complex to satisfy 
the high-functionality, high-performance demands of today’s 
applications. For example, the Gigabit Ethernet controller must 
be able to support high frame-rate data processing and low-
latency access to achieve full-duplex line rates for maximum-
sized, e.g., 1518-byte, frame [1]. However, this trend also 
translates into high power densities, higher operating 
temperatures, and lower circuit reliability. Power consumption 
increases rapidly with increase in link speed [2]. Thus, designers 
of the Gigabit Ethernet controller must consider power 
dissipation as one of the primary issues. 

Although power savings are commonly achieved through 
circuit-level optimization techniques, many opportunities exist at 
the system and architecture levels to reduce energy consumption. 
Furthermore, current CMOS technologies allow an increasing 
number of clock and voltage domains to be specified on the same 
chip, which allows dynamic voltage and frequency scaling 
(DVFS) and multiple supply and threshold voltage (Vdd and Vth)
assignments to be utilized [7]. System designs utilizing multiple 
clocks and multiple voltage cores, where globally asynchronous 
and locally synchronous (GALS) communication architecture is 
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deployed, face increasing difficulty in managing power 
consumption under tighter performance constraints [4][8]. 

As reported in [3]-[6], the problem of power modeling and 
optimization at high-levels of abstraction in GALS has received a 
lot of attention especially with respect to multiple voltage 
domains. In [3], the authors show that GALS processors with 
multiple clocks and a single voltage are not necessarily better in 
terms of power consumption compared to fully synchronous 
design due to the asynchronous communication overhead. It is 
also reported that the use of dynamic voltage scaling in multiple 
voltage cores improves power savings up to 20%. The work 
presented in [4] studies online DVFS scheme in the context of a 
multiple clock domain architecture by utilizing interface queues 
to guide the DVFS control. Voltage island-based power 
management is proposed in [5] to satisfy the required 
performance in multi-threshold CMOS technologies. In [6], the 
authors present an architecture for GALS systems, which allows 
dynamic load-balancing and adaptive inter-task voltage scaling 
based on the load in each of the processing units. 

Although these techniques perform DVFS, little attention has 
been given to modeling a power-managed system with multiple 
Vdd/Vth choices. Indeed, a centralized DVFS architecture [3] that 
utilizes interface queues to transfer high-bandwidth data between 
multiple voltage domains tends to perform rather poorly under 
tight performance constraints. Finally, GALS [6] often results in 
overhead penalty in terms of timing due to the complexity of 
configurations. 

In this paper, we propose a flow-through-queue (FTQ) based 
power management method by offloading some of the tasks 
involved in processing the frame data, which enables multiple 
clock rates and multiple voltage cores inside the Ethernet 
controller chip. Note that in the Gigabit Ethernet controller, the 
control data must be accessed with low-latency, while the frame 
data must be accessed with high bandwidth so as to maximize the 
transfer speed. These two competing requirements create a very 
challenging power minimization problem. FTQ, which directs 
the frame data processing between functional modules, improves 
hardware support for higher performance with respect to 
handling the incoming packets. We also present a systematic 
approach for constructing a stochastic power management model. 
The numerical optimization solution of this stochastic model is 
based on a semi-Markov decision process (SMDP). Note that 
SMDP model, which offers a robust theoretical framework, 
enables one to apply strong mathematical optimization 
techniques to derive optimal power management policies. To 
achieve further energy savings in multi-threshold CMOS 
technologies, mathematical programming problems are 
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formulated with multiple Vdd/Vth assignments under tight 
performance constraints.  

The remainder of this paper is organized as follows: Section 2 
provides a brief background of the Gigabit Ethernet controller 
while section 3 describes the details of proposed FTQ-based 
architecture. In section 4, we construct the FTQ-based system 
with SMDP and queuing models. Section 5 provides 
performance optimization methods. Experimental results and 
conclusion are given in section 6 and section 7. 

II. BACKGROUND: ETHERNET CONTROLLER
The host system of a networking server uses the Ethernet 
controller to send and receive packets. Sending and receiving 
packets over the local interconnect, e.g., PCI-E bus [9], is 
handled by the Ethernet controller and the device driver in the 
host operating system. In general, the Ethernet controller 
typically has a direct memory access (DMA) engine to transfer 
data between the host system memory and the network interface 
memory. In addition, Ethernet controller includes a medium 
access control (MAC) unit to implement the link level protocol 
for the underlying network, and use a signal processing hardware 
to implement the physical (PHY) layer defined in the network. 
Figure 1 shows a simplified block diagram of the Gigabit 
Ethernet controller. 
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Figure 1. Block diagram of Gigabit Ethernet controller. 
To understand the functionality of the Ethernet controller 

inside, the process of receiving a packet over the network is 
explained next (various steps are shown in Figure 1 in 
alphabetical orders). In step (a), the Ethernet controller receives a 
data stream from the selected physical layer interface. It 
performs address checking, CRC calculation, and CSMA/CD 
functions [2] in step (b). In step (c), the Ethernet controller 
calculates checksum and parses TCP/IP headers, while 
classifying frame based on a set of matching rules in step (d). In 
step (e), the Ethernet controller strips the VLAN (Virtual Local 
Area Network) tag, and then temporarily places packet data and 
header into the pre-allocated receive buffer (i.e., RXMBUF) in 
step (f). After that, the Ethernet controller completes buffer 
descriptors for the packet in step (g). Finally in step (h), the 
DMA transfer for packet data and descriptors to the host memory 
is accomplished via the PCI-E interface by notifying the device 
driver by means of an interrupt. Further details of the Gigabit 
Ethernet architecture and functionality are omitted to save space. 
Interested readers may refer to [10][11]. 

III. FTQ-BASED ARCHITECTURE
As described before, defragmenting the packets of various 
communication protocols in hardware remains an extremely 
complex task. Thus, the Ethernet controller needs more 
functional modules and specialized hardware units that 
efficiently transfer between the local interconnect and the 

network. Therefore, for a power-constrained system, it is 
necessary to capture parallelism and asynchrony among multiple 
functional modules operating at multiple clocks and voltages.  
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Figure 2. Concept of Flow-Through-Queue. 
The FTQs provide a FIFO mechanism between the state 

machines describing various functional modules. Each state 
machine essentially reacts to the content of its corresponding 
FTQ to initiate and direct the processing activities of the state 
machine as shown in Figure 2. The content of FTQ includes 
pointers that are used to indicate where the frame data is located 
in the buffers. When the FTQ is empty, the state machine has no 
work to perform and is in the idle mode. A functional module 
can switch between different power-speed levels. Switching 
between the power-saving modes in the active state is managed 
by a power management policy. The DVFS controller for each 
functional module utilizes information about the FTQ of the 
module, i.e., how full the queue is and how quickly the number 
of entries in queue changes, to dynamically vary the supply 
voltage and frequency setting. 

The FTQ abstraction enables high-levels of parallelism by 
permitting different frames in the same stage of processing to 
proceed concurrently. In general, the frame data is provisionally 
stored in memory buffers before being sent to local interconnect 
or network, while the control data is processed by a string of 
functional modules, each requiring low-latency as shown in 
Figure 1 (see steps (c), (d), (e), and (g)). Thus, this architecture 
targets the control dominated tasks rather than the storage and 
forwarding of the frame data. The event-queue mechanism of the 
FTQ enables multiple clocks and multiple voltages for the 
functional modules, satisfying the low-latency control data 
access and the high-bandwidth frame data access. The FTQ 
configuration for the packet receive path is illustrated in Figure 3. 
Functional modules i.e., QP (Queue Placement), DI (Data 
Initiator), and DC (Data Completion) interact with the RISC core 
or the memory arbiter, while transferring memory buffer pointers 
to the ensuing FTQ so as to advance the sequence of tasks.  
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Figure 3. The configuration with FTQ for packet receive path. 
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The timing diagram of FTQ-based processing for the packet 
receive path is depicted in Figure 4 with some of FTQ-related 
signals. The timing diagram shows that the pointer values (e.g., 
C0002, C0604, C0A05, and C0C06) are transferred to the 
following functional modules via FTQs while performing packet 
header processing at each step, whereas the frame data is directly 
transferred to PCI-E bus from memory buffer through the DMA. 

IV. MODELING A FTQ-BASED SYSTEM
In this section, we present a systematic approach for modeling a 
FTQ-based system with stochastic processes, i.e., semi-Markov 
decision processes (SMDP) [12]. Note that a SMDP is a tuple <S,
E, Y, Z, R>, where S is a set of states, E is a set of actions, Y is 
the transition probability function, Z specifies the probability 
distribution of transition times for each state-action pairs, and R
is the expected reward function [12]. Figure 5 shows the SMDP 
model of the Gigabit Ethernet controller for the packet receive 
path with a state set S = {S1, S2, …, Sm}, where m is the number 
of processing modes available to the system. This figure shows 
that each state in the SMDP model interacts with relevant 
functional modules, implying dependency between these 
modules. For example, the S5 state involves RISC, QP, MA 
(Memory Arbiter), and RXMBUF modules. Definitions of the 
states for this SMDP model are provided in Table 1. The idle and 
sleep modes shown in Figure 5 are for the whole system, i.e., all 
functional modules go to sleep in S11. Note also that each 
functional module has its own idle and sleep modes as shown in 
Figure 2.  

The FTQ may be represented by the G/M/1 queuing model, 
where inter-arrival times are arbitrarily distributed and service 
times are exponentially distributed [13]. A general distribution is 
assumed for the inter-arrival times because an exponential 
distribution would underestimate the occurrence probability for 
long request inter-arrival times and so it does not adequately 
model the request arrival time in the idle periods [14]. The 
service time behavior is captured by a given service time 
distribution for the functional module when it is in the active 
mode. Similarly, the input request behavior is modeled by a 
given inter-arrival time distribution.  Let Si represent the ith state 
in a SMDP, and Ii denote the task (i.e., the job descriptor) inter-
arrival time whose distribution depends only on the present state 
Si. Assuming that inter-arrival times are mutually independent, 
we may define the arrival process of tasks at time t from state i to 
state j of the SMDP as follows: 

( ) { , | }ij i+1 i 1 iProb S I Sa t j t i+= = ≤ =               (1) 
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Figure 5. SMDP model of the system. 

Table 1. Legend for the SMDP model of Figure 5. 

State Description

Receive data stream from physical layer interfaceS1

S2 Perform address checking, CRC calculation, and CSMA/CD function

S3 Calculate checksum and parse TCP/IP header

S4 Place packet data and header into buffer memory

S5 Buffer descriptor processing (Queue replacement)

S6 Buffer descriptor processing (Data Initiator)

S7 Complete buffer descriptor for packet

S8 DMA transfers packet data to host memory

S9 Filter WOL (Wakeup on LAN) packets during power down mode

S10 System idle mode

S11 System sleep mode

State Description

Receive data stream from physical layer interfaceS1

S2 Perform address checking, CRC calculation, and CSMA/CD function

S3 Calculate checksum and parse TCP/IP header

S4 Place packet data and header into buffer memory

S5 Buffer descriptor processing (Queue replacement)

S6 Buffer descriptor processing (Data Initiator)

S7 Complete buffer descriptor for packet

S8 DMA transfers packet data to host memory

S9 Filter WOL (Wakeup on LAN) packets during power down mode

S10 System idle mode

S11 System sleep mode

Let W denote the number of waiting tasks in the FTQ just before 
a new task arrives. Assuming an infinite queue size, we have: 

{ } (1 ) , 0,1, ...,n
nq Prob W n nγ γ= − = ∞=         (2) 

where γ is the unique solution of Laplace-Stieltjes transform of 
the inter-arrival time distribution function [16], which is 

0
( ) ( )st

ij ijs e a t dtα
∞ −=                             (3) 

Here s is a real-valued variable. We assume that the service times 
in the functional modules are exponentially distributed with the 
mean value of 1µ− . Let TW.k  (TS.k) represent the waiting time
(service time) of the tasks in the kth FTQ and its corresponding 
functional module. Since the response time, TR.k, of the 
functional module is the expected time that the tasks spend in its 
FTQ and in the functional module itself, we have TR.k = ((1-γ)µ)-1.
The waiting time in the FTQ is calculated by subtracting the 
service time from the response time, yielding: 
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Figure 4. The simulation of FTQ-based processing for packet receive path. 
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, ,
1

(1 )W k R kT T
γ

µ µ γ
= − =

−
                         (4) 

We would like to consider the utilization of a functional 
module i.e., how much of the computational resource provided 
by the functional module is utilized by the application. More 
precisely, the utilization ratio, uk, may be defined as:  

                                     ( )ku BP BP IP= +                               (5) 

where BP is the duration of the busy period of the functional 
module, and IP is the duration of its idle period. Without 
presenting the proof, we simply state (cf. [13]): 

( ) (1 )BP IP E T γ+ = −                          (6) 

where E(T) is the expected number of transitions in the SMDP. 
Thus, given the number, n, of tasks waiting in the FTQ, we can 
calculate BP and IP as follows 

0
1

( ) ( )
,

1 1

n

i
i

E T E T
BP q IP q

γ γ=

= ⋅ = ⋅
− −

(7) 

V. PERFORMANCE OPTIMIZATION
In this section, we present the energy optimization formulation 
problems and methods in multiple Vdd/Vth assignments by 
developing mathematical programming models. 

A. Energy Optimization based on DVFS and SMDP 
Let actpowk.Vdd.Vth (or slpowk.Vdd.Vth) represent the power 
consumption of the kth  functional module during its active mode 
running at Vdd and Vth levels (or its sleep mode). Considering the 
active power, we use a joint cost structure such that the expected 
cost rate, i.e., active power consumption, is the summation of a 
cost term, k(s, a), which is incurred when action a, i.e., the DVFS 
setting (f, Vdd, Vth), is taken, and a second term c(s’, a, s), where 
s, s’ ∈ Sm. This results in the following total cost equation: 2

( , ) ( , ) ( ', , )
1

( ) ( ' | , ) ( , ')
( , ) s S

cost s a k s a c s a s

pow s Prob s s a ene s s
s aτ ∈

= +

= +      (8) 

where pow(s) = Σk∈K actpowk.Vdd.Vth, ene(s, s’) is the energy 
required by the system to transit from state s to s’, and τ(s, a) is 
the expected duration of the time that the system spent in the 
state s if action a is chosen, which in turn is given by 

0
( , ) ( , ', )

a
s S

t
s a t p s s t dtτ γ

∞

∈

=                    (9) 

where γ is a discount factor, 0 ≤ γ < 1, and pa (s, s’, t) is the 
probability that as a consequence of choosing action a when the 
system state is s’, the state equals s after time t. Let a sequence of 
active states s0, s1, …, sk denote a processing path δ from s0 to sk

of length k with the property that p(s0, s1), …, p(sk-1, sk) > 0, 
where p(x, y) is the probability that the system moves to state y
from state x (see Figure 4). For a policy π, we define the 
discounted cost C of a processing path δ of length k as follows. 

0
( ) ( , )

k

i

it i iC cost s aπ δ γ
=

                  (10) 

                                                            
2 In this paper, subscripts denote state information whereas superscripts 
denote time stamp. 

where ti is the time that the system spent in state si before action 
ai causes a transition to state si+1. Considering the expectation 
with respect to the policy π over the set of processing paths 
starting in state s, we may define the expected cost of the system, 
given that the system starts in state s, by actpowπ

avg(s) = 
EXP[Cπ(δ)]. 

Ignoring the energy overhead of the transition between the 
active and sleep states of the system, the average energy 
dissipation of the functional modules can be obtained by: 

. . .

. . . . .

( )

( )

avg
l L k K

d
k K l L

l k Vdd Vth

k Vdd Vth l k Vdd Vth

avgene actpow s exe

slpow T exe

π

∈ ∈

∈ ∈

+

= ⋅

⋅ −
       (11) 

where L and K denote the set of tasks and functional modules, Td

is the given time period, and exel.k.Vdd.Vth is the execution time of 
task l on functional unit k running at Vdd and Vth. Changing the 
voltage level (and correspondingly the operating frequency) of 
the functional modules affects the execution time of the tasks. 
Clearly, exel.k.Vdd.Vth = TW.k.Vdd.Vth + TS.k.Vdd.Vth . When there is a 
positive slack for the task to run on a functional module, DVFS 
can result in significant energy saving. Thus, our goal is to 
minimize energy consumption of a target system by choosing the 
optimum setting (Vdd and Vth) as a solution, subject to 
performance constraints:

n

. . .i=1
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0
1

0 1 0, ...,

/

,

min

s.t.   ( )
i

avg

S k Vdd Vth d

k

n n

i ii i

n

ii

i
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                                    (12) 

Note that i) 
1 . . .

n

ii W k Vdd Vthi q T
=

⋅ = , ii) TS.k.Vdd.Vth is affected by the 

DVFS setting, iii) 
1 0

/( ) /n n

i ii i
BP BP IP q q

= =
+ = , and iv) uk is a 

lower bound on the utilization of functional module, which is 
provided by the user or application. 

B. Workload-Aware Multiple Vdd / Vth Assignment  
Nearly all of prior work on Vdd/Vth assignment has concentrated 
on gate sizing [15][16] or  power optimization at the circuit level 
[17][18]. Little attention has been paid to workload 
decomposition with Vdd/Vth assignment, which is the core of our 
approach. Initially, we perform static timing and power analysis 
using the standard cell libraries to determine gate delay and 
power values of the functional modules. To achieve accurate 
power values, we generate SAIF (Switching Activity Interchange 
File) [19] based on RTL simulation of the system. We use TSMC 
130nmLP library which has 3 optional operating voltages (e.g., 
1.35V, 1.5V, and 1.65V) and dual (High and Low) Vth for 
standard cells.  

Our proposed multiple Vdd/Vth assignment method takes as 
input a circuit that has been optimized for a maximum speed by 
using the available slack, which is obtained by Synopsys Design 
Compiler. After determining the timing critical paths of the 
circuit, we use high supply voltage, Vdd.h, and low threshold 
voltage, Vth.l, for the gates on those paths. We use a low supply 
voltage, Vdd.l, for the other gates, especially those that drive large 
capacitance since this approach yields the largest dynamic power 
savings. Figure 6 shows the power characteristics of 
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EthernetMAC module for various Vdd/Vth assignments (i.e., 
before the two assignments are combined). After redistributing 
the critical paths by combining high and low Vth cells (e.g., 1.6% 
usage of high Vth cells) for EthernetMAC, we achieve a leakage 
power consumption of around 7.4uW at 1.35V with 13.65ns 
delay. Note that cell-based design with all high-Vth cells 
consumes 5.8uW of leakage power, but gives rise to 16.2ns delay. 
On the other hand, an all low-Vth cell-based design produces 
38uW leakage power with 9.36ns circuit delay. In addition to 
reduction in leakage power, this approach also reduces the peak 
power dissipation. (The peak power dissipation in a localized 
space can cause local heating and peak temperature). Figure 7 
shows the power distribution change inside EthernetMAC 
module before and after multiple Vdd/Vth assignment. 
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Figure 6. Power characteristics of EthernetMAC. 
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Figure 7. Power distribution inside EthernetMAC @ 1.35V, 125°C: 
(a) All high Vth cells, (b) All low Vth cells, (c) 21% high Vth cells, 

and (d) 79% high Vth cells. 

Since leakage power is significant in both sleep and idle 
modes, we capture the energy consumed due to leakage currents 
as a performance metric in terms of the task workload and the 
utilization of functional module. Task workload, which can be 
represented by a queuing model as explained in section 4, is 
decomposed into the waiting time and the service time, where 
service rate µ is the function of the clock frequency and the 
Vdd/Vth assignment. The FTQ-based system, where queues give 
clues about the speed balance between the sender domain and the 
receiver domain, is capable of adapting the execution speed to 

the changing demand. Note that when combining multiple supply 
voltages, level converters are required each time a gate that is 
powered by a lower voltage level drives a gate powered by a 
higher voltage level. In such cases, the power and delay penalties 
need to be considered. Assuming no additional overhead [18], 
the impact of workload in terms of the consumed energy and the 
utilization can be characterized for applying Vdd/Vth assignment 
as will be seen in the next section. 

VI. EXPERIMENTAL RESULTS
In the first experiment, we demonstrate the performance of our 
designed Gigabit Ethernet controller by obtaining the throughput 
for streams of various packet sizes as shown in Figure 8. The 
figure shows that the maximum full duplex bandwidth (i.e., 
1000Base–T and 100Base-T) for each packet size is achieved. 
The SmartBits 2000 (performance analysis system) from Spirent 
[20] is used to generate various packet streams, where we fixed 
the IP packet size for each simulation step with the inter-packet 
gap = 0.096us. 

Figure 8. Throughput vs. Packet size. 
The second experiment has been designed to evaluate the 

proposed leakage power optimization method. We analyze the 
leakage power dissipation after re-distributing the critical paths 
by using TSMC 130nmLP technology. Simulation result for 
EthernetMAC module in Figure 9 indicates that the performance 
metrics (delay and leakage power) are adjusted gradually and 
trade-off becomes more dramatic at the corner cases (all high-Vth
and all low-Vth cell assignments).  

Figure 9. Trade-off: Delay vs. Leakage power (Vdd = 1.35V). 
The third experiment is to demonstrate the effectiveness of 

our proposed Vdd/Vth assignment for energy optimization. 
Assuming that that there is no waiting time and the mean service 
time is µ-1 = 1 to simplify the experimental setup, we calculate 
the consumed energy by leakage power and utilization of 
functional module (e.g., EMAC) for various Vdd/Vth assignments 
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and arrival rates of task as shown in Figure 10. The result 
demonstrates that if we assign 1.35Vdd/Vth.l set as an example, the 
energy consumed due to leakage currents in a infrequently 
utilized state is much greater than that in a highly utilized state, 
which means that 1.65Vdd/Vth.h assignment is the optimal solution 
in this case. Thus, we can see that our proposed assignment 
method can dynamically adjust the Vdd/Vth assignment when the 
workload characteristics change, which results in further energy 
savings. 

Figure 10. Energy due to leakage currents vs. Workload. 

In the fourth experiment, we set the performance constraints 
on the Td and uk (e.g., Td = 5 and uk = 0.6) as in equation (12). 
The solution of the SMDP-based optimization problem produces 
an optimal policy. Different arrival rates ( ) of tasks are used to 
generate the multiple rows in Table 2, which represents the 
energy consumption for various Vdd/Vth assignments in the active 
and idle modes of the functional modules (e.g., QP, DI, and 
DMA). We assume that the service time is 1 to simplify the 
calculations. Next, we apply different workloads for each module 
to simulate the optimal policy as shown in Table 3. Results 
demonstrate that SMDP-based optimization produces energy 
savings for both active and idle modes up to 20% and 56%, 
respectively. 

Table 2. Energy dissipation for various workloads (normalized). 
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Table 3. SMDP-based energy optimization (normalized).

QP

Workload: arrival rate ( )

DI DMA

0.8 0.7 0.6

0.7 0.6 0.5

0.6 0.7 0.8

0.5 0.6 0.7

Total energy 
(typical)

164.5

active idle

Optimal policy

active idle active idle

123.9

222.6

151.4

Savings

53E-4

78E-4

77E-4

63E-4

132.4

100.1

180.0

122.4

24E-4

34E-4

36E-4

39E-4

20%

20%

19%

19%

55%

56%

53%

54%

QP

Workload: arrival rate ( )

DI DMA

0.8 0.7 0.6

0.7 0.6 0.5

0.6 0.7 0.8

0.5 0.6 0.7

Total energy 
(typical)

164.5

active idle

Optimal policy

active idle active idle

123.9

222.6

151.4

Savings

53E-4

78E-4

77E-4

63E-4

132.4

100.1

180.0

122.4

24E-4

34E-4

36E-4

39E-4

20%

20%

19%

19%

55%

56%

53%

54%

VII. CONCLUSION
An FTQ-based power management technique for the Gigabit 
Ethernet controller was presented, where we also considered the 
multi-Vdd/Vth assignment problem for energy optimization. By 
improving the accuracy of decision making in the power 
management policy, performance optimizations based on DVFS 
and SMDP under various performance constraints were 
formulated and solved accordingly. Experimental results show 
that the proposed methods result in significant energy savings for 
various workloads under tight performance constraints. 
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