
Fast Electrical Correction Using Resizing and Buffering

Shrirang K. Karandikar,
†
Charles J. Alpert,

†
Mehmet C. Yildiz,

‡

Paul Villarrubia,
‡
Steve Quay

‡
and Tuhin Mahmud

‡

†
IBM Austin Research Laboratory

‡
IBM EDA

Abstract— Current design methodologies are geared towards
meeting different design criteria, such as delay, area or power.
However, in order to correctly identify the critical parts of a cir-
cuit for optimization, the circuit has to be electrically clean – i.e.,
slews on each pin have to be within certain limits, a gate cannot
drive more than a certain amount of capacitance, etc. Thus far,
this requirement has largely been ignored in the literature. In-
stead, existing methods which optimize delay are used to fix elec-
trical violations. This leads to solutions that are unnecessarily ex-
pensive, and still leave violations that remain unfixed. There is
therefore a need for an area-efficient strategy that targets the elec-
trical state of a circuit and fixes all violations quickly. This paper
explicitly defines “electrical violations” and presents a flexible ap-
proach (called EVE, the Electrical Violation Eliminator) for fixing
these. Experimental results validate our approach.

I. INTRODUCTION

In an typical physical synthesis flow, placement is followed

by electrical correction and various optimizations, such as

gate sizing, buffer insertion and resynthesis, among others, as

shown in Figure 1. After each step, critical parts of the design

are determined using a static timing analyzer, and subsequent

steps focus on these critical portions. Placement [1, 2] and op-

timization (gate sizing using techniques of logical effort [3–5]

and Lagrangian relaxation [6] and buffering [7–10]) are well

studied problems, both in academia and industry, and remain

an area of active research. However, electrical correction has

largely been ignored in the literature, though its importance is

well recognized [8,11–14], and industrial design flows include

steps to address it.

Most optimization techniques rely on the correct operation

of the timer, to guide them in the right direction. However, any

timer, even a sophisticated one, can work correctly only if the

design is in a good electrical state. For example, if capacitive

loads are outside the range that a gate model has been charac-

terized for, the timer will give results that do not reflect the true

performance of the gate. Consequently, the timing analysis of

an entire design can be wrong, and critical areas may not be

correctly identified. In order to get meaningful results from a

timer, these characterization issues need to be addressed. This

is done by the “electrical correction” phase, whose role is to

make sure that slew and capacitance violations are fixed.

The role of this step is to fix violations quickly. This will
naturally need area, but electrical correction should minimize

this area overhead, thereby reducing unnecessary power con-

sumption and silicon real estate. The need for reducing area

usage is obvious for area-constrained designs. However, even

in designs where the total area may not be at a premium, local

regions may be congested. Further, in delay-constrained de-

signs, the area saving can be used by subsequent optimizations

to improve the performance of critical regions.

Placement

Electrical Correction

O
p
ti
m
iz
at
io
n
s

Resize Gates

Buffer Nets

Local Resynthesis

Fig. 1.: Implementation Flow

While the importance of this step has been recognized previ-

ously, the solution has been to use existing resizing and buffer-

ing methods, which optimize the delay of a circuit. This is

expensive, since the solution used solves the wrong problem,

and utilizes valuable silicon area while doing so. In todays

high-performance area-constrained designs, this area is better

managed for improving delay or reducing power consumption.

This paper presents a new approach that specifically ad-

dresses electrical correction. Our goal is to develop an efficient

framework that fixes violations without unnecessary overhead,

i.e, we are interested in the least cost solution that eliminates

electrical violations. This approach, called EVE (Electrical Vi-

olation Eliminator) has been implemented under an industry

toolset, and integrates several extensions that can be used, de-

pending on the needs of the design.

II. BACKGROUND

A. Electrical Violations

Timing analyzers utilize models for gate delays and slews,

which are pre-characterized. Each gate is characterized with

a maximum capacitive load that it can drive and a maximum

input slew rate. The operation of the timer is valid only within

these ranges. If these conditions are violated, timers usually

extrapolate to obtain ‘best guess’ values. However, values cal-

culated in this mannermay very well be wildly inaccurate. This

leads to the limits that define electrical violations. There are

three principal “rules” that a design has to pass for it to be elec-

trically clean, as follows.

Slew Limits These rules define the maximum slews permis-
sible on all nets of the design. If the slew (defined here

1-4244-0630-7/07/$20.00 ©2007 IEEE.

6A-3

553

as the 10%-90% rise or fall time of a signal, other defini-

tions can be used as well) at the input of a logic gate is too

large, a gate may not switch at the target speed, or may

not switch at all, leading to incorrect operation.

Capacitance Limits These define the maximum effective ca-
pacitance that a gate or a macro input can drive. A

large capacitance on the output of a gate directly affects

its switching speed and power dissipation. Additionally,

gates are typically characterized for a limited range of out-

put capacitance, and delay calculation can be inaccurate if

the output capacitance is greater than the maximum value.

Fanout Limits These rules limit the number of fanouts that
can be driven by different gates. Critical nets can be lim-

ited to have lower fanouts. These limits are easily fixed,

and are not addressed further in this work.

Violations of these three rules (referred to as slew vio-

lations, capacitance violations and fanout violations, respec-

tively) taken together are called electrical violations. These

limits are principally determined during gate characterization,

but designers may choose to tighten these constraints further.

For example, a tighter slew constraint can guardband the de-

sign against variability or noise [9]. High performance designs,

such as microprocessors typically have much tighter slew lim-

its than ASICs.

B. Causes of Slew Violations

Figure 2 shows the main causes of slew violations, and how

these can be fixed. Consider a net having source gate A and

sink gate B. The capacitive load seen by gate A is the sum of the

interconnect capacitance of the net and the input capacitance of

gate B. Assume that a signal with slew s1 is applied at the input
of gate A. Due to the load that it has to drive, the slew s2 at
the output of gate A may be more than s1. Thus, one cause of
degradation is the source gate not being capable of driving the

load at its output. Next, even if the slew at the output of A,

s2, is within the specified limits, it could degrade as the signal
traverses the net to the sink. Thus, at the sink, the signal could

have an even larger slew of s3. This is the second contribution
to slew degradation.

A

A

A

B

B

B

s1

s1

s1

s2

s2

s2 s3

s3

s3

s4

(a) Slew degradation due to gate and interconnect

(b) Fixing slew violation by sizing the source

(c) Fixing slew violation by buffering

Fig. 2.: Causes of and fixes for slew violations

There are two main methods of fixing slew violations. First,

the source gate of the net can be sized up, so that the new gate

can drive the load present (as in Figure 2(b)). While this may

fix violations on the net in question, the obvious disadvantage

is that the problem has been moved to the input of the source

gate, where the input nets now have larger capacitances. This

may or may not create violations on the input nets.

Second, keeping the source at its original size, buffers can be

inserted on the net in question, as shown in Figure 2(c). These

isolate the load capacitance of the sink, and repower the signal

on the net, so that slews are within the specified limits. Unlike

resizing, this method does not affect the electrical state of any

other nets, but the area overhead can be much higher. Addition-

ally, the time required to determine where to best insert buffers,

is much greater than the time required to resize a gate.

C. Capacitance and Fanout Violations

In this paper, the effective capacitance is approximated by

the sum of the interconnect capacitance and sink capacitances.

The causes of capacitance violations are similar to those of slew

violations: sink and interconnect capacitance both contribute

to the existence of a violation. The fixes, too are similar, using

resizing and buffering. However, it is possible to have capac-

itance violations on a net that does not have slew violations,

and vice versa. Therefore, both capacitance and slew violations

have to be taken into consideration individually.

Capacitance violations are also related to fanout violations,

since large fanouts can lead to high loads. Fanout constraints

are artificial, but are imposed by designers as a guard band.

D. Unfixable violations

There are violations that cannot be fixed due to a number of

reasons, such as constraints and limits that are too aggressive

for the design, gates (such as registers) that cannot be resized,

buffer blockages, or poor floorplanning. For example, consider

the case of a primary input driving a sink, with a large blockage

present right at the primary input. The length of the net con-

necting the primary input to its sink will guarantee a slew or

capacitance violation. Even routing around the blockage may

not be feasible, leading to an unfixed violation.

E. Verifying Correctness with the Timer

The timing analyzer that is used, EinsTimer [15], has two

modes of operation, with respect to slew calculation and prop-

agation. In the accurate mode, when determining the output

slew of a gate, the actual input slew is used. However, at the
beginning of physical design, gates are at arbitrary sizes, long

wires are not yet buffered, and slew violations abound. In this

scenario, actual slew values at gate inputs are easily outside the

limits for which gate models have been characterized. Hence,

there is also a less accurate mode, where a default input slew
is used, in order to determine the output slew rate. When the

circuit is in an electrically poor state, this mode of operation

is preferred, in comparison to the accurate mode, where calcu-

lated values are quite possibly meaningless.

In the context of fast electrical correction, using the default

slew is also advantageous, since any change in the design (gate

resizing or buffer insertion) has a local effect on the timing

graph, and is easy to calculate. In contrast, in the accurate

6A-3

554

mode, a change in gate size, affecting the output slew value

has to be propagated in the output cone of logic, which can be

computationally expensive.

III. THE ITERATIVE APPROACH

The literature on techniques for electrical correction is

sparse, as most works focus on optimization for delay. How-

ever, one approach that implements an iterative flow is [16,17].

This is a combination of resizing gates and adding buffers to

nets, in order to fix violations. Integrating these optimizations

into a single pass is difficult, and hence multiple iterations over

the entire design are necessary, with each pass consisting of

either resizing or buffering.

The first step is gate sizing to fix any slew and capacitance

violations. This gate sizing is not timing driven, but instead

tries to match the correct gate size with the load being driven.

i.e., given the input slew, output load, and the required output

slew, it determines the best gate size. Since nets with violations

are considered in this step, the usual result is gates being sized

up. Larger gates have greater drive capabilities, and therefore

can drive larger loads. However, this results in an increased

capacitance at the inputs of the sized gates, and therefore can

introduce new violations at the inputs. There are possibly quite

a few violations that cannot be fixed using even the largest gate

sizes available; buffer insertion is used to fix these. In order

to conserve runtime, the most aggressive buffering algorithms

may not be used, and this (and other reasons) can lead to viola-

tions that are still unfixed. Additionally, when there are loops

in the circuit, fixing violations on one net can lead to creating

violations on nets that were previously thought fixed. To ad-

dress these remaining violations, another round of resizing and

buffering is used. Subsequent calls can be made more aggres-

sive than before, in the hope that the remaining violations can

be fixed. This process is iterated, till either all violations are

fixed, or the runtime becomes excessive.

The most important drawback of this approach is that sizing

and buffering used to fix violations are applied sequentially,

with no communication, or indeed, knowledge of each others’

capabilities. Thus, each pass of resizing or buffering tries to

fix the violations that it sees, and assumes that the the other

will be able to handle the violations that it cannot fix. Thus, if

resizing is applied to a net to fix a slew violation on a sink, it

may decide that buffering is the best solution, for a variety of

reasons. However, in the next pass, when the net is passed to

the buffer insertion routine, there may be conditions that pro-

hibit the insertion of buffers, such as blockages. Subsequent

passes of resizing and buffering are then needed with different

settings, to overcome this situation, and there is no guarantee

that any of these passes will fix the existing violation.

As will be shown in section Section V, this approach is un-

able to fix many violations. During gate sizing, it typically

only sizes gates that have violations, and therefore sizes them

up. Combined with buffer insertion, this can lead to circuits

that have up to 27% larger area than the initial versions. It is

this behavior that EVE is intended to rectify.

IV. ELECTRICAL VIOLATION ELIMINATOR

In this section, we present the framework developed for effi-

ciently fixing violations, called EVE. We first present the basic

framework, which carries out resizing and buffering on a net

by net basis. Analysis of unfixed violations using this frame-

work suggests numerous enhancements, which are presented

next. The basic framework is flexible, and allows for easy in-

tegration of these enhancements. Rather than multiple passes

over a design, alternating between resizing and buffering, this

framework integrates the selection of the two optimizations, al-

lowing for the use of the correct optimization in a single pass

over the design. Since only operations that are needed for fix-

ing violations are used, there is less overhead in terms of area

and runtime.

A. Algorithmic framework for the basic approach

Applying resizing and buffering multiple times to a circuit

can lead to poor results. Our approach in EVE is to selectively

apply these optimizations on a net-by-net basis. We select nets

in topological order, from outputs to inputs, and on each net,

carry out the following operations.

• If there are no violations on the net, then the source (driv-

ing) gate is sized down as much as possible, without in-
troducing new violations.

• If slew violations exist on the net, the source gate is sized

up as necessary, to fix the violations.

• If the previous step (resizing to fix violations) does not

succeed, the net is buffered.

The rationale of this approach is as follows. First, nets are

processed in output-to-input order, so that any side-effect of re-

sizing gates only impacts the input nets, which are yet to be

processed. Second, sizing gates down when possible has mul-

tiple benefits. Area is recovered and reducing the load on input

nets potentially removes violations that may exist, or reduces

their severity. The area salvaged in this step is better used for

improving delay on critical paths of the circuit. Finally, if re-

sizing cannot fix a violation, buffering is used to fix the net.

Since buffering is the last resort, this optimization can be as ag-

gressive as required, which is used to our advantage as shown

later. This order (resizing followed by buffering) is also ad-

vantageous from a runtime standpoint, since buffering a net is

computationally more expensive than simply sizing the source

gate.

Our approach to gate sizing is straightforward. Given an

input slew rate and output load, we iterate through all avail-

able sizes, and select the smallest gate size that can deliver the

required output slew. Buffering is performed using the slew-

based buffering approach proposed in [18], with a library of 1

buffer and 3 inverters for most designs. The algorithm selects

the minimum buffer solutions such that the slew constraints are

satisfied. The lack of granularity in the buffer library makes the

potential to resize the buffer gates possible. Of course, a more

fine-grained library can be used, but the extra runtime defeats

the purpose of fast electrical correction.

6A-3

555

B. Enhancements

The basic framework presented above is flexible, and lends

itself to multiple refinements, as follows.

Recursive treatment of nets The run time of the basic ap-
proach is dominated by the time spent in buffering, which

is quadratic in the size of the buffer library used. In order

to improve this runtime, a small buffer library is used for

buffering, and the basic approach is applied recursively to

the new nets that have been created. Since EVE addresses

violations on a net by net basis, it is relatively straightfor-

ward to determine which nets have been added, and cor-

rectly size the newly added buffers. In contrast, the itera-

tive approach would require multiple passes of the entire

circuit.

Rip up existing inverters In the initial stages of the design,
the circuit can have a number of inverters that have been

added in order to deal with signal polarity requirements.

These inverters are usually added at the logic synthesis

stage, without any knowledge of the physical layout of

the design. However, once the design has been placed,

it is possible that the positive and negative polarity sinks

are clustered together. A buffering approach that treats

the positive and negative sinks separately will treat this

problem as two different instances, with each net being

buffered separately. leading to a sub-optimal solution.

Ripping up inverters and re-implementing the entire tree

taking into account sink polarities can result in a solution

that uses fewer buffers and less wire length.

In the iterative flow, this would require an additional pass

over the circuit, so that inverters that can be ripped up are

correctly identified. In EVE, the first time a net with in-

verters is encountered, it is known that it can be ripped

up, and therefore can be seamlessly handled with other

enhancements.

Handling loops Most circuits have loops, with registers
breaking cycles. This does not create problems in most

cases, since registers can be sized only in a small range.

However, for a few circuits this can lead to the introduc-

tion of new violations. For example, consider the situation

in Figure 3. In the output to input traversal, assume that

the order in which gates are processed is the inverter, nand

and finally the latch. However, if the latch is sized up, the

load on the inverter, which has been previously processed

increases as well, and if the increase is large enough, can

lead to a new slew or capacitance violation. This is han-

dled within the EVE framework as follows. Each time a

gate is sized up, we check if the inputs of the gate were

previously processed. If so, we ensure that no new viola-

tions have been introduced, and fix those that have. Typi-

cally, the violation is small, and a small adjustment to the

gate size is all that is required. If necessary, the inputs

of the gate are resized as well. This is easily done within

the EVE framework, since it is known that new violations

are because of the resizing. In the iterative flow, this is

difficult to keep track of. Multiple passes are not the an-

swer, since it is not known whether a violation is because

of loops, because the previous optimization(s) failed, be-

cause of blockages, or due to some other reason.

Fig. 3.: Logic Loop

Blockage avoidance Designs can have areas that are off limits
to buffers. In this case, a regular buffering approach will

fail, due to lack of insertion points for buffers. Existing

approaches for blockage avoidance [19, 20] and dealing

with difficult instances have higher run times. In the EVE

framework, when processing a net that has been visited

for the first time, the only reason the basic buffer inser-

tion routine is unsuccessful is due to blockages. Blockage

avoidance can then be brought into play.

Select best of resizing and buffering The basic EVE ap-
proach can be modified as follows. If a violation can be

fixed by either resizing or by buffering, the lowest cost so-

lution is naturally preferred. This can be easily done in the

EVE framework, by resizing, measuring the area increase,

resetting to the original gate and then buffering. The best

solution can then be selected. Consider a woefully small

gate of size a driving a net. Sizing it up to a large size, say
f , could fix violations. Conversely, a single buffer may be
able to fix the violations as well. If the difference in area

between a and f is greater than the area of a buffer, the
buffer is preferred, else resizing the source is preferred. If

area is at a premium in a design, this mode can be used.

The trade off is in the runtime required for this analysis.

Minimum perturbation mode EVE can be used in different
stages of physical synthesis. In later portions of the flow,

a number of optimizations have been applied to improve

specific aspects of the design, which may re-introduce a

few electrical violations (especially after an incremental

placement). We can use EVE to only target these viola-

tions, not touching the rest of the design.

Using the timer As mentioned before, default slews are used
at the inputs of gates, in order to determine output slews.

A more accurate analysis of the design is possible if actual

slews are used. In this mode of EVE, the timer is used to

determine the actual slews. This mode is much slower,

since every change triggers a re-computation of slews and

arrival times in the vicinity of the change. This mode is

used when only a small number of violations remain.

In the context of the above enhancements, it is interesting

to note the advantages of the EVE framework. A few of the

enhancements are not unique to EVE, and are available to the

iterative approach as well, such as blockage avoidance. How-

ever, there is no easy way of determining when to use these

features. By its very structure, EVE can easily incorporate re-

cursive treatment of nets, and ripping up inverters and reim-

plementing buffer trees as and when needed. The iterative ap-
proach processes the entire circuit in each iteration, and would

6A-3

556

Initial State Iterative Flow EVE-RL
Circuit

Slew Cap Slew Cap Slew Cap

Ckt1 30021 2341 372 554 0 220

Ckt2 59789 3834 41 1 3 0

Ckt3 39526 1207 206 0 0 0

Ckt4 62086 3190 541 0 81 0

Ckt5 49954 2473 50 0 0 0

Ckt6 96168 4358 1171 1 17 0

Ckt7 172840 4237 1101 21 58 2

Ckt8 199861 15437 3977 47 7 0

Ckt9 210413 8345 11936 36 36 0

Ckt10 291700 17202 1967 74 96 2

Ckt11 323330 21971 336 4 10 1

Ckt12 543537 42551 1712 192 36 204

Ckt13 1004957 37657 9233 28 13 51

Total Violations Unfixed 32643 958 357 480

TABLE I: Comparing the Iterative Approach and EVE-RL

therefore needmuch more complicated bookkeeping to achieve

the same end. Finally, the designer can make the decision on

how to use EVE, keeping in mind his particular constraints,

such as number of violations, available area, available CPU

time, power budget, etc., and trade off the quality of solution

with run time.

V. RESULTS

We use a set of industrial designs in order to determine how

EVE performs in comparison with the iterative approach. We

apply electrical correction at the beginning of physical synthe-

sis, after the placement step, but before any gate sizing or buffer

insertion. Consequently, the design is in an electrically poor

state. This is reflected in the number of initial violations, pre-

sented in the ‘Slew’ and ‘Cap’ columns under ‘Initial State’ in

Table I.

A. Comparing with the iterative approach

In Table I, we first compare the improvement in the elec-

trical state of our benchmark suite obtained using the iterative

approach, versus using EVE-RL. This version of EVE includes

recursing on all nets created by adding buffers, and handling

loops, as described in Section IVB.

The iterative flow employs a number of passes of gate resiz-

ing and buffer insertion with a variety of different options, so as

to progressively fix more violations in successive passes. The

number of violations that remain after applying this approach

are presented in the columns under ‘Iterative Flow’. The last

two columns list the number of remaining violations after ap-

plying EVE-RL to the benchmark circuits.

The contrast between the iterative approach and EVE-RL is

immediately obvious from Table I. While it may seem that

there is a drastic reduction in violations using the iterative ap-

proach, there are still 32,643 remaining slew and 958 remain-

ing capacitance violations. After EVE-RL has processed the

benchmark circuits, only 357 slew (a reduction of nearly 100x)
and 480 capacitance (nearly half as previous) violations re-

main.

It is usually the case that improvements such as those seen

in Table I require a large overhead in either runtime or area.

However, recall that EVE only uses the optimizations neces-

sary to fix violations, and makes the correct decisions once.
This leads to a much more area-efficient solution for fixing vi-

olations, and at the same time requires less time, since multiple

passes over the circuit are avoided. The cost of fixing viola-

tions using each flow is presented in Table II. For both the

iterative approach and EVE-RL, the area increase (or, in some

cases, even decrease!) is as shown. The percentage change in

area with respect to the original circuit is presented in columns

4 and 7. Column 9 presents the difference in area between the

iterative approach and EVE-RL. As can be seen, EVE takes

9.05% less area on average, and fixes more violations than the

iterative approach.

On average, EVE-RL runs in 3.46% less time than the iter-

ative approach, which itself is quite fast. Both approaches can

process even the largest design, which has more than a mil-

lion nets. This is another benefit of using techniques specific

to electrical correction – sophisticated gate sizing approaches

can easily take orders of magnitude more runtime. While these

will perform admirably well for optimizing delay, their appli-

cation to electrical correction wastes runtime, while solving the

wrong problem. Logical effort is fast, but is not accurate when

dealing with fanouts, and once again, only analyzes delay and

ignores slew rates.

B. The basic EVE approach and enhancements

Table III breaks out the effects of the primary enhancements

of EVE-RL as described in Section IV. Results of using the

basic EVE approach are shown in columns under the heading

‘EVE’. The effect of recursively resizing new buffers added is

shown under the columns titled ‘EVE-R’. Note that this is dif-

ferent from applying a resizing pass on the entire circuit, since

the new buffers are a relatively minuscule subset of the circuit.

In addition, by sizing the buffers newly added, a lot of area can

be recovered. We also resize the source of the original net, and

due the buffer insertion, it is usually sized down. This has the

dual benefit of once again saving on area, and reducing the load

on its inputs. The runtime overhead of this recursion is negli-

gible, but the number of violations are significantly reduced.

Next, the result of dealing with loops can be seen under the

columns titled ‘EVE-RL’. The area and runtime increase, but

the number of violations decrease still further.

The usefulness of the other enhancements described in Sec-

tion IV largely depends on the circuit being corrected. For ex-

ample, in our test circuits, inverters constitute a small portion

of the design. Ripping up and reimplementing trees that have

inverters therefore results in relatively small area savings, but

a higher runtime overhead. However, in scenarios where there

are a larger number of inverters, this feature can be used. Sim-

ilarly, minimum perturbation mode, and using the timer to de-

termine the best solution are more appropriately used in later

stages of the design flow.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents the first work (to our knowledge) that

focuses on optimization for electrical correction. It describes

an integrated buffering and gate sizing framework called EVE

that significantly reduces the number of violations, as well as

achieving a reduction in the area required. This benefits the

power consumption of the design, as well as allowing slack op-

timizations greater freedom in improving the delay along criti-

6A-3

557

Initial Iterative Flow EVE-RL ∆ Area ∆ Time
Circuit

Nets Area (x103) Area Change Time Area Change Time (%) (%)

Ckt1 50,166 631.7 753.6 19.30 104.89 525.9 -16.75 113.87 30.21 -8.56

Ckt2 55,686 531.7 676.2 27.18 165.72 526.3 -1.02 125.00 22.17 24.57

Ckt3 61,087 989.4 1046.0 5.72 108.88 986.0 -0.34 81.47 5.74 25.17

Ckt4 67,043 894.2 1058.0 18.32 213.10 902.8 0.96 209.94 14.67 1.48

Ckt5 67,926 962.0 1008.0 4.78 75.77 979.1 1.78 53.83 2.87 28.96

Ckt6 192,657 15110.0 15270.0 1.06 296.74 15110.0 0.00 266.16 1.05 10.31

Ckt7 242,757 3454.0 3659.0 5.94 496.51 3391.0 -1.82 339.86 7.32 31.55

Ckt8 289,430 26330.0 26810.0 1.82 624.12 26420.0 0.34 655.24 1.45 -4.99

Ckt9 370,203 9671.0 10040.0 3.82 1155.96 9023.0 -6.70 1594.14 10.13 -37.91

Ckt10 383,221 22840.0 23880.0 4.55 882.88 22880.0 0.18 737.29 4.19 16.49

Ckt11 559,398 54580.0 55490.0 1.67 1217.29 54200.0 -0.70 1243.73 2.32 -2.17

Ckt12 984,886 34890.0 36740.0 5.30 2195.34 34030.0 -2.46 2245.27 7.38 -2.27

Ckt13 1,246,820 32710.0 34720.0 6.14 2807.39 31890.0 -2.51 3865.67 8.15 -37.70

Average Improvement 9.05 3.46

TABLE II: Iterative versus EVE-RL : Total Area and Runtime

EVE EVE-R EVE-RL
Circuit

Slew Cap Area Time Slew Cap Area Time Slew Cap Area Time

Ckt1 0 231 529.7 94.01 0 220 525.9 96.06 0 220 525.9 113.87

Ckt2 3 10 539.3 98.52 51 12 526.3 101.65 3 0 526.3 125.00

Ckt3 444 0 992.1 60.58 0 0 986.0 69.89 0 0 986.0 81.47

Ckt4 385 0 919.8 179.64 269 0 902.7 189.08 81 0 902.8 209.94

Ckt5 0 1 988.2 36.81 0 0 978.7 41.14 0 0 979.1 53.83

Ckt6 1431 0 15130.0 211.26 46 0 15110.0 250.57 17 0 15110.0 266.16

Ckt7 1473 12 3422.0 281.32 302 3 3391.0 309.20 58 2 3391.0 339.86

Ckt8 4781 28 26490.0 533.43 33 1 26420.0 615.16 7 0 26420.0 655.24

Ckt9 7469 31 9094.0 1313.12 733 0 9023.0 1369.87 36 0 9023.0 1594.14

Ckt10 2471 24 23020.0 552.51 146 2 22880.0 700.73 96 2 2288.0 737.29

Ckt11 1502 15 55430.0 873.57 230 1 54200.0 934.86 10 1 54200.0 1243.73

Ckt12 2673 229 34240.0 1688.42 36 204 34030.0 1787.75 36 204 3403.0 2245.27

Ckt13 12851 42 32220.0 2504.23 37 52 31890.0 2833.82 13 51 31890.0 3865.67

Total 35483 643 1883 495 357 480

TABLE III: Comparing EVE Basic, EVE-R and EVE-RL

cal paths. To a large extent, the benefits of EVE are due to its

inherent simplicity. More sophisticated techniques for electri-

cal correction may exist, but they are likely to be more expen-

sive.

EVE can be used in different stages of the design flow. Dif-

ferent optimizations may change gate sizes, add buffers, or re-

synthesize parts of the circuit. After re-placing the design, new

violationsmay be introduced. An approach such as EVE allows

for a quick pass that fixes new violations without disturbing the

rest of the design.

One enhancement to EVE is based on the observation that

paths optimized for delay have sharp signal transition times.

Hence the following strategy can help improve critical paths

of the design. After an initial pass where the design has been

electrically corrected, a tighter slew limit is assigned to critical

regions. The next pass of EVE using these updated slew limits

still works on fixing violations, but since it uses the tighter slew

limits, the result is a reduced worst slack.

VII. REFERENCES

[1] G.-J. Nam et al. The ISPD2005 Placement Contest and Benchmark Suite.
In ACM ISPD, pages 216–220, April 2005.

[2] A. B. Kahng et al. APlace: A General Analytic Placement Framework.
In ACM ISPD, pages 233–235, April 2005.

[3] R. F. Sproull and I. E. Sutherland. Theory of Logical Effort: Designing

for Speed on the Back of an Envelope. In IEEE Adv. Research in VLSI,
pages 1–16, 1991.

[4] P. Rezvani et al. LEOPARD: A Logical Effort-based fanout OPtimizer
for ARea and Delay. In IEEE/ACM ICCAD, pages 516–519, November
1999.

[5] I. Sutherland et al. Logical Effort: Designing Fast CMOS Circuits. Mor-

gan Kaufmann, San Fransisco, CA, 1999.

[6] C.-P. Chen et al. Fast and Exact Simultaneous Gate and Wire Sizing by
Lagragian Relaxation. In IEEE/ACM ICCAD, pages 617–624, November
1998.

[7] L. P. P. P. van Ginneken. Buffer Placement in Distributed RC-tree Net-

works for Minimal Elmore Delay. In IEEE Int. Symp. on Circuits and
Systems, pages 865–868, May 1990.

[8] C. J. Alpert et al. Buffer Library Selection. In Proc. IEEE ICCD, pages
221–226, 2000.

[9] C. J. Alpert et al. A Practical Methodology for Early Buffer and Wire
Resource Allocation. In Proc. IEEE/ACM DAC, pages 189–194, 2001.

[10] W. Chen et al. Simultaneous Gate Sizing and Fanout Optimization. In
IEEE/ACM ICCAD, pages 374–378, November 2000.

[11] D. S. Kung. Timing Closure for Low-FO4 Microprocessor Design. In

Proc. IEEE/ACM DAC, pages 265–266, 2004.
[12] K. L. Shepard et al. Design Methodology for the High-Performance G4

S/390 Microprocessor. In Proc. IEEE ICCD, pages 232–240, 1997.
[13] C. J. Alpert et al. Minimum Buffered Routing with Bounded Capacitive

Load for Slew Rate and Reliability Control. IEEE Trans. on CAD of ICs
and Systems, 22(3):241–253, March 2003.

[14] M. Augarten. Evaluating ASIC Reuse. EEtimes, 2000.
[15] L. Stok et al. BooleDozer: Logic Synthesis for ASICs. IBM Journal of

R. & D., 40(4):407–430, 1996.
[16] L. Trevillyan et al. An Integrated Environment for Technology Closure

of Deep-Submicron IC Designs. IEEE Design & Test of Computers,
21(1):14–22, January 2004.

[17] P. J. Osler. Placement Driven Synthesis Case Studies on Two Sets of Two

Chips: Hierarchical and Flat. In ACM ISPD, pages 190–197, 2004.
[18] S. Hu et al. Fast Algorithms for Slew Constrained Minimum Cost Buffer-

ing. In Proc. IEEE/ACM DAC, pages 308–313, 2006.
[19] C. J. Alpert et al. Steiner Tree Optimization for Buffers, Blockages and

Bays. IEEE Trans. on CAD of ICs and Systems, 20(4):556–562, April
2001.

[20] C. J. Alpert et al. Buffered Steiner Trees for Difficult Instances. In ACM
ISPD, pages 4–9, 2001.

6A-3

558

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

