
Clock Skew Scheduling with Delay Padding for Prescribed Skew Domains∗

Chuan Lin Hai Zhou
EECS Department

Magma Design Automation Northwestern University
Santa Clara, CA 95054 Evanston, IL 60208
clin@magma-da.com haizhou@eecs.northwestern.edu

Abstract

Clock skew scheduling is a technique that intentionally in-
troduces skews to memory elements to improve the perfor-
mance of a sequential circuit. It was shown in [21] that
the full optimization potential of clock skew scheduling can
be reliably implemented using a few skew domains. In this
paper we present an optimal skew scheduling algorithm for
sequential circuits with flip-flops. Given a finite set of pre-
scribed skew domains, the algorithm finds a domain assign-
ment for each flip-flop such that the clock period is min-
imized with possible delay padding. Experimental results
validate the efficiency of our algorithm and show 17% im-
provement on average in clock period.

1 Introduction

In a sequential circuit, due to the differences of interconnect
delays in the clock distribution network, clock signals do
not arrive at all flip-flops at the same time. The consequent
differences in clock arrival times are also known as clock
skews. Since the setup and hold constraints of a sequential
circuit are complicated by clock skews, an approach that
has been followed by [12, 13, 25, 19, 20] is to deliberately
design the clock distribution network so as to ensure zero
clock skew.

Clock skew scheduling [10], on the other hand, views
clock skew as a manageable resource rather than a liability.
It intentionally introduces skews to flip-flops to improve the
circuit performance. The designated skews are then imple-
mented by specific layout of the clock distribution network.
However, in practice, a skew schedule with a large set of ar-
bitrary values cannot be realized in a reliable manner. This
is because the implementation of dedicated delays using ad-
ditional buffers and interconnects is highly susceptible to
intra-die variations of process parameters.

Instead of tuning clock skews of flip-flops, retiming [15]
physically relocates flip-flops to balance the delays without
changing the functionality of the circuit. It was observed
in [10] that retiming and clock skew scheduling are discrete
and continuous optimizations with the same effect. The
equivalence between retiming and skew has been used in
prior research [17, 16, 6, 22]. Although retiming is a pow-
erful sequential optimization technique, its practical usage
is limited due to the impact on the verification method-
ology, i.e., equivalence checking and functional simulation.
Furthermore, the use of retiming for maximum performance
may cause a steep increase in the number of flip-flops [9],

∗This work was done at Northwestern University and supported
by the NSF under CCR-0238484.

requiring a larger effort for clock distribution and resulting
in higher power consumption.

Recently, multi-domain clock skew scheduling was pro-
posed in [21]. Multiple clocking domains are routinely ap-
plied in designs to realize several clocking frequencies and
also to address specific timing requirements. For example, a
special clocking domain that delivers a phase-shifted clock
signal to the flip-flops close to the chip inputs and out-
puts is regularly used to achieve timing closure for ports
with extreme constraints on their arrival and required times.
The motivation behind the multi-domain skew scheduling is
based on the fact that large phase shifts between clocking
domains can be implemented reliably by using dedicated,
possibly expensive circuit components such as “structured
clock buffers” [5], adjustments to the PLL circuitry, or sim-
ply by deriving the set of phase-shifted domains from a
higher frequency clock using different tapping points of a
shift flip-flop. In [21], Ravindran et al. showed that a clock
skew schedule using a few domains combined with a small
within-domain latency can reliably implement the full opti-
mization potential of clock skew scheduling. They proposed
an algorithm based on a branch-and-bound search to assign
flip-flops to clock domains and used a modified Burns’s al-
gorithm [4] to compute the skews.

For a user-given number of domains, the algorithm in [21]
computed the optimal skew for each domain. However, the
user had no control on the distribution of the domains. Fur-
thermore, the algorithm did not consider delay padding [23],
which is a technique that fixes hold violations by inserting
extra delays on short paths without increasing the delay on
any long path. In other words, the clock period obtained by
the algorithm in [21] may be sub-optimal if delay padding
is allowed, as demonstrated in [14, 8, 24].

In this paper we formulate the clock skew scheduling
problem on a user-given finite set of prescribed clock do-
mains. For example, one can require the skews of flip-flops
to be either zero or half the clock period. One can also
choose clock domains based on the results of the algorithm
in [21]. We propose a polynomial-time algorithm that finds
an optimal domain assignment for each flip-flop such that
the clock period is minimized with possible delay padding.
The obtained skew schedule respects the user requirement.
We then consider how to insert extra paddings such that
both setup and hold constraints are satisfied under the min-
imal clock period. We show that the existence of such a
padding solution is guaranteed, and present an approach to
find a padding by network flow technique. Experimental
results confirm the efficiency of our algorithm.

The rest of the paper is organized as follows. Section 2
presents a motivation example and the problem formulation.
Notations and constraints are explained in Section 3. Our
algorithm is elaborated in Section 4. Experimental results
are presented in Section 5, followed by conclusions in Sec-

1-4244-0630-7/07/$20.00 ©2007 IEEE.

6A-1

541

tion 6.

2 Motivation and problem formulation

A
i j

[4,7]

[2,3]

Figure 1: Effect of clock skew scheduling and delay padding
on circuit performance.

We use Figure 1 as an example to illustrate the effect of
clock skew scheduling and delay padding on circuit perfor-
mance. In this example, we have two flip-flops i and j, both
triggered at the falling edge of a clock. The ellipses between
the flip-flops represent the combinational blocks with their
minimum and maximum delays. Suppose that the setup and
hold times are all zero, and that the skew to each flip-flop
can be either zero or half the period. In order for the circuit
to operate under a given period T , the following conditions
must be satisfied, where the first two are from the setup
constraint and the other two are from the hold constraint.

skew(i) + 3 − T ≤ skew(j)

skew(j) + 7 − T ≤ skew(i)

skew(i) + 2 ≥ skew(j)

skew(j) + 4 ≥ skew(i)

Depending on the skew assignment, we have three cases.
Firstly, skew(i) = skew(j), which leads to T ≥ 7. Secondly,
skew(i) = T/2 and skew(j) = 0, we have 6 ≤ T ≤ 8.
For skew(i) = 0 and skew(j) = T/2, the setup constraint
requires T ≥ 14 while the hold constraint needs T ≤ 4. In
other words, there is no such a T satisfying both constraints.
However, if we insert an extra delay of 5 at point A, then the
minimum and maximum delays from i to j become 7 and 8
respectively, which results in a feasible period of T = 14.

The above example reveals two things. Firstly, assigning
skews to flip-flops may help to reduce the period of a circuit.
On the other hand, cautions should be taken when choosing
the skews since the circuit may end up having no feasible
period at all. Secondly, delay padding can be used to remedy
a skew assignment so that it permits feasible periods after
the insertion of extra delays. In some cases, delay padding is
required to reach a smaller period. For the above example,
if the minimum delay from j to i is not 4 but 2, then a
delay of 1 needs to be inserted on the minimum delay path
to obtain the optimal period 6. This motivates us to solve
a problem formulated as follows.

Problem 1 (Optimal Skew Scheduling)
Given a sequential circuit and a finite set of prescribed skew
domains, find a domain assignment for each flip-flop such
that the circuit satisfies both setup and hold constraints with
possible delay padding under the minimal clock period.

For simplicity, we assume that flip-flops are triggered at
the same clock edge of a single phase clock. However, the
proposed approach can be extended to multiple clock phases.

3 Notations and constraints

Suppose that we are given N skew domains. Without loss
of generality, we assume that the skew values of the N do-
mains are s0T, s1T, ..., sN−1T with respect to the period T ,

where s0, s1, ..., sN−1 are constants between 0 and 1 in the
increasing order, i.e., 0 = s0 < s1 < ... < sN−1 < 1. In
particular, the domains are evenly distributed if sn = n

N
T ,

for all 0 ≤ n ≤ N − 1.
A directed graph G = (V, E) is used to represent a se-

quential circuit, where V is the set of gates and flip-flops,
and E is the set of interconnects. Each gate v ∈ V has
a maximum delay D(v) and a minimum delay d(v). Each
interconnect e ∈ E has a delay w(e). Delay padding in-
creases w(e) by inserting extra delays on e. For any com-
binational path p = u � v, we use D(p) to represent the
maximum delay along p without padding, which is the sum
of the constituent interconnect delays and maximum gate
delays, except for D(u). The minimum delay along p with-
out padding is denoted by d(p). With extra paddings on p,
the maximum and minimum delays become ∆(p) and δ(p)
respectively. Note that

∆(p) − δ(p) = D(p) − d(p).

We also construct a timing graph Gt = (Vt, Et) of G as
follows. Let Vt ⊂ V be the set of flip-flops in the circuit.
An edge (i, j) is introduced in Et if there is a combinational
path p ∈ G from flip-flop i to flip-flop j. We define

D(i, j)
�
= max

p∈G:i�j
D(p), ∆(i, j)

�
= max

p∈G:i�j
∆(p)

d(i, j)
�
= min

p∈G:i�j
d(p), δ(i, j)

�
= min

p∈G:i�j
δ(p)

In other words, D(i, j) and d(i, j) are the maximum and
minimum combinational delays from i to j without padding,
respectively. They become ∆(i, j) and δ(i, j) with padding.
We say that p is a long path from i to j if ∆(p) = ∆(i, j); p
is a short path if δ(p) = δ(i, j). For all i ∈ Vt, we use X(i)
and H(i) to denote the setup and hold times at flip-flop i
respectively. A label l : Vt → {0, ..., N − 1} is introduced to
represent the index of the domain that a flip-flop is assigned
to.

Using these notations, the setup and hold constraints
under a given period T can be formulated as follows.

0 ≤ l(i) ≤ N − 1, ∀i ∈ Vt (1)

sl(i)T + ∆(i, j) − sl(j)T ≤ T − X(j), ∀(i, j) ∈ Et (2)

sl(i)T + δ(i, j) − sl(j)T ≥ H(j), ∀(i, j) ∈ Et (3)

A partial order (≤) can be defined between two labels l
and l′ as follows.

l ≤ l′
�
= l(i) ≤ l′(i), ∀i ∈ Vt

We say that T is a feasible period if and only if we can
find an l and a delay padding such that (1)-(3) are satisfied
under T . The optimal skew scheduling problem asks for the
minimal feasible T , with possible padding insertion.

4 Algorithm

In order to find the minimum feasible T , we first compute a
lower bound Tlb for it in Section 4.1. Then we observe that
for any l satisfying (1), since sn < 1, ∀n ∈ [0, N−1], we have
1 + sl(j) − sl(i) > 0, ∀(i, j) ∈ Et. Thus, the setup constraint

(2) can be written as T ≥
(
∆(i, j)+X(j)

)
/
(
1+sl(j)−sl(i)

)
.

Together with ∆(i, j) ≥ D(i, j), it characterizes a minimal
period TS under setup constraint only. We propose an algo-
rithm in Section 4.2 to compute T ∗ = max(Tlb, TS) and the
corresponding l∗. We then show in Section 4.3 that there
always exists a padding solution such that both setup and
hold constraints are satisfied under T ∗ and l∗. Therefore,

6A-1

542

T ∗ and l∗ are the solution to the optimal skew scheduling
problem.

4.1 Lower bound for feasible period

Consider any combinational path p from i ∈ Vt to j ∈ Vt.
Since ∆(i, j) ≥ ∆(p) and δ(i, j) ≤ δ(p), from the definition
of ∆(i, j) and δ(i, j), (2)-(3) imply that

sl(i)T + ∆(p) − sl(j)T ≤ T − X(j)

sl(i)T + δ(p) − sl(j)T ≥ H(j)

Subtracting the second one from the first yields ∆(p) −
δ(p) ≤ T − X(j) − H(j). Since ∆(p) − δ(p) = D(p) − d(p),
we have a lower bound for T in the next lemma.

Lemma 1 A feasible clock period T must satisfy

T ≥ Tlb
�
= max

(i,j)∈Et,p∈E:i�j

(
D(p) − d(p) + X(j) + H(j)

)

To compute Tlb, let θ(v) be the difference between the
maximum and the minimum delays at gate v, defined as

θ(v)
�
= D(v) − d(v), ∀v ∈ V − Vt (4)

For flip-flop j, we define

θ(j)
�
= X(j) + H(j), ∀j ∈ Vt

Let Θ(v) be the length of the longest combinational path
terminating at v with respect to θ, i.e.,

Θ(v)
�
= max

combinational p∈E:�v
θ(p), ∀v ∈ V (5)

Then, finding Tlb is equivalent to computing the maximum
Θ(j), ∀j ∈ Vt, which can be done by longest path computa-
tion in O(|E| + |V | log |V |) time [7].

4.2 Minimum period under setup constraint

We use TS to denote the minimal period under which the
setup constraint is satisfied without padding, i.e.,

0 ≤ l(i) ≤ N − 1, ∀i ∈ Vt (1)

sl(i)T + D(i, j) − sl(j)T ≤ T − X(j), ∀(i, j) ∈ Et (6)

Let T ∗ = max(Tlb, TS). We use l∗ to denote a domain
assignment satisfying (1) and (6) under T ∗. For example,
the corresponding domain assignment under TS is such an
l∗.

To find an l∗, we start with l(i) = 0, ∀i ∈ V , and ob-

tain T = max(i,j)∈Et

D(i,j)+X(j)
1+sl(j)−sl(i)

since 1 + sl(j) − sl(i) > 0,

∀(i, j) ∈ Et. If T ≤ Tlb, then we have T ∗ = Tlb, and thus
the current l is an l∗. Otherwise, let (x, y) ∈ Et be the edge

that determines T , i.e., T = D(x,y)+X(y)
1+sl(y)−sl(x)

. Suppose T > T ∗,

it follows that D(x, y)+X(y) >
(
1+sl(y)−sl(x)

)
T ∗. On the

other hand, T ∗ and l∗ should satisfy the setup constraint on
(x, y), i.e.,

(
1 + sl∗(y) − sl∗(x)

)
T ∗ ≥ D(x, y) + X(y). As a

result, we have

sl∗(y) − sl∗(x) > sl(y) − sl(x) (7)

We can move l closer to l∗ by increasing l(y). The amount
of increase should only be 1 since we do not want to over-
adjust l. This process is iterated until the optimality of T
is certified. We present the pseudocode in Figure 2.

MinPeriod(Gt, T ∗, l∗)

T ∗, l ← ∞, 0;

While

(
T ∗ > Tlb ∧

(
∀i ∈ Vt : l(i) < N

))
do

Extract (x, y) from Et with max
D(x,y)+X(y)
1+sl(y)−sl(x)

;

T ← D(x,y)+X(y)
1+sl(y)−sl(x)

;

If (T < T ∗) then
T ∗, l∗ ← max(T, Tlb), l;

l(y) ← l(y) + 1;

Figure 2: Pseudocode of minimum period computation.

The next lemma states an invariant that is kept through-
out “MinPeriod”.

Lemma 2 l ≤ l∗ is kept during the execution of “MinPe-
riod” in Figure 2 before we reach an l∗.

Proof: First of all, l ≤ l∗ before we enter the while loop
since we initialize l(i) = 0, ∀i ∈ Vt. What remains is to
show that l ≤ l∗ is preserved after l(y) is increased by 1 for
some y ∈ Vt until T ∗ is reached.

Assume that T > T ∗, thus (7) is true. Since l(x) ≤
l∗(x) and l(y) ≤ l∗(y) due to l ≤ l∗, we have l(y) < l∗(y),
otherwise l(y) = l∗(y), which leads to l(x) > l∗(x), which is
a contradiction. Therefore, l ≤ l∗ is kept after the increase
of l(y). The lemma is true.

The correctness and complexity of “MinPeriod” is given
in the following theorem.

Theorem 1 The procedure “MinPeriod” in Figure 2 will
terminate in O(N |Vt|Bt log |Et|) time, where Bt is the max-
imum incoming and outgoing degrees of the vertices in Vt.
Upon termination, it gives T ∗ = max(Tlb, TS), and an l∗

satisfying (1) and (6) under T ∗.

Proof: The outer while loop cannot be executed more
than (N − 1)|Vt| times since each traversal results in an
increase in l(y) for some y ∈ Vt. The complexity of extract-

ing the edge (x, y) in Et with the maximum D(x,y)+X(y)
1+sl(y)−sl(x)

is O(log |Et|) if we choose Fibonacci heap [7]. After l(y) is

increased by 1, we need to adjust the values of D(i,y)+X(y)
1+sl(y)−sl(i)

for all incoming edges (i, y) ∈ Et to y, and the values of
D(y,j)+X(j)
1+sl(j)−sl(y)

for all outgoing edges (y, j) ∈ Et from y, which

takes O(Bt log |Et|) time. Therefore, the overall complexity
is O(N |Vt|Bt log |Et|).

When it terminates, we have either T ∗ = Tlb or l(y) =
N > l∗(y) for some y ∈ Vt. In the first case, we have
TS ≤ Tlb, thus T ∗ = max(Tlb, TS) is true. By Lemma 2, the
second case implies that we have already reached an l∗ and
went beyond it. Therefore, the obtained T ∗ is TS . Since
T ∗ > Tlb, T ∗ = max(Tlb, TS) is also true. In both cases, the
obtained l∗ satisfies (1) and (6) under T ∗.

Since padding increases D(i, j), we have ∆(i, j) ≥ D(i, j),
∀(i, j) ∈ Et. Therefore, T ∗ is a lower bound for any feasible
period with padding.

4.3 Padding for hold constraint

Given T ∗ and l∗ from “MinPeriod”, we will check the hold
constraint (3) without padding. If we have a hold violation
at some j ∈ Vt, it means that there is a short path p from
i ∈ Vt to j such that sl∗(i)T

∗ + d(p) − sl∗(j)T
∗ < H(j).

Intuitively, if p has an interconnect that does not lie on

6A-1

543

any long path, then we can insert extra delays on it to fix
the hold violation. The following lemma [23] provides the
condition under which the existence of such an interconnect
is guaranteed.

Lemma 3 Let p be a short path to j ∈ Vt, where a hold
violation occurs under T ∗ and l∗. There exists an edge e on
p such that e does not lie on any long path if D(p)− d(p) ≤
T ∗ − X(j) − H(j).

The next result is a corollary of the above lemma.

Corollary 3.1 There exists a delay padding solution under
T ∗ and l∗ satisfying both setup and hold constraints.

Proof: Since T ∗ ≥ Tlb, the definition of Tlb in Lemma 1
implies that D(p) − d(p) ≤ T ∗ − X(j) − H(j) for all path
p to j, ∀j ∈ Vt. Consequently, if a hold violation occurs at
j under T ∗ and l∗, Lemma 3 ensures that we can succes-
sively identify interconnects for padding insertion without
affecting any long path until the hold violation is fixed.

Based on Corollary 3.1 and the fact that T ∗ is a lower
bound for any feasible period with padding, we know that
T ∗ and l∗ are the solution to the optimal skew scheduling
problem.

To find a padding solution, we can treat flip-flop outputs
as primary inputs (PIs) and flip-flop inputs as primary out-
puts (POs), and find a padding for each individual combina-
tional component. To ease the presentation, we will focus on
padding for a combinational component Gc = (Vc, Ec) ⊆ G
under T ∗ and l∗.

For each gate v ∈ Gc, we use A(v) and a(v) to denote
the latest and the earliest arrival times at the output of v,
which are the longest and the shortest combinational delays
from PIs to v, respectively. Let p(u, v) be the padding on
(u, v) ∈ Gc. The problem (denoted as MP) of finding a
minimum delay padding under T ∗ and l∗ can be formulated
as follows [23].

MP : Minimize
∑

(u,v)∈Gc

p(u, v)

a(i) = sl∗(i)T
∗, ∀i ∈ PI (8)

a(v) ≤ a(u) + d(v) + w(u, v) + p(u, v),

∀(u, v) ∈ Gc (9)

a(j) ≥ H(j) + sl∗(j)T
∗, ∀j ∈ PO (10)

A(i) = sl∗(i)T
∗, ∀i ∈ PI (11)

A(v) ≥ A(u) + D(v) + w(u, v) + p(u, v),

∀(u, v) ∈ Gc (12)

A(j) ≤ T ∗ − X(j) + sl∗(j)T
∗, ∀j ∈ PO (13)

p(u, v) ≥ 0, ∀(u, v) ∈ Gc (14)

The conditions (8)-(9) characterize the earliest arrival
times at gate outputs. (10) is the hold constraint at POs.
The conditions (11)-(12) characterize the latest arrival times.
(13) is the setup constraint. Inequality (14) enforces non-
negative padding.

We say that p is a feasible padding if and only if there ex-
ist a and A such that (8)-(14) are satisfied under T ∗ and l∗.
The feasible region of MP contains all the feasible paddings.
Since both the objective and the constraints are linear, MP
can be solved by any linear programming solver.

We next describe an approach to find a “reasonably good”
padding using network flow technique, which is more effi-
cient than linear programming.

First of all, we observe that subtracting (9) from (12)
yields

A(v) − a(v) ≥ A(u) − a(u) + θ(v), ∀(u, v) ∈ Gc

where θ(v) = D(v)−d(v) is defined in (4). Therefore, A(v)−
a(v) ≥ Θ(v) by the definition of Θ(v) in (5). Given a feasible
padding, we can insert extra delays on each edge such that
(12) becomes an equality. When (12) is an equality, we have

A(v) − a(v) = max
(u,v)∈Gc

A(u) − a(u) + θ(v), ∀v ∈ Gc

As a result, there exists a combinational path p to v such
that A(v)−a(v) = θ(p) ≤ Θ(v). Together with A(v)−a(v) ≥
Θ(v), we have A(v)−a(v) = Θ(v), ∀v ∈ Gc. Since Θ(v) can
be obtained by longest path computation with respect to θ,
we can replace A(v) by Θ(v) + a(v) in the conditions (11)-
(13) to simplify the problem.

Lemma 4 The minimum padding problem MP with (12)
being an equality is equivalent to the following problem (EMP):

EMP : Minimize
∑

(u,v)∈Gc

p(u, v)

a(i) = sl∗(i)T
∗, ∀i ∈ PI, (8)

a(v) + Θ(v) = a(u) + Θ(u) + D(v) + w(u, v) + p(u, v),

∀(u, v) ∈ Gc (15)

a(j) ≥ H(j) + sl∗(j)T
∗, ∀j ∈ PO (10)

a(j) + Θ(j) ≤ T ∗ − X(j) + sl∗(j)T
∗, ∀j ∈ PO (16)

p(u, v) ≥ 0, ∀(u, v) ∈ Gc (14)

Proof: Since both MP and EMP have the same objective,
what remains is to show that they have the same feasible
region when (12) is an equality.

Suppose that p is a feasible padding to EMP . Since
Θ(v) ≥ Θ(u) + θ(v) by (5), we know that (15) implies (9).
For i ∈ PI, since Θ(i) = 0 and (8), we have A(i) = Θ(i) +
a(i) = sl∗(i)T

∗, which is (11). Given that A(v) = Θ(v) +
a(v), (15) is an equality form of (12). (16) is the same as
(13) since A(j) = Θ(j)+a(j). Therefore, p is also a feasible
padding to MP when (12) is an equality. Similarly, if p is
feasible to MP with (12) being an equality, p is also feasible
to EMP , which concludes our proof.

Note that EMP is the dual of a min-cost flow prob-
lem [3]. Let p̄ be an optimal solution to EMP . Since p̄
satisfies the setup constraint, any p with p(u, v) ≤ p̄(u, v),
∀(u, v) ∈ Gc, should also satisfy the setup constraint. There-
fore, we use p̄ as an upper bound for p and solve the mini-
mum padding problem with the hold constraint only. This
is formulated as the following problem (BMP).

BMP : Minimize
∑

(u,v)∈Gc

p(u, v)

a(i) = sl∗(i)T
∗, ∀i ∈ PI (8)

a(v) ≤ a(u) + d(v) + w(u, v) + p(u, v),

∀(u, v) ∈ Gc (9)

a(j) ≥ H(j) + sl∗(j)T
∗, ∀j ∈ PO (10)

0 ≤ p(u, v) ≤ p̄(u, v), ∀(u, v) ∈ Gc (17)

Note that BMP is the dual of a convex-cost flow prob-
lem [2]. Both EMP and BMP can be solved in polynomial

time bounded by O
(
|Vc||Ec| log(|Vc|2/|Ec|) log(|Vc|T ∗)

)
. The

next theorem provides the condition under which an optimal
solution to BMP is also an optimal solution to MP .

Theorem 2 If MP has an optimal solution p∗ such that
p∗(u, v) ≤ p̄(u, v) for all (u, v) ∈ Gc, then an optimal solu-
tion to BMP is one such p∗.

Proof: Since p∗ ≤ p̄, p∗ is feasible to BMP . Given that
the feasible region of MP contains the feasible region of

6A-1

544

BMP , p∗ is an optimal solution to BMP . Therefore, any
optimal solution to BMP has the same amount of padding
as p∗, and hence is an optimal solution to MP .

When the condition in Theorem 2 does not hold, solving
BMP only gives a feasible padding. However, our experi-
ments show that the feasible padding we obtained is close
to the minimum padding.

Our algorithm for optimal skew scheduling is presented
in Figure 3. It first applies “MinPeriod” to compute T ∗

and l∗. Then, it finds a padding solution for each combina-
tional component under T ∗ and l∗. The overall complexity
is O

(
N |Vt|Bt log |Et| + |V ||E| log(|V |2/|E|) log(|V |T ∗)

)
by

Theorem 1 and the complexity for solving EMP and BMP .

Input : A circuit G = (V, E) and N skew domains.
Output: Optimal period T ∗ under domain

assignment l∗ and delay padding p.

Construct timing graph Gt from G;
MinPeriod(Gt, T ∗, l∗);
For each combinational component Gc ⊆ G do

Find padding p by solving BMP for Gc;
Return T ∗, l∗ and p;

Figure 3: Pseudocode of optimal skew scheduling algorithm.

5 Experimental results

We implemented the algorithm in a PC with a 2.4 GHz Xeon
CPU, 512 KB 2nd level cache memory and 1GB RAM. We
used the linear cost-scaling algorithm by Goldberg [11] to
solve EMP . We also adapted it to convex cost case to solve
BMP . The detailed procedure of adaption is shown in [2].
Our test files were generated from the ISCAS-89 benchmark
suite using ASTRA [22]. Each gate was assigned a max-
imum delay equal to the number of fanouts or an upper
bound 100, whichever is smaller. The minimum delay was
equal to the maximum delay. To ease the presentation, in-
terconnect delays were set to zero. Note that we did not
ignore interconnect delays. They were handled uniformly in
our algorithms. The circuits used are summarized in Ta-
ble 1.

Table 1: Sequential circuits from ISCAS-89
Circuit |V | |E| |Vt| |Et|
s838 618 959 172 3160
s1196 560 1053 31 94
s1423 896 1407 239 11320
s5378 3080 4561 301 3068
s9234 6198 8593 601 11035
s9234.1 6176 8588 579 10843
s13207.1 9337 12702 1386 9803
s15850 11449 15408 1677 63184
s15850.1 11348 15370 1576 52504
s35932 21880 34403 5815 32049
s38417 25058 35012 2879 59054
s38584 26651 40431 7398 101700

Without loss of generality, we used four evenly distributed
skew domains, i.e., sn = nT/4, 0 ≤ n ≤ 3. Setup and hold
times of each flip-flop were set to 2. Thus, Tlb = 4. The
results are reported in Table 2. Column “|sn|”, 0 ≤ n ≤ 3,
lists the number of flip-flops that are assigned to domain
sn in the obtained optimal skew schedule. The sum of the

setup time and the maximum combinational delay of the
original circuit is listed in Column “Tub”. It is an upper
bound for T ∗. The computed minimal period is listed in
column “T ∗”. The running time of “MinPeriod” for finding
T ∗ is reported in column “t(sec)” in seconds. The improve-
ment ratio (Tub−T ∗)/Tub for each circuit is listed in column
“impr%”. We obtain the arithmetic (geometric) mean of all
the ratios in row “arith” (“geo”). Once T ∗ and l∗ are ob-
tained, we solve EMP and BMP to get a padding solution
under T ∗ and l∗. We compare the solution with the mini-
mum padding computed by MOSEK solver [1]. The amount
of padding and running time are listed in column “padding”
and “time(sec)” respectively.

We can see from Table 2 that, except for “s5378”, all
circuits have smaller periods after skew scheduling with pos-
sible padding. The improvement could be significant, e.g.,
42.9% in “s15850”. The average improvement is 16.9%. In
addition, “MinPeriod” is efficient. It takes only 0.59 second
for the largest circuit “s38584”. Although the padding so-
lution to BMP is about 1.5X the minimum padding, the
actual area overhead will be reasonably small since the de-
lay padding is amortized over the whole circuit. For running
time comparison, solving BMP by network flow technique
is much more efficient than solving MP by MOSEK. The
average speed-up is more than one order of magnitude.

To see how skew scheduling helps to improve a retiming
solution, we used the algorithm in [18] to compute a mini-
mum period retiming under the setup and hold constraints,
and then applied our algorithm on the retimed circuit. The
results are reported in Table 3. We use “s838′” to denote
the optimal retiming of “s838”, and so on for other opti-
mal retimings. Column “[18]” lists the minimal period com-
puted by the retiming algorithm in [18], where we use “NO”
to indicate that there is no feasible retiming. For circuits
without feasible retiming, we obtained their min-period re-
timings under setup constraint only. We highlight the cases
where the periods are further improved by our skew schedul-
ing algorithm. Comparing Table 3 with Table 2, we observe
the following results.

Firstly, half of the circuits have their minimal periods
further reduced after skew scheduling with possible padding
insertion. The improvement is 7.3% on average and up to
27.8%. This is significant considering that our algorithm
is applied after a minimum period retiming. Two circuits
“s13207.1” and “s38584” do not even have a feasible retim-
ing due to the discrete nature of retiming. It happens when
there exist reconvergent paths where the retiming require-
ments from different paths contradict each other. However,
by skew scheduling and delay padding, we are able to find
the minimal periods for them.

Secondly, it appears that the optimal skew schedule for
the retimed circuit uses less number of domains. The num-
ber of flip-flops that are assigned to domains other than s0 is
also reduced. In other words, applying skew scheduling af-
ter retiming improves the implementability of the obtained
optimal skew schedule.

Thirdly, in all test cases, except for “s838”, applying
skew scheduling on the retimed circuit results in less amount
of delay padding than the original circuit. In addition, the
solution to BMP is closer to (about 1.1X) the minimum
padding of the retimed circuit.

6 Conclusion

We present a polynomial time algorithm that finds an op-
timal skew schedule over a finite set of prescribed skew do-
mains such that the period is minimized with possible delay
padding. We show that the existence of a padding solution
under the minimal period is guaranteed and propose an ap-
proach to find a padding solution by network flow technique.
Experimental results validate the efficiency of our algorithm.

6A-1

545

Table 2: Optimal skew schedule with delay padding
Circuit |s0| |s1| |s2| |s3| Tub T ∗ impr% t(sec) padding time(sec)

MOSEK ours MOSEK ours
s838 94 28 43 7 96.0 65.6 31.6% 0.01 56.8 56.8 0.20 0.01
s1196 30 1 0 0 102.0 100.0 2.0% 0.00 25.0 87.0 0.45 0.01
s1423 150 70 19 0 334.0 256.0 23.4% 0.07 966.0 1425.4 0.49 0.03
s5378 301 0 0 0 94.0 94.0 0.0% 0.01 0.0 0.0 2.65 0.09
s9234 597 4 0 0 180.0 164.0 8.9% 0.04 38.0 75.0 5.57 0.37
s9234.1 575 4 0 0 180.0 164.0 8.9% 0.05 38.0 75.0 5.72 0.43
s13207.1 1381 5 0 0 288.0 272.0 5.6% 0.02 546.0 562.0 9.25 0.88
s15850 1102 291 158 126 374.0 213.7 42.9% 0.29 12441.4 14305.6 11.34 1.28
s15850.1 1362 210 4 0 374.0 292.0 21.9% 0.28 1862.0 2829.0 13.63 1.49
s35932 4951 864 0 0 140.0 126.0 10.0% 0.16 15840.0 22896.0 13.21 2.83
s38417 1945 430 230 274 222.0 128.0 42.3% 0.28 6612.0 8224.0 38.55 3.44
s38584 6042 1355 1 0 308.0 290.0 5.8% 0.59 22932.5 23920.0 19.19 5.14
arith 16.9% 1 1.53X 15.6X 1
geo 18.4% 1 1.42X 12.5X 1

Table 3: Effect of retiming on skew scheduling
Circuit |s0| |s1| |s2| |s3| [18] T ∗ impr% t(sec) padding time(sec)

MOSEK ours MOSEK ours
s838′ 54 38 40 34 82.0 59.2 27.8% 0.01 147.6 158.4 0.22 0.01
s1196′ 35 0 0 0 100.0 100.0 0.0% 0.00 0.0 0.0 0.46 0.02
s1423′ 239 17 0 0 282.0 256.0 9.2% 0.05 514.0 999.7 0.46 0.03
s5378′ 301 0 0 0 94.0 94.0 0.0% 0.01 0.0 0.0 2.63 0.09
s9234′ 603 0 0 0 164.0 164.0 0.0% 0.05 0.0 0.0 6.13 0.36
s9234.1′ 581 0 0 0 164.0 164.0 0.0% 0.05 0.0 0.0 6.71 0.43
s13207.1′ 1126 5 0 0 NO 272.0 n/a 0.02 36.0 52.0 9.17 0.79
s15850′ 928 398 201 4 212.0 156.0 26.4% 0.10 9479.0 10783.8 9.80 1.40
s15850.1′ 1515 0 0 0 292.0 292.0 0.0% 0.17 0.0 0.0 10.77 1.20
s35932′ 4321 864 0 0 140.0 126.0 10.0% 0.14 14752.0 21808.0 13.83 2.69
s38417′ 4688 0 0 0 122.0 122.0 0.0% 0.03 0.0 0.0 27.97 3.95
s38584′ 4159 1355 1 0 NO 290.0 n/a 0.66 18284.0 19265.7 18.28 4.32
arith 7.3% 1 1.19X 13.9X 1
geo 8.0% 1 1.16X 11.7X 1

References

[1] The mosek optimization tools version 3.2 user’s manual and ref-
erence. [online] http://www.mosek.com.

[2] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. Solving the
convex cost integer dual network flow problem. Management
Science, 49(7):950–964, July 2003.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:
Theory, Algorithms, and Application. Prentice Hall, 1993.

[4] S. M. Burns. Performance analysis and optimization of asyn-
chronous circuits. PhD thesis, California Institute of Technol-
ogy, Computer Science Department, 1991.

[5] K. M. Carrig. Chip clocking effect on performace for ibms sa-27e
asic. IBM Micronews, 6(3):12–16, 2000.

[6] L.-F. Chao and E. H.-M. Sha. Retiming and clock skew for
synchronous systems. In ISCAS, pages 1.283–1.286, 1994.

[7] T. H. Cormen, C. E. Leiserson, and R. H. Rivest. Introduction
to Algorithms. MIT Press, 1989.

[8] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge.
Razor: A low-power pipeline based on circuit-level timing specu-
lation. In International symposium of microarchitecture, 2003.

[9] G. Even, I. Y. Spillinger, and L. Stok. Retiming revisited and
reversed. IEEE TCAD, 15(3):348–357, March 1996.

[10] J. P. Fishburn. Clock skew optimization. IEEE Transactions
on Computers, 39:945–951, July 1990.

[11] A. V. Goldberg. An efficient implementation of a scaling
minimum-cost flow algorithm. Journal of Algorithms, 22:1–29,
1997.

[12] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh. Clock routing
for high-performance ic’s. In DAC, 1990.

[13] A. Kahng, J. Cong, and G. Robins. High-performance clock
routing based on recursive geometric matching. In DAC, 1991.

[14] Y. Kohira and A. Takahashi. Clock period minimization method
of semi-synchronous circuits by delay insertion. IEICE Trans.
Fundamentals, E88-A(4):892–898, April 2005.

[15] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing Syn-
chronous Circuitry by Retiming. In Advanced Research in VLSI:
Proc. of the Third Caltech Conf., pages 86–116, Rockville, MD,
1983. Computer Science Press.

[16] B. Lockyear and C. Ebeling. Minimizing the effect of clock skew
via circuit retiming. Technical Report UW-CSE-93-05-04, Dept.
of Computer Science and Engineering, University of Washington,
Seattle, 1993.

[17] H.-G. Martin. Retiming by combination of relocation and clock
delay adjustment. In Euro-DAC, pages 384–389, 1993.

[18] M. C. Papaefthymiou. Asymptotically efficient retiming under
setup and hold constraints. In ICCAD, 1998.

[19] S. Pullela, N. Menezes, and L. T. Pillage. Reliable nonzero clock
skew trees using wire width optimization. In DAC, 1993.

[20] S. Pullela, N. Menezes, and L. T. Pillage. Skew and delay opti-
mization for reliable buffered clock trees. In ICCAD, 1993.

[21] K. Ravindran, A. Kuehlmann, and E. Sentovich. Multi-domain
clock skew scheduling. In ICCAD, pages 801–808, 2003.

[22] S. S. Sapatnekar and R. B. Deokar. Utilizing the retiming-skew
equivalence in a practical algorithm for retiming large circuits.
IEEE TCAD, 15(10):1237–1248, October 1996.

[23] N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Minimum padding to satisfy short path constraints. In ICCAD,
1993.

[24] B. Taskin and I. Kourtev. Delay insertion method in clock skew
scheduling. In ISPD, pages 47–54, 2005.

[25] R.-S. Tsay. Exact zero skew. In ICCAD, pages 336–339, 1991.

6A-1

546

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

