
A Parameterized Architecture Model in High Level Synthesis for Image Processing
Applications

Abstract - Most image processing applications are
computationally intensive and data intensive. Reconfigurable
hardware boards provide a convenient and flexible solution to
speed up these algorithms. To get a high performance design
without going through the time-consuming hardware design
process for each different algorithm, we present a universal
parameterized architecture in high level synthesis to generate the
hardware frames for all image processing applications
automatically. The value of the parameters which decide the
target architecture can be obtained from the compiler. The
algorithm how to get these parameters is also discussed in this
paper.

I. Introduction

The extreme flexibility of Field- Programmable- Gate-
Arrays (FPGAs) coupled with the wide spread acceptance of
hardware description languages have made FPGAs popular
used. Unfortunately, developing programs that execute on
FPGAs is extremely cumbersome, demanding that software
developers also assume the role of hardware designers [1]. In
order to deal with the problem, developers try to explore
design automation and tool support. It is desirable to
implement the system using behavioral level languages, as
opposed to register transfer level languages.

High Level Synthesis (HLS) tools provide a bridge between
the algorithm written in a high level language (Matlab, C, C++,
etc) and a lower level Hardware Description Language (HDL).
Some also partition into hardware and software components.
We can classify different design methods into two approaches:
the annotation and constraint-driven approach and the
source-directed compilation approach. The first approach
preserves the source programs in C or C++ as much as
possible and makes use of annotation and constraint files to
drive the compilation process, such as SPARK[2], Sea
Cucumber[3], SPC[4], Streams-C[5], Catapult C[6] and
DEFACTO[7]. The second approach modifies the source
language to let the designer to specify, for instance, the
amount of parallelism or the size of variables, such as ASC[8],
C2Verilog[9], Handel-C[10], Handy-C[11], Bach-C[12] and
SpecC[13] etc. All of these design automation tools aim to
raise the level of design.

Of particular interests to this research are image processing
applications where there are three kinds of operations: point
operations such as GST(Gray Scale Transformation), window
operations such as edge detectors, and some complicated

perpendicular transforms such as DFT(Discrete Fourier
Transform). All these operations have similar calculation
patterns: a loop or a loop nest operates with array variable.
There are multiple references to an array element in the same
or a subsequent iteration, so the memory structure can be
designed abortively, and data reuse can be exploited.

To this day, a standard strategy to explore data reuse is to
identify multiple memory accesses to the same memory
location this reuse identical data, keep these data in a group of
registers named smart buffer until the data will never be
reference any more[14][15][16][17][18][19]. Current
architecture generation efforts have several shortcomings.
Firstly, they would demand a large number of registers if the
reuse distance be potentially large. Secondly, while some tools
now incorporate internal RAM modules and the mapping of
array variables to them, they have mostly ignored system level
issues when dealing with external memories. Thirdly, it will
take a long time to initialize array variables into the internal
RAM before starting processing, which is unnecessary.

In this paper we will put forward a universal parameterized
architecture for signal processing applications. And we also
describe the application of how to use data dependence
analysis to develop a compilation and synthesis strategy which
will generate different parameters for different image
processing applications. This analysis aims at exploring a
wide range of program transformations with the goal of
reducing the number of required memory accesses to speed up
the processing, and at the same time employing a small size of
internal RAM blocks and smart buffer.

The main difference between our approach with others’ is
that we don’t wait all array variables for initializing into the
internal RAM to start the processing, but execute in a
data-driven mode which means starting current operations as
soon as possible. There are still pipelined off-chip memory
accesses controls during the whole period of performing, thus
it is possible to use a less number of internal RAM blocks.
And we also don’t keep all reused data in smart buffer, but
hold them in internal RAM blocks to debase the size of smart
buffer, so it is necessary to develop a more complicated
compilation strategy to send the right data to smart buffer at
the right time.

This paper makes the following contributions:
It presents a universal parameterized architecture for
image processing applications.
It presents an analysis algorithm for the automatic
derivation of these control structures. This algorithm

Yazhuo Dong, Yong Dou

Department of Computer Science, National University of Defence Technology
Changsha, P. R. China, 410073

Tel : 86-731-4573647
Fax : 86-731-4573647

e-mail : dongyazhuo@nudt.edu.cn
 yongdou@nudt.edu.cn

1-4244-0630-7/07/$20.00 ©2007 IEEE.

5C-3

523

uses the data access patterns in the loop nest to choose
a design with the lowest number of required memory
accesses, and the least size of RAM blocks and smart
buffer.
It describes a data scheme strategy between on-chip
and off-chip RAM blocks, and a data transmission
approach between on-chip RAM blocks with smart
buffers.
It presents preliminary experimental simulation results
for the automatic translation of a set of image
processing applications onto FPGA using our
synthesis strategy. These results indicate these control
structures can serve as the basis of a successful
compilation and synthesis tool.

The rest of the paper is structured as follows. We compare
different mapping approaches via an example in section 2.
Next we describe the universal parameterized architecture, the
control structures and their rationale. Section 4 describes our
compiler analysis algorithms for realizing the hardware design
automatically. Section 5 presents preliminary simulation
experimental results for a set of image processing applications.
In section 6 we give a conclusion.

II. Example

Fig. 1. Sobel Edge detection computation example

We now illustrate the use of different storage and control
structures in the automatic mapping of an example
computation onto an FPGA-based computing engine. The
computation is written in C as depicted in Fig.1. It consists of
a single loop nest and computes the Sobel edge detection
algorithm over an 8 bit gray-scale image. The image is stored
as the 2-dimensional img array of characters. The output is
stored as the 2-dimensional edge array.

A native implementation of this computation is presented in
Fig.2. The reconfigurable computing compiler performs a
straightforward hardware generation, and the functional unit
would need to access all nine input data values in the current
window which would require a large amount of memory
bandwidth and involve pipeline bubbles in the data path.

A prevalent mapping strategy to reduce the number of
required memory accesses is shown in Fig.3. Smart buffer
hold the data input queues to exploit the fact that consecutive
iterations of the inner loop use data that previous iterations
have fetched. This strategy betakes more registers but

significantly reduces the number of memory accesses per
iteration.

Fig.4 below illustrates the target architecture design of our
strategy for the Sobel edge detection computation.

Fig. 2. Native memory structure generation

Fig. 3. Prevalent strategy to data reuse

Fig. 4. Our strategy for the Sobel edge detection computation

We contrive three (SIZE-4) deep RAM blocks, one of
which holds 1-dimensional img array data values. Once row i,
i+1,and the first three data of row i+2 are ready, the whole
processing can be started. In case the row i is done, the newer
input data of row i+3 will take the place of row i. Dataflow
controller 1 answers for the data transmission between
off-chip memory and internal RAM. At the same time,
transferring data from internal RAM to smart buffer which is
dominate by dataflow controller 2 can be carried through
simultaneity with sending data to processing elements, so the
target design wouldn’t slower the calculation speed, though
we use less number of internal memory elements and
registers.

III. Parameterized Architecture

char img[SIZE][SIZE], edge[SIZE][SIZE];
int uh1, uh2, threshold;
for (i=0; i < SIZE - 4; i++) {

for (j=0; j < SIZE - 4; j++) {
uh1=(((-img[i][j])+(-(2*img[i+1][j]))+(-img[i+2][j]))+

((img[i][j+2])+(2*img[i+1][j+2])+(img[i+2][j+2])));
uh2=(((-img[i][j])+(img[i+2][j]))+(-(2*img[i][j+1]))+

(2*img[i+2][j+1])+((- img[i][j+2])+(img[i+2][j+2])));
if ((abs(uh1)+abs(uh2))<threshold)

edge[i][j]=”0xff”;
else

edge[i][j]=”0x00;
}

}

5C-3

524

Fig.5 below presents the universal layout of the target
architecture design that our compiler uses to generate for
image processing operations. This architecture has several
internal RAM blocks to keep the reused data and smart buffer
to keep the computing operands, the rule of our approach to
hold data values in internal Ram blocks is that data that will
be reused in the following outer loop should be kept in the
internal RAM until the data will never be used again, and the
data to be used in the current loop will shift in the registers of
smart buffer.

There are also some auxiliary control structures to control
the execution. Dataflow controller 1 and 2 will keep track of
which iterations of the loop are currently in execution and
generates the appropriate control signal to realize the
pipelined memory accesses. The address generation unit is a
programmable array address generation unit the compiler
synthesizes with auto-increment and auto-decrement
capabilities. This unit is controlled by dataflow controller 2 to
steer the appropriate data into the appropriate registers of
smart buffer.

Fig. 5. Target memory architecture for window operations

We have designed a parameterized FSM (finite state
machine) in the verilog library to control the whole processing.
The FSM has five states for all image processing applications:
primal state, data initialization into on-chip RAM, data
initialization into smart buffer, start processing and finish.

Fig. 6. The FSM of sending data from off-chip RAM to on-chip
RAM

Fig.6 illustrates the parameterized FSM of dataflow
controller 1 which is used to deal with the data transmission
from off-chip RAM to on-chip RAM. The FSM make it
possible to parallel data transferring and calculation to speed

up the processing.
Fig.7 gives the parameterized FSM of dataflow controller 2

who is master of sending the right data from on-chip RAM
blocks to smart buffer at the right time. The FSM also ensures
that the whole calculation processing can be carried through
accurately.

Fig. 7. The FSM of sending data from on-chip RAM to smart
buffer

From the FSM, we can draw a conclusion that in order to
generate the target architecture automatically, there are five
parameters required: the number of RAM blocks needed

i.bankMEM , the depth of them i.deepMEM , the length and width of
smart buffer lengthbuffer and widthbuffer , and the number of data values
being initialized into the RAM blocks before starting the

processing indata . This is the duty of the compiler to achieve
the five parameters. We will discuss the algorithm of compiler
support detailed in the following section.

IV. Compiler support

We provide a flexible strategy for the compiler to gain the
five parameters automatically. Part of the definitions in article
[14] will be adopted.

A dependence vector 1 2 nd d d< , > refers to a vector
difference of the distance in an n-dimensional loop iteration

space where 0kd ≥ . A constant dependence vector entity c
means that the distance between two dependent array
references in the corresponding loop is c. For example, the
array references A[i][j] with A[i+2][j] and A[i][j+2] that
induce the dependence vectors <2,0> and <0,2> respectively.
We usually choose the longest distance, as in the code shown
in Fig.8, the dependence vector of data array A is <0, 4>.

case (sending states)
1: Primal state: set the Token-Ring to the next on-chip RAM

block, if the current RAM is the number i.bankMEM , set the
Token-Ring to the first block again;
 2: Sending data request signal to the off-chip RAM, ready to
receive a new data values;
 3: Receive a data and keep it in the current on-chip RAM
block who has the Token-Ring. The Counter increase to
register how many data values have been in the current RAM:
counter_num++;
 4: Judgment.

if (counter_num< the depth of RAM block i.deepMEM) goto2;
else the current RAM block is full, goto 1;

endcase

case (control states)
1:Idle state, waiting for indata data values being initialized

into the RAM blocks;
2: Sending lengthbuffer * widthbuffer data values from smart buffer

to the processing elements;
3: Waiting for the result;
4: Sending result,

 Increase the result counter, result_counter++;
 If (result_count== image width)
 result_counter=0;
 Increase the row counter which registers how many rows
have been done; row_done++;

5: Increase counter;
RAM_current_do++;

// RAM-current-do records which RAM blocks data is
currently be deal with and at the same time shift the registers
in smart buffer.
 If (RAM_current_do= =image width)
 RAM_current_done=0;

6. Receive the next data
 If(row_done==image length) finish,
 goto 1;
 else goto 2;
endcase

5C-3

525

loopi_i0 loopi_ip and loopi_inn are used to describe a loop,

which is from loopi_i0 to loopi_inn in step of loopi_ip. iI
refers to the number of steps of loop i,

where
_ _ 0 1_i

loopi inn loopi iI loopi ip
−= +

.
In image processing operations, general dependences are

either loop-independent or loop-carried. The former occurs
between statements in the same loop iteration, and the latter
between statements in different iterations. As the example
shown in Fig.8, the dependences of array A is
loop-independent and the dependences of array B belongs to
the second type.

Fig.8. An example code

In the rest of this subsection, we describe how to compute
the five parameters for the two types of reuse categories.

A. Loop-independent

In this situation, the data will only be reused in the same
loop. When current loop is done, the data will never be reused
again. We can obtain the following expressions:

, 1;i bankMEM =

, 1 2 1, (,) 0 0;i deep m m mMEM I if d d d and d−= = ≠…,

1 2 11, (, , ,) 0 0length m m mbuffer d if d d d and d−= + = ≠ ;
1widthbuffer = ;
, ,*(1)in i deep i bank lengthdata M M buffer= − + ;

As the data array A[i][j] shown in Fig.8, one 64 depth RAM
block are designed, and there are 5 registers needed in smart
buffer. And 5 (64*(1-1)+5) data values should be initialized
before starting the processing.

B. Loop-carried

In this situation, the data will not only be reused in the same
loop, but also in some outer loops. So the number of the
largest reused distance data array values will be kept in the
internal RAM blocks, and the data that is going to be
computed will shift in the registers of smart buffer. We can
obtain the following expressions:

, 1 2 m-11, (,) 0 0;i bank m mMEM d where d d d and d= + = ≠…
1

, 1 2 1
1

, (,) 0 0;
m

i deep l m m
l

MEM I if d d d and d
−

−
=

= = ≠∏ …,

{ }max 1length mbuffer d= + ;
, 1width i bank mbuffer M d= = + ;

, ,*(1)in i deep i bank lengthdata M M buffer= − + ;

As the data array C[i][j] shown in Fig.8, three 64 depth
RAM blocks are designed, and the length of the smart buffer
is 3, at the same time the width of the smart buffer is also 3, so
there are 9 registers in the smart buffer. And 131 (64*(3-1)+3)
data values should be initialized before starting the processing.

V. Experiments

This section presents experimental results that characterize
the impact of different algorithms for a set of image
processing applications written in C: image sharpening
(SHARP), Sobel edge detection (SOBEL), and
MedianFilter(FILTER).

A. Methodology

There are two parts of work in the experiments. Firstly, in
order to prove that our Parameterized architecture can use
fewer resources to realize data reuse, we compare three data
reuse schemes with the supposed limited resources: (1) no
data reuse (2) traditional strategy to data reuse which put all
reuse data in smart buffer and (3) our approach. We measured
three metrics: (1) the number of required memory elements,
(2) the number of registers to exploit data reuse, and (3) the
speedup over original programs. Secondly, to testify that the
architecture is effective, we compare the synthesis results of
our automatic approach with the manual code.

The first part heavily depends on the iteration counts of the
loops. For each program, thus, we compare three different
problem sizes in terms of iteration count of each loop in a nest
as shown in Table 1. We assume there are 32 registers and
1100 memory elements available in the target architecture.

Table 1. Problem size
SHARP SOBEL FILTER

Problem Size 1 2 3 1 2 3 1 2 3
Outer loop 32 32 320 64 64 640 16 16 160
Inner loop 8 16 32 8 16 32 8 16 32

B. Compared with other data reuse strategies

Table 2 below shows the number of registers in smart buffer
required to exploit data reuse in three data reuse schemes.

Table 2. Number of registers
SHARP SOBEL FILTER

Problem Size 1 2 3 1 2 3 1 2 3
No data reuse 4 4 4 10 10 10 10 10 10
Traditional 17 19 19 25 31 31 25 31 31
Our approach 5 5 5 10 10 10 10 10 10

We have assumed the number of memory elements and
registers in target architecture are respectively limited to 1100
and 32, so when the problem require more than 1100 memory
elements or more than 32 registers, the two methods will have

or(i=0;i<32,i=i+1)
for(j=0,j<64,j=j+1)

{
 B[i]=m0*A[i][j]+m1*A[i][j+1]+m2*A[i][j+2]+m3*
A[i][j+3]+m4*A[i][j+4];
 D[i]=m0*C[i][j]+m1*C[i][j+1]+m2*C[i+1][j]+m3*
C[i+1][j+2]+m4*C[i+2][j];
}

5C-3

526

fig.9. Speedups

to partition the data array into smaller blocks. For example,
to deal with the problem size 3 of image sharpening, the
traditional strategy require 10240 memory elements and 64
registers, so the data array will be partitioned into twelve
blocks of size 108 9× .

Fig.9 presents the speedup results of overall performance
on a single FPGA. Table 3 below shows the number of
memory elements required for three data reuse schemes.

Table 3 Number of memory elements
SHARP SOBEL FILTER

Problem
Size 1 2 3 1 2 3 1 2 3
No data
reuse 256 512 1056 512 1024 1024 128 256 1088
Traditional 256 288 972 512 640 1090 128 160 820
Our
approach 16 32 65 25 48 96 16 48 96

Traditional approach observes speedups from 1.54 to 2.78,
and our approach observes speedups from 2.13 to 3.81. The
speedup of our approach relative to original and traditional
strategy roots in the following sources of benefits:

1. Require less time to initialize internal RAM data values;
2. Design data controller to ensure data transmission and

processing perform to execute synchronously.
Another important benefit of our approach is using a less

number of registers and memory elements than traditional
strategy.

C. Compared to manual code

The three test programs have been performed successfully
using ModelSim according to our approach and manual code.
And the Place and Route (P&R) of the designs is performed
with Quartus from ALTERA, and then integrated into a
single ALTERA Stratix 80 FPGA. Table 4 below shows the
synthesis results of the three test programs using our
automatic approach and the manual code, including the
resource employed and the clock frequency obtained. The
first data in each blank is the result of manual code and the
second data is the result of our automatic approach.

In our approach, a data is send to a specific register in
smart buffer, such as for Sobel program, the register in smart

buffer which a data should be send into is followed strictly,
but for SHARP and Filter, the registers to hold the data
didn’t need to be distinguished definitely, so the synthesis
results of the manual code use less resources than our
automatic approach but have no much effective on clock
speed. From our experimental results, we observe that our
approach can achieve a design which is effective as much as
manual code.

Table 4. Synthesis results
 SHARP SOBEL FILTER

logic
elements

636
/651

1082
/1082

1382
/1416

pins 43/43 45/45 44/44
memory
bits

16384
/16387

24576
/24576

24586
/24596

clock
frequency

103.46 MHz
/101.31MHz

139.04 MHz
/139.04MHz

111.58 MHz
/108.11MHz

VI. Summary and Conclusions

In this paper, we have presented a parameterized
architecture to generate the target structure for image
processing programs. We employ data reuse to reduce the
number of accesses to the data memory. We design special
control unit to dominate the dataflow which makes it
possible to store a small part of the data values in internal
RAM and smart buffer while still providing sufficient
memory bandwidth for the custom data path.

We have applied our technique to a set of common signal
analysis and image tasks. The results show that the generated
memory architecture is able to provide sufficient memory
bandwidth for the custom data path using less number of
memory elements and registers. It can speed up the
processing with less time requiring for initialization.

Acknowledgements

This work was supported by NSFC (National Natural
Science Foundation of China) and PCSIRT (Program for
Changjiang Scholars and Innovative Research Team in
University).

5C-3

527

References

[1] Byoungro So, HMary W. HallH, HPedro C. DinizH: ‘A
Compiler Approach to Fast Hardware Design Space
Exploration in FPGA-based Systems’. HPLDI 2002H, 165-176.

[2] Gupta, S., Dutt, N.D., Gupta, R.K., and Nicolau, A.: ‘SPARK: a
high-level synthesis framework for applying parallelizing
compiler transformations’. Proc. Int. Conf. on VLSI Design,
January 2003.

[3] Justin L. Tripp, Preston A. Jackson, and Brad L. Hutchings:
‘Sea Cucumber: A Synthesizing Compiler for FPGAs’. M.
Glesner, P.Zipf, and M. Renovell(Eds.), FPL 2002, LNCS 2438,
pp. 875-885, 2002. Springer-Verlag Berlin Herdelberg 2002.

[4] Weinhardt, M., and Luk, W.: ‘Pipeline vectorization’, IEEE
Trans. Comput.-Aided Des., 2001, 20, (2), pp. 234–248.

[5] Jan Frigo, Maya Gokhale, Dominique Lavenier: ‘Evaluation of
the StreamsC C to FPGA Compiler: An Applications
Perspective’. FPGA 2001, February 11-13, 2001, Monterey,
CA.

[6] Hhttp://www.mentor.com/products/c-based_design/catapult_c_
synthesis/index.cfmH.

[7] Heidi Ziegler and Mary Hall: ‘Evaluating Heuristics in
Automatically Mapping Multi-Loop Applications to FPGAs’.
FPGA’05, February 20-22, 2005, Monterey, California, USA.

[8] Mencer, O., Pearce, D.J., Howes, L.W., and Luk, W.: ‘Design
space exploration with a stream compiler’. Proc. IEEE Int.
Conf. on Field Programmable Technology, 2003

[9] Donald Soderman and Yuri Panchul: ’Implementing C
algorithms in reconfigurable hardware using C2Verilog’. In
Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM), pages 339–342, Los Alamitos,
CA, April 1998.

[10] Celoxica, ‘Handel-C Language Reference Manual for DK2.0’,
Document RM-1003-4.0, 2003.

[11] De Figueiredo Coutinho, J.G., and Luk, W.: ‘Source-directed
transformations for hardware compilation’. Proc. IEEE Int.
Conf. on Field-Programmable Technology, 2003.

[12] Takashi Kambe, Akihisa Yamada, Koichi Nishida, Kazuhisa
Okada, Mitsuhisa Ohnishi, Andrew Kay, Paul Boca, Vince
Zammit, Toshio Nomura,: ‘A C-based Synthesis System, Bach,
and its Application’.

[13] Daniel D. Gajski, Jianwen Zhu, Rainer D¨omer, Andreas
Gerstlauer, and Shuqing Zhao. ‘SpecC: Specification Language
and Methodology’. Kluwer, Boston, Massachusetts, 2000.

[14] Byoungro So, HMary W. HallH, HHeidi E. ZieglerH: ‘Custom
Data Layout for Memory Parallelism’. HCGO 2004, 291-302.

[15] Pedro C. Diniz, HJoonseok ParkH: ‘Automatic Synthesis of
Data Storage and Control Structures for FPGA-Based
Computing Engines’. HFCCM 2000H: 91-100.

[16] HJoonseok ParkH, Pedro C. Diniz: ‘Synthesis of pipelined
memory access controllers for streamed data applications on
FPGA-based computing engines’. HISSS 2001H: 221-226.

[17] HNastaran BaradaranH, Pedro C. Diniz, HJoonseok ParkH:
‘Extending the Applicability of Scalar Replacement to Multiple
Induction Variables’. HLCPC 2004H: 455-469.

[18] Z. Guo, B. Buyukkurt, W. Najjar. ‘Input Data Reuse In
Compiling Window Operations Onto Reconfigurable
HardwareH’. Proc. ACM Symp. On Languages, Compilers and
Tools for Embedded Systems (LCTES), Washington, DC, June
2004.

[19] HAndersson P.H and HKuchcinski K.H ‘Automatic Local
Memory Architecture Generation for Data Reuse in Custom
Data Paths’, in Proc. of Engineering of Reconfigurable Systems
and Algorithms, 2004.

5C-3

528

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

