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Abstract— With semiconductor fabrication technologies scaled
below 100 nm, the design-manufacturing interface becomes more
and more complicated. The resultant process variability causes
a number of issues in the new generation IC design. One of the
biggest challenges is the enormous number of process variation
related parameters. These parameters represent numerous local
and global variations, and pose a heavy burden in today’s chip
verification and design. This paper proposes a new way of
reducing the statistical variations (which include both process
parameters and design variables) according to their impacts on
the overall circuit performance. The new approach creates an
effective reduction subspace (ERS) and provides a transformation
matrix by using the mean and variance of the response surface.
With the generated transformation matrix, the proposed method
maps the original statistical variations to a smaller set of
variables with which we process variability analysis. Thus, the
computational cost due to the number of variations is greatly
reduced. Experimental results show that by using new method
we can achieve 20% to 50% parameter reduction with only less
than 8% error on average.

I. INTRODUCTION

The increasing variations of today’s nanometer process
technology cause circuit performance such as delay and power
to deviate from their designed values. On the other hand,
performance information can be used for yield improvement in
manufacturing process. However, the dimensionality of design
parameters depending on the number of variation sources
has been ever increasing with the development of process
technologies.

In previous technology generations, variability was dom-
inated by front-end elements such as active transistors and
devices. Device parameters that are susceptible to variations
typically include, but are not limited to, effective gate length,
mobility, gate-oxide thickness and threshold voltage. In recent
technologies, back-end, or interconnect variability has become
equally significant. Interconnect parameters such as metal
width, metal thickness and interlayer dielectric thickness can
vary significantly from their nominal values. In the era of
subwavelength manufacturing, line-width variation stemming
from reticle and proximity effects during lithography has

become more significant with each new technology genera-
tion. In addition, interconnect thickness variation of copper
interconnect due to polishing significantly affects interconnect
resistance and capacitance. Thickness variation depends on lo-
cal density, metal line width and spacing to the next metal line.
To summarize, the number of variation sources has greatly
increased as we move to the nanometer regime. To make
things worse, same variation source different locations may
follow different distribution. The resultant number of random
variables representing variations can be of thousands. Even
with clustering reduction mechanism, the random variables
are still of hundreds. This fact is known as ”the curse of
dimensionality”.

One possibility to reduce dimensionality is to apply princi-
pal component analysis (PCA) on variation sources or input
random variables (denoted as x vector). PCA keeps only the
first few principal components for modeling the relationship
with performance or output variable (denoted as y). Because
PCA based reduction is totally independent of the output
variable y, it may not be effective. For example, if we have
y1 = f1(x) and y2 = f2(x) two different functions, as long
as the input variables x have the same distributions, PCA will
provide the same reduction results. In reality, to address the
dimension reduction issue in today’s VLSI design, one must
not treat x separately from performance y. This is the reason
why in this paper we introduce a new reduction mechanism.
In this paper we propose a novel dimension reduction method
based on Sliced Inverse Regression (SIR) approach by Duan
and Li [1] [2]. The new method aims to find a low dimensional
subspace that carries essential information of the relationship
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Fig. 1. General regression model with g as regression function
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between the variation sources and the responses. It is easier
to see how this model is related to dimension reduction by
comparing Figure 1 to Figure 2[11]. Here we consider y as
a univariate performance variable (e.g. delay and power). The
dimension of x is denoted by p. Figure 1 shows y as a function
of x vector:

y = g(x1, x2, · · · , xp) (1)

As one can see in Figure 1, there are p input nodes. The
function g is represented by the black box in the middle,
feeding into the output node y at the bottom. Figure 2 has an
intermediate layer of nodes which linearly combine the input
nodes using weights indicated along the line segments. It is
clear that the relationship between x and y is determined only
through βt

1, β
t
2, · · · , βt

K . The black box represents the function
m in (2).

y = m(βt
1x, βt

2x, · · · , βt
Kx) (2)

Our goal is to find the K p-dimensional subspace
span{βt

1, β
t
2, · · · , βt

K}. Taking advantage of the generated
subspace, the proposed method obtains implicitly new re-
sponse surface models that operate on a reduced dimension
variable set. Different from existing dimension reduction ap-
proaches such as clustering and PCA, the new SIR based
method not only considers the behavior of dependant variables
but also the response surface impact on dimension reduction.

Note that the dimension reduction approach we discuss here
is also different from Projection-Based Extraction (PROBE)
for quadratic response surface modeling [3]. While PROBE
greatly reduces number of sampling points required to achieve
an accurate quadratic response surface model, the proposed
approach targets parameter reduction in the response surface
model. In addition, the new method is applicable to all
existing digital and analog designs where dimension becomes
a problem. In the current paper we apply the new method
to block-based SSTA. All gate/interconnect delays and signal
arrival times are represented in quadratic form over a base
set of variational process parameters. From experiments, we
verify that nonlinear delays at all levels can be accurately
approximated by quadratic models with much less number of
variables.

The organization of the rest of the paper is as follows: In
Section 2, we focus on explaining the basics for dimensionality
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Fig. 2. Reduced regression model with m as new after reduction function

reduction. Section 3 discusses the reduction framework in
block-based SSTA and the new SIR based reduction algorithm.
Experimental results and algorithm complexity are discussed
in Section 4. Finally, Section 5 concludes the current paper.

II. EFFECTIVE DIMENSION REDUCTION

We start this section by reviewing PCA method, then
introduce effective dimension concept and finally provide the
basics of the slice inverse approach.

A. Principal component analysis (PCA)

No doubt that PCA is perhaps the most popular procedure
of dimension reduction. It in fact is a special case for the
Sliced Inverse Regression (SIR) approach. This is why in this
subsection, we first take a brief look at PCA. PCA projects
the high dimensional space to a lower dimensional space with
the hope that the essential structure in the original space can
be kept as much as possible. The projected space is chosen so
that the distributions can spread out as much as possible.

Assume x is the p-dimensional variable of interest. The first
principal component is a linear combination x denoted as bt

1x
which has the largest variance among all b with unitary length.
Equation (3) provides the description of such procedure.

max||b||=1b
tΣxb (3)

Here Σx denotes the covariance matrix of x. After finding the
first direction b1, we repeat the same procedure by restricting
to those that yield projections uncorrelated with bt

1x: To
illustrate, we get the the second principal direction b2 by using
(4).

cov(btx, bt
1x) = btΣxb1 = 0 (4)

Continuing this process in (4), we can get all other directions
b3, b4, · · · , bp. It can be shown that

Σxbi = λibi (5)

Here the variance of bt
ix is λi.

The above equations provide the original concept of PCA.
However they may give readers the impression that PCA is
a complicated procedure. In fact, we need only to conduct
the eigenvalue decomposition on the covariance matrix of x.
Eigenvalues of PCA often decrease rapidly. This is because
most of the variables spread out wide along the first few di-
rections. Therefore, it is possible to have dimension reduction
while still keep the original structure of the input variable
space. Unfortunately, the reduction is not a guarantee. To
achieve correct PCA reduction, one often needs to rescale each
input variable appropriately before applying PCA. Standard
deviation is generally selected as rescaling factor.

PCA provides principal dimensions for input variables x.
Principal dimensions, however as mentioned in the introduc-
tion part of this paper, can not reflect the influence of x on
output variable y. As long as the input variables x have the
same distribution, even if we have two different functions,
that is, the relationship between x and y is not the same,
the same x input variables would always reduce to the same
linear combinations. Therefore, principal dimensions are not
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the effective ones if we consider the output variable y. Finding
effective dimensions is the key point of this paper and will be
further discussed in the next section.

B. Effective Dimension Reduction

Effective dimension reduction (EDR) concept is the center
of the SIR based reduction scheme.

Definition 1: Under (2), the space B generated by
βt

1, β
t
2, · · · , βt

K is called the EDR space. Any non-zero vector
in the EDR space is called an EDR direction.
By changing m suitably, one can reparameterize (2) by any set
of K linearly independent EDR directions. Thus it is the EDR
space B that can be identified; the individual vectors βt

1, βt
2,

· · ·,βt
K themselves are not identifiable unless further structural

conditions on g are imposed. Our primary goal of this paper
is to find the EDR space or a subspace of it.

Though (2) should be interpreted as an approximation to
reality, the fundamental difference between this and other sta-
tistical models is that (2) takes the weakest form to reflect our
hope that a low dimensional projection of a high dimensional
regressor variable contains most of the information that can
be gathered from the original space. (2) does not impose any
structures on how the projected variable effects the output
variable. In addition, we may vary K to reflect the degree of
the anticipated dimension reduction. To illustrate, at K = p ,
(2) becomes a redundant assumption. We want to emphasize
that the estimation of the projection directions can be a more
important statistical issue than the estimation of the function
m itself. In fact, the structure of m is impossible to identify
unless we have other evidence. For example, let m be the
delay model after reduction in SSTA analysis, we can alway
assume that m is a quadratic polynomial. In reality, one can
obtain two different versions of m to represent the same joint
distribution of y and x. Thus what we can estimate at most are
statistical quantities such as the conditional mean or quantities
of y given x. On the other hand, at the beginning stage of
analysis when one does not have a fixed objective in mind, the
need for estimating such quantities is not as pressing as that
for finding ways to simplify the design space. Our formulation
of estimating the EDR directions is one way to address such
a need in analysis. After finding a good EDR space, we can
project data to this smaller space. Then we are in a better
position to identify what should be pursued further: model
building by response surface estimation after reduction.

(2) is equivalent to: the conditional distribution of y given x
depends on x only through the K dimensional variable (βt

1x,
βt

2x, · · ·, βt
Kx), or, to put it slightly differently, conditional

on βt
1x, βt

2x, · · ·,βt
Kx, y and x are independent. The reduced

variable, βt
1x, βt

2x, · · ·,βt
Kx is as informative as the original

x in predicting y.
The key in the notion of EDR space is to find the one

with the smallest dimension. Now one question arise: is this
space unique? Cook [8] explored the answer to this question.
It turns out that under certain regularity conditions, the EDR
space with the smallest dimension is unique. We shall assume
this is the case from now on.

C. Basics of Sliced Inverse Regression (SIR) based Dimension
Reduction

In this subsection, we introduce a method for finding EDR
directions – sliced inverse regression (SIR). First we present
a theory for justifying SIR.

As pointed out by Li in [11], the natural way to think about
response surface estimation is going from x to Y . Of special
importance is the first moment E(Y |x) or the second moment
var(Y |x). Unlike general Response Surface approaches, SIR
does not follow the above one-way traffic of going from x to
Y . Instead, SIR reverses the role of x and Y . That is, SIR
treats Y as if it were the independent variable and treat x as
if it were the dependent variable. This fundamental difference
can be further illustrated as ”given x = x0, what value will
Y take?” One straightforward conventional answer would be
examining the data points close to x0 and taking their average
Y values. This is the basic idea of SIR methodology. To gain
global insight on Y , SIR based reduction scheme studies how
the associated x region varies as Y changes.

One advantage is immediate. The general response surface
E(Y |x) is p-dimensional, which is very difficult to estimate
directly. When p is large, even with some ”smart” sampling
techniques, the resulting response surface techniques may per-
form poorly because of lack of sufficient data points in some
relevant local region. However, for inverse regression, the
conditional expectation E(x|Y ) can be taken one coordinate
at a time E(xi|Y ), for i = 1,· · ·,p. The estimation of E(xi|Y )
should be easy to handle because this is just a one-dimensional
problem. This is the reason why we can, from a different angle,
take care of the curse of dimensionality problem.

The most important question remaining is how to relate
inverse regression to forward regression. To fill up the gap,
we shall derive Theorem 1, which is the foundation of the
SIR theory. Generally speaking, inverse regression factorizes
the joint density of x and y into the condition density h(x|y)
and the marginal density k(y). While only E(x|y) is consid-
ered in this section, other quantities can be utilized as well.
For example, we shall also discuss how to use conditional
covariance cov(x|y) for extending the basic SIR algorithm.

Theorem 1: Assume the condition provided in (2) is true.
In addition, for any b in Rp, the conditional expectation
E(btx|βt

1x, βt
2x, · · · , βt

Kx) is linear in βt
1x,βt

2x,· · ·, βt
Kx; that

is, for some constants, c0, c1, · · ·, cK ,

E(btx|βt
1x, βt

2x, · · · , βt
Kx) = c0 + c1β

t
1x+ · · ·+ cKβt

Kx (6)

then, the difference of E(x|y) − E(x) is contained in the
linear subspace spanned by Σxβk, k = 1, 2, · · · ,K, where
Σx denotes the covariance matrix of x.
The condition (6) is also referred as Linear Design Condition
(LDC). It has been proved that the sufficient condition for
LDC is elliptical symmetric.

Definition 2: A random vector X ∈ Rn with probability
density function f is said to to be elliptical symmetric if f
can be written as

f(x) = g(||A(x − µ)||) (7)

where A is a positive definite symmetric matrix and vector
µ ∈ Rn, and g is a function g : [0,∞) → [0,∞).
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The elliptical symmetric property holds for the majority
of statistical problems. We will show in the later sections
that elliptical symmetry is also applicable to process variation
problems.

Theorem 1 relates the inverse regression to regular response
surface methods. To illustrate, we present a simple example
with the standardized variable z = Σx

− 1
2 x − E(x) where

Σ− 1
2

x is the covariance matrix of x. the inverse response (IR)
curve m1(y) = E(z|Y = y) lies in span(η1, η2, · · · , ηk),
where ηi = Σ

1
2
x βi. This means that the conditional expectation

m1(y) = E(z|Y = y) is moving in span(η1, η2, · · · , ηk)
depending on y. With b orthogonal to span(η1, η2, · · · , ηk),
it follows that

btm1(y) = 0 (8)

and further that

m1(y)mt
1(y)b = Cov{m1(y)}b = 0 (9)

As a consequence Cov{E(z|y)} is degenerated in each
direction orthogonal to all EDR-directions ηi of Z. This
suggests the following steps. First, estimate Cov{m1(y)}
and then calculate the orthogonal directions of this matrix
(for example, with eigenvalue/eigenvector decomposition). In
general, the estimated covariance matrix will have full rank
because of random variability, estimation errors and numerical
imprecision. Therefore, we investigate the eigenvalues of the
estimate and ignore eigenvectors having small eigenvalues.
These eigenvectors η̂i are estimates for the EDR-direction ηi

of z.
We can easily rescale them to estimate β̂i for the EDR-

directions of x by multiplying by Σ̂− 1
2 , but then they are not

necessarily orthogonal.

III. SLICED INVERSE REGRESSION ALGORITHM FOR

PARAMETER REDUCTION

As an effective reduction technique, SIR can be applied to
any performance driven design methodology. In the current
paper, we employ the proposed method to statistical static
timing analysis as an example.

A. Static Statistical Timing Analysis (SSTA) with Sliced In-
verse Regression based Parameter Reduction

Let’s now start with the sum and max operations for SSTA.
We assume delay models as quadratic functions with correlated
random variables. For all quadratic functions, we can represent
them in the following format:

y = xtAx + Bx + C (10)

D5

D1 D2

D3
D4

Z1=D1+D2

Z2=D3+D4

Z3=max(Z1, Z2)

Fig. 3. Block-wise Static Statistical Timing Analysis (SSTA) Basic Opera-
tions

in which x = x1, x2, · · · , xn
t is the process parameter vector,

A is a coefficient matrix, B is a 1 × n vector and C is a
constant term. Assume we have two random variables, y1 =
x̃tA1x̃ + B1x̃ + C1, and y2 = x̂tA2x̂ + B2x̂ + C2. Here we
differentiate x̃ from x̂, as in reality gates and interconnects
may be far apart from each other. y1 and y2 may be delays
that depend on two different sets of process parameters. This is
different from most existing references in which x̃ is regarded
as the same set as x̂. The sum operation gives:

y = sum(y1, y2) = xtAx + Bx + C

A = A1 + A2, B = B1 + B2, C = C1 + C2 (11)

where x = x̃Ux̂. We abuse the notation ”+” in A and B
computation as the sum operation adds up the coefficients of
the same random variables. Likewise, we can present the max
operation as

y = max(y1, y2) = xtAx + Bx + C (12)

The max operation may follow ideas presented in [4]-[7]. Here
we only focus on the sum and max operation results y which
is also a quadratic function with x = x̄Ux̂. If the sizes of the
vectors x̄ and x̂ are n̄ and n̂ respectively, then the size of x
nx will follow nx ≥ n̄ and nx ≥ n̂. When the number of
parameters exceed certain user defined threshold (as shown in
Fig.4), SIR based reduction procedure will be employed.

B. Sliced Inverse Regression based Parameter Reduction Al-
gorithm

Suppose the PDF function of x is f(x) and x ∈ [ax, bx].
The PDF function f(x) is positive so as to ax and bx for most
process variation cases. Even if x is negative, by shifting and
linear transformation, we can always get the new x with the
desired property as in Definition 2, that is, elliptical symmetric
property. Therefore, Theorem 1 can be easily satisfied.

The algorithm of SIR consists of the following steps:
Step 1: Standardize x. Let x̄ denote the mean of random

variable vector x, Σ̂x covariance of x, and z be the standard-
ized vector, we have

z = Σ̂− 1
2

x (x − x̄) (13)

with x̄ =
∫ bx

ax
xf(x)dx and Σ̂x =

∫ b

a
(x − x̄)(x − x̄)tf(x)dx.

The standardized vector z is ∈ [bz, az]. bz = Σ̂− 1
2

x (bx − x̄)

No
Gate/Wire Library 

formular

with quadratic delay

Circuit Netlist

high
dimension?

MAX/ADD
arrival times

SIR based
Reduction

Read Circuit

sink ?

Stop

Yes

No

Yes

Fig. 4. Static Statistical Timing Analysis (SSTA) flow with Sliced Inverse
Regression based reduction
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and az = Σ̂− 1
2

x (ax − x̄). As x = Σ̂
1
2
x z + x̄, we can represent

PDF function f(x) as f(Σ̂
1
2
x z + x̄) or fz(z).

Step 2: Sort the data by y. With (11)-(12) and known
x data, we can generate data for y denoted as yi, where
i = 1, · · · , N . We can also use the fact that y = g(x) is a
continuous function. When y = g(x) is linear, 3rd order or
any odd order function, g−1 exists. Therefore, x = g−1(y).
Sorting y is straightforward as g−1 is monotonic. If y = g(x)
is quadratic (as assumed in the current paper), then we first
divide y into two monotonic regions by finding the optimal
points ∂g(x)/∂x = 0. Let xopt be the optimal point of x,
y = g1(x) be the function for x ∈ [ax, xopt] and y = g2(x) be
the function for x ∈ (xopt, bx]. Both g1 and g2 have inverse
functions g−1

1 and g−1
2 . We may apply the following Step 3

on both g−1
1 and g−1

2 defined in region [g1(ax), g1(xopt)] and
(g2(xopt), g2(bx)].

Step 3: Divide the range of y into S nonoverlapping
intervals (slices) Hh,h = 1, 2, · · · , S. The number of slices
S is a user-specified parameter. For example, we find between
10 to 20 slices to be reasonable for a sample of size 300.
There are theoretical results indicating that SIR outputs do
not change much for a wide range of S[1].

Step 4: Compute the mean of z over all slices. This is
a crude estimate for the inverse regression curve m1(y) =
E(z|Y = y):

z̄h =
∫ bh

ah

zfz(z)dz (14)

where fz is the PDF for z, and ah and bh are the starting
and ending point of z for each slice. Note that SIR uses Y
values only to create slices. Once slices are formed, they can
be discarded.

Step 5: Calculate the estimate for the covariance of
m1(y) = E(z|Y = y) denoted as Cov(m1(y)) = Σ̂η:

Σ̂η = (bz − az)−1
S∑

h=1

(bh − ah)(z̄h − z̄)(z̄h − z̄)t (15)

Step 6: Find the SIR directions by conducting the eigen-
value decomposition of Σ̂η with respect to Σ̂x:

Σ̂η η̂i = λ̂iΣ̂xη̂i (16)

The i-th eigenvector β̂i is called the i-th SIR direction with
ordering: λ1 ≥ λ2 ≥ · · · ≥ λp. The first few SIR directions
can be used for dimension reduction. They serve as the
coefficients linking the input nodes to the intermediate nodes
in Figure 7.

Step 7: Project z along the SIR directions; that is, use each
SIR direction to form a linear combination of z. We shall call
β̂t

1z the first SIR variate, the β̂t
2z second SIR variate, and so

on. Now the estimates for the EDR-directions are given by

β̂i = Σ̂− 1
2

x η̂i (17)

Step 8: Evaluate the effectiveness of an estimated EDR
direction. An obvious criterion is to evaluate the squared
Euclidean distance between the estimated EDR direction β̂i

and the true e.d.r. space B.

R2(β̂i) = maxβ∈B
(β̂t

iΣxβ)2

(β̂t
iΣxβ̂iβ̇tΣxβ

(18)

the squared multiple correlation coefficient between the
projected variable β̂t

ix and the ideally-reduced variables
βt

1x, βt
2x, · · · , βt

Kx. For a collection of K estimated direc-
tions β̂1, β̂2, · · ·, β̂K which generate a linear subspace B.
As B will not be known beforehand, we replace β with
β̂ vectors to obtain the relative squared correlation. After
SIR parameter reduction, we reconstruct function m() in
y = m(β̂t

1x, β̂t
2x, · · · , β̂t

Kx) by minimum residue based curve
fitting. Then m() function joins further sum and max opera-
tions.

We can summarize SIR based reduction as follows: (1)
partitioning the cases into H groups according to the y
values; (2) finding the H slice means of z ; (3) applying
a eigendecomposition on covariance of z. It is important to
remember that our use of eigendecomposition differs from
PCA. We use y to form slices while PCA does not use any
information from y at all.

C. Special Cases

If the covariance of x = (x1, x2, · · · , xp) is an identity
matrix I , then all random variables xi, i = 1, · · · , p, have
the same variance (=1) and are uncorrelated with each other.
Then on the right side of the equality in (17), the matrix Σ̂x

can be removed. Thus Step 6 is merely eigendecomposition
applied to the slice means of z just like PCA in (5). However,
it is important to remember that our use of eigendecomposition
differs from PCA. We use y to form slices while PCA does
not use any information from y at all.

The proposed SIR based reduction method is able to provide
EDR directions in all our experimental cases (Section IV).
However, theoretically, SIR based method may have trouble in
finding EDR directions when E(z|y) = 0. We overcome this
difficulty by considering the conditional covariance Cov(z|y)
instead of the inverse response curve. Therefore, in the afore-
mentioned SIR reduction algorithm, we can replace E(z|y)
with Cov(z|y). This kind of technique is referred as SIR II in
some references [9][10].

IV. NUMERICAL EXAMPLES

In this section we demonstrate the results of the proposed
parameter reduction method by a number of examples.

First, lets take a look at a simple example as shown in Figure
3. Assume we use quadratic delay model. At D1, the output
delay depends on x1, x2, x3 that is z1 = y1(x1, x2, x3). Like-
wise, at D4, z2 = y4(x4, x5, x6) and D3, z3 = y5(x7, x8, x9).
All the input variables x1 to x9 are correlated. The delay model
at the output of D5 is y = max(sum(z1, z3), sum(z2, z3))
,essentially a quadratic expression with respect entire variable
space (x1, ..., x9). The new reduction algorithm reduces the
original 9 variable design space to 3, a reduction of 60%.
However if PCA is applied, the reduced space will consider
the 6 variables, leading to only 34% reduction. In addition,
the PCA reduction in this case does not work well. Since the
PCA reduction is totally independent of performance, not only
PCA produces less accurate results (from PDF distribution),
but also provide less reduction. The reconstruction of new
function m(β̂t

1x, β̂t
2x, · · · , β̂t

Kx) is carried through least square
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TABLE I

RESULTS OF SIR ON ISCAS 85 BENCHMARKS

Circuit Number of PCA New PCA delay New delay PCA New
delay delay variance variance reduction reduction

Gates mean error (%) mean error (%) error (%) error (%) (%) (%)
C17 6 0.5 0.4 6.5 4.3 25 42

C432 160 2.3 1.9 9.2 7.1 37 61
C499 202 5.4 2.2 11.9 8.5 23 39
C880 383 3.0 3.0 6.0 6.0 44 44
C1355 546 3.2 3.0 5.5 6.0 30 38
C1908 880 1.1 1.0 6.7 7.2 10 41
C2670 1193 3.1 2.9 5.0 4.5 20 30
C3540 1669 5.4 4.0 8.0 8.0 25 35
C5315 2307 5.0 5.0 8.3 8.3 35 35
C6288 2416 1.6 2.6 6.6 7.0 23 36
C7552 3512 2.7 2.2 4.0 7.4 20 53

approximation. Figure 5,6 demonstrates the distributions of the
delay distribution at the outputs of D4 and D5. The solid line
(red) represents the result from our proposed approach. The
dash line (blue) is the result from Monte Carlo. The doted-dash
line (green) comes from PCA.

We also test our proposed method on ISCASS’85 bench-
mark circuits for 0.13 µm. Assume we fix the yield at
98%. The simulations are performed in the following way:
for particular output, we assigned different process variation
distributions for all gates through the related paths. Further
we assume quadratic timing model with tree process varia-
tions (Weff, Leff, Tox) for each gate model. The model
coefficients are determined by response surface method. All
simulations were run on Pentium 2GHz. The results show
clearly the advantage of using the proposed reduction scheme
over PCA: new method can achieve 20% to 50% parameter
reduction with only less than 8% error on average.

V. CONCLUSION

This paper proposes a new way of reducing the statistical
variations. The new approach creates an effective reduction
subspace (ERS) and provides a transformation matrix by
using the mean and variance of the response surface. With
the generated transformation matrix, the proposed method
maps the original statistical variations to a smaller set of
variables with which we process variability analysis. Thus, the
computational cost due to the number of variations is greatly
reduced.
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