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Abstract

With aggressive scaling down of feature sizes in VLSI fab-
rication, process variation has become a critical issue in de-
signs. We show that two necessary conditions for the “Max”
operation are actually not satisfied in the moment matching
based statistical timing analysis approaches. We propose two
correlation-aware block-based statistical timing analysis ap-
proaches that keep these necessary conditions, and prove that
our approaches always achieve tight lower bound and upper
bound of the yield. Especially, our approach always gets the
tight upper bound of the yield irrespective of the distributions
that random variables have.

1 Introduction

With aggressive scaling down of feature sizes in VLSI fabrica-
tion, process variation has become a critical issue in designs.
The corner-based deterministic static timing analysis (STA)
becomes pessimistic and inefficient because of the complicated
correlations among component delays and the huge number
of corners.

The emerging statistical static timing analysis (SSTA) ap-
proaches [1–7] greatly speed up the analysis by propagating
the distributions instead of single values. An essential prob-
lem in SSTA is how to compute the maximal of random vari-
ables. Assuming that process variations are not very promi-
nent, [3] and [4] used the Clark’s approach [8] to approximate
the maximal of two random variables with Gaussian distri-
bution as a Gaussian variable, and achieved good efficiency
and accuracy. Random variables are represented in a linear
canonical form, and the first two moments (the mean and the
variance) of the outputs are matched.

The delay of a gate or a wire is affected by more than one
types of process variations, and a linear form may not be ac-
curate enough to capture the important information. So [5–7]
extended the linear model to non-linear models. For exam-
ple, the random variables in [7] are represented in a quadratic
model. These approaches are shown to be more accurate than
those based on the linear model.

With the development of SSTA tools, many statistical tim-
ing optimization works also emerged. These works optimize
the timing yield–the probability that a circuit satisfies tim-
ing constraints –using the SSTA approaches to compute the
timing information. Although it is shown that the SSTA ap-
proaches have good accuracy, it is not guaranteed that the
computed yield is either lower or higher than the actual yield.
Without this information, the designers have to over design
in order to make sure that the yield is satisfied. So the com-
putation of the lower bound and the upper bound of the yield
is desired. Agarwal et al. [9, 10] proposed techniques to com-
pute the bounds of the yield, but they did not consider the
correlations ( [9] ignored the correlations between the com-
ponents, while [10] ignored the correlations due to the path
re-convergence), and it is not clear whether the computed
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bounds are close to the actual yield when correlations are
considered.

In this paper, we consider how to compute the lower bound
and the upper bound of the yield. The existing SSTA works
use the linear model or the second order model to approximate
process variations, so even the yield computed by the Monte
Carlo simulation is not the exact yield. But the designers
can select parameters in the models such that the described
process variations are the lower bound or the upper bound
of the actual process variations. Then the accurate compu-
tation of the lower and the upper bound of the yield can tell
whether the objective yield can be satisfied. Enforcing two
necessary conditions for the statistical “max” operation that
are not satisfied by moment-matching based approaches [3,4],
our approaches achieve the tight bounds of the yield. Further-
more, for upper bound computation, our approach can also
be used with the second-order model.

The rest of this paper is organized as follows. Section 2
briefly reviews the existing works on SSTA. Section 3 presents
the relations between the results and the operands in the sta-
tistical “Max” operation, and the problem in moment match-
ing based approaches. Section 4 presents our correlation-
aware approaches for the statistical “Max” operation. The
experiments on the proposed approaches and their compari-
son with the Monte Carlo simulation are reported in Section 5.
Finally, the conclusions are drawn in Section 6.

2 Preliminary

The combinational circuit is represented by a directed acyclic
graph (DAG) G(V, E) with a vertex (or node) set V and an
edge set E. Each vertex represents a primary input, a primary
output or a gate, each edge represents an interconnection from
the source vertex to the target vertex, and the edge weight
is its delay. Two dummy nodes s and t are introduced into
the graph: s is connected to all the primary inputs, and t is
connected from all the primary outputs. The weights of the
edges from s to PIs or from POs to t are zero,

All the delays (or weights), slacks and arrival time are
represented in a first-order canonical form as in [3]:

c0 +

n∑
i=1

ciXi,

where c0 is the mean value, Xi’s are principal components [11],
and ci’s are the coefficients. Principal component analysis [11]
can be performed to get this canonical form [3].

We define the followings for two Gaussian random vari-
ables X and Y with correlation coefficient ρ.

φ(x) =
1√
2π

exp(−x2/2), (1)

Φ(y) =

∫ y

−∞
φ(x)dx, (2)

θXY =
√

σ2
X + σ2

Y − 2ρσXσY , (3)

αXY =
µX − µY

θ
. (4)
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Given any two random variables X and Y , [4] defined
the tightness probability TX of X as the probability that it is
larger than Y , and TY = 1 − TX . Thus,

TX = Φ(
x0 − y0

θXY
),

when X �= Y.
Let Z = max(X, Y ). In block-based SSTA, the moment

matching is performed to compute the canonical form rep-
resenting max(X, Y ). For example, [4] matches the mean,
variance and covariance, while [6] matches the raw moments.

Chang et al. [3] compute the maximal of two Gaussian
random variables as follows. Suppose

A = a0 +

n∑
i=1

aiXi,

B = b0 +

n∑
i=1

biXi.

Let C represent max(A, B). Then according to [8],

µ(C) = TAµ(A) + (1 − TA)µ(B) + θφ(α), (5)

σ2(C) = [σ2(A) + µ2(A)]TA

+[σ2(B) + µ2(B)](1 − TA)

+[µ(A) + µ(B)]φ(α) − µ2(C). (6)

Through moment matching, [3] gets

C = µ(C) +
σ(C)

s0

∑
i

βiXi,

where
βi = TAai + (1 − TA)bi,

and

s0 =

√∑
i

β2
i .

3 Statistical “Max” operation

We introduce two concepts for the random variables.

Definition 1 (Dominance relation) Suppose A and B are
two random variables, then A dominates B iff

Pr(A ≥ B) = 1.

Definition 2 (Comparison relation) Suppose A, B and C
are random variables. If

Pr(C > A) = Pr(B > A),

P r(C > B) = Pr(A > B).

are satisfied, C has the comparison relations with A and B.

The following theorem shows that both the dominance re-
lation and the comparison relation are necessary conditions
for the statistical “Max” operation.

Theorem 1 Suppose A and B are random variables. If C =
max(A, B), C dominates A and B, and has the comparison
relations with A and B.

Proof: Since C is the maximal of A and B, C ≥ A and
C ≥ B, so C dominates A and B.

Pr(C > A) = Pr(max(A, B) − A > 0)

= Pr(max(A − A, B − A) > 0)

= Pr(max(0, B − A) > 0)

= Pr(B − A > 0)

Similarly, we can prove

Pr(C > B) = Pr(A > B).

The block-based SSTA approaches [3, 4] assume that all
the random variables have Gaussian distribution. They use a
canonical form

c0 +

n∑
i=1

ciXi

to represent a random variable, where c0 is the nominal value,
and Xi’s are independent random variables with standard
normal distribution. When they compute the maximal of
Gaussian variables, they use Clark’s approach [8] to match
the mean and the variance. But during this match, the dom-
inance and comparison relations are not kept. For example,
compute the maximal of the following two Gaussian random
variables using the approach [4]:

A = 30 + x1,

and
B = 30.5 + 0.5x1.

Suppose C = max(A, B), then theoretically,

Pr(C ≥ A) = 1 and Pr(C ≥ B) = 1.

But the results computed from the moment matching based
approach in [4] are

Pr(C ≥ A) = 89.46% and Pr(C ≥ B) = 62.57%.

So the dominance relations are not kept. Also theoretically,

Pr(A > B) = 15.84%,

but the moment matching based approach gets

Pr(C > B) = 62.57%,

which should be equal to Pr(A > B) = 15.84%. So the
comparison relations are not kept either.

We also use the approach in [6] to approximate the max-
imal of two Gaussian variables as a non-Gaussian variable,
and find that neither the dominance nor comparison relation
is kept. For example, using the approach in [6], for the dom-
inance relations, we get

Pr(C ≥ A) = 63.43% and Pr(C ≥ B) = 49.17%,

and for the comparison relations, we get

Pr(C > B) = 49.17% �= Pr(A > B) = 15.84%.

Thus, the existing approximation approaches have not kept
the necessary conditions in the statistical “Max” operation.

Timing analysis approach will be eventually used in tim-
ing optimizations. In statistical timing optimization, we need
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Figure 1: CDF Q(x) is an upper bound of CDF P (x).

to compute the yield, that is, the probability that the con-
straint is satisfied. The moment matching based SSTA ap-
proaches [3, 4] are approximation approaches, and it is not
guaranteed whether they are conservative or optimistic. For
example, given a timing constraint for the maximal delay from
the primary input to the primary output, we do not know if
the computed yield is higher or lower than the actual yield.

Definition 3 For any two cumulative distribution functions
P (x) and Q(x), Q(x) is the upper bound of P (x) if and only
if ∀x : Q(x) ≥ P (x).

As shown in Fig. 1, using the upper bound of P (x), the yield
Pr(x ≤ constraint) according to the upper bound of P (x) is
higher than the yield according to P (x).

Definition 4 For any two cumulative distribution functions
P (x) and Q(x), Q(x) is the lower bound of P (x) if and only
if ∀x : Q(x) ≤ P (x).

The yield Pr(x ≤ constraint) is lower when the lower bound
of P (x) is used to compute the yield.

We will show later that the approaches based on the dom-
inance relations or the comparison relations give the lower
bound and the upper bound of the yield respectively.

4 SSTA without moment matching

“Max” and “Add” are two fundamental operations in timing
analysis. In SSTA, all random variables are represented in the
canonical form. The “Add” operation is easy. For the “Max”
operation, we want to maintain the dominance relations or
the comparison relations.

4.1 Theory

Our SSTA approach traverses a circuit in the topological or-
der, and computes the distribution of the arrival time at each
node. Depending on what relations the procedure keeps, our
approach has two variants. The first one, denoted as LB-
DomSSTA, keeps the dominance relations, while the second
one, denoted as UBCompSSTA, keeps the comparison rela-
tions.

Note that the theory in this subsection holds for random
variables of any distributions, not only limited to Gaussian.

For the dominance relation, we have the following theo-
rem:

Theorem 2 In a combinational circuit, when a “max” op-
eration is encountered, if we always use a random variable
that dominates the operands to represent their maximal, the
computed yield is the lower bound of the actual yield.

Proof: Suppose A and B are operands of the “max” opera-
tion, and C dominates A and B. Then C ≥ A and C ≥ B, so

C ≥ max(A, B). So if we use C as the maximal of A and B,
the computed maximal delay is no less than the actual max-
imal delay, so the yield is not higher than the actual yield.

Therefore, LBDomSSTA always gets the lower bound of
the yield.

The comparison relations can be transformed into

Pr(C ≤ A) = Pr(B ≤ A), (7)

Pr(C ≤ B) = Pr(A ≤ B). (8)

For the comparison relation, we have

Theorem 3 Suppose A and B are two random variables. Let

C = βA + (1 − β)B,

where β ∈ [0, 1], then C always satisfies the comparison con-
ditions:

Pr(C ≤ A) = Pr(B ≤ A),

P r(C ≤ B) = Pr(A ≤ B).

Now we prove the following lemma.

Lemma 1 Suppose A and B are two random variables. Let

C = βA + (1 − β)B,

where β ∈ [0, 1], then

max(A, B) ≥ C.

Proof:

max(A, B) − C = max(A − C, B − C)

= max(A − (βA + (1 − β)B),

B − (βA + (1 − β)B))

= max((1 − β)(A − B), β(B − A))

Thus, if A ≥ B, (1 − β)(A − B) ≥ 0, so max(A, B) ≥ C; if
A ≤ B, β(B − A) ≥ 0, so max(A, B) ≥ C.

According to Lemma 1, we know that the “max” of two
random variables as computed in Theorem 3 is not greater
than their actual maximal. So

Lemma 2 The maximal delay from the primary inputs to the
primary outputs computed in UBCompSSTA is not greater
than the actual maximal delay.

This lemma can be easily proved based on the monotonic
property of the “max” operation.

For two random variables A and B, if Pr(A ≤ B) = 1,
then Pr(A ≤ D) ≥ Pr(B ≤ D), where D is a constant. Thus,
we have the following theorem.

Theorem 4 The yield computed by UBCompSSTA gives the
upper bound of the actual yield.

4.2 Lower bound

Most of the existing SSTA approaches assume that the ran-
dom variables have the Gaussian distributions. In this sub-
section, we consider the LBDomSSTA under this assumption.
Suppose A and B are two Gaussian variables. Let

A = a0 +

n∑
i=1

aixi, B = b0 +

n∑
i=1

bixi,

and

C = max(A, B) ≈ c0 +

n∑
i=1

cixi.

Unfortunately, we have the following theorem.
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Theorem 5 Let A and C be two Gaussian variables repre-
sented in the first order canonical form. Then

Pr(C ≥ A) = 1

cannot be satisfied unless C = A+d, where d is a non-negative
constant number.

Proof: Suppose

A = a0 +

n∑
i=1

aiXi, C = c0 +

n∑
i=1

ciXi.

If C = A + d,

Pr(C ≥ A) = Pr(A + d ≥ A) = Pr(d ≥ 0) = 1,

If C �= A + d, obviously
∑n

i=1
(ai − ci)

2 �= 0. So

Pr(C ≥ A) = Φ(−µA−C/σA−C)

= Φ(− a0 − c0√∑n

i=1
(ai − ci)2

)

But Φ(x) is not equal to 1, so

Pr(C ≥ A) < 1.

We can similarly prove the theorem holds on the reverse
direction.

So it is impossible to find a Gaussian random variable to
dominate all the operands simultaneously for most cases. But
if the dominance relation is relaxed to

Pr(C ≥ A) ≥ η, Pr(C ≥ B) ≥ η, (9)

where 0 < η < 1, it is possible to find a C satisfying this
condition. If η is higher, the confidence that the computed
yield is the lower bound increases.

Clark [8] stated that the covariance between C = max(A, B)
and any random variable Y can be expressed in terms of co-
variances between A and Y and between B and Y , that is,

Cov(C, Y ) = Cov(A, Y )TA + Cov(B, Y )(1 − TA).

As suggested in [4], in order to preserve the covariance, let
Y = xi, and we get

ci = aiTA + bi(1 − TA) i = 1, 2, . . . n. (10)

We adjust the mean value (c0) such that the dominance
relation is satisfied.

Pr(C ≥ A) = Φ(
c0 − a0

(1 − TA)
√∑

i
(ai − bi)2

) ≥ η (11)

Pr(C ≥ B) = Φ(
c0 − b0

TA

√∑
i
(ai − bi)2

) ≥ η (12)

Our objective is to compute the minimal c0 such that these
two inequalities are satisfied.

Let ζ be a constant satisfying Φ(ζ) = η. Then the two
inequalities can be transformed to

c0 − a0

(1 − TA)
√∑

i
(ai − bi)2

≥ ζ, (13)

c0 − b0

TA

√∑
i
(ai − bi)2

≥ ζ. (14)

Solving this inequality set, we can get the minimal c0. The
dominance relations are then satisfied.

4.3 Upper bound

4.3.1 Gaussian

In this subsection, we also assume that all the random vari-
ables have the Gaussian distributions.

According to Theorem 3 and the discussion in previous
subsection, if we select β = TA, the comparison relations are
kept, and the covariance is also preserved.

Now we check if the upper bound is tight or not. We com-
pare the mean and the variance computed by our approach
and by the moment matching based approach respectively.

Let C represent the maximal of the two Gaussian random
variables A and B computed by our approach, and D repre-
sent max(A, B) computed by [8].

µ(D) − µ(C) = (TAµA + (1 − TA)µB + θφ(α))

−(TAµ(A) + (1 − TA)µ(B))

= θφ(α) ≥ 0.

Assuming that all the random variables have at most 10%
deviation (3σ) from their nominal values, we get

θ2 = σ2(A) + σ2(B) − 2ρσ(A)σ(B)

≤ σ2(A) + σ2(B) + 2σ(A)σ(B)

≤ (0.10µ(A)/3)2 + (0.10µ(B)/3)2

+2(0.10µ(A)/3)(0.10µ(B)/3)

≤ (0.10/3)2(µ(A) + µ(B))2.

Thus,

θ2

µ2(D)
≤ θ2

(TAµA + (1 − TA)µB)2

≤ (0.10/3)2
(µ(A) + µ(B))2

(TAµ(A) + (1 − TA)µ(B))2

Since the random variables in our problem represent delay
or arrival time, if we set the arrival time at the PIs to 0,
their mean values should be non-negative. Without loss of
generality, we assume µ(A) ≥ µ(B) > 0. So TA ≥ 0.5. Let
µ(A) = γµ(B), so γ ≥ 1. Thus,

θ2

µ2(D)
≤ (0.10/3)2

(γµ(B) + µ(B))2

(γTAµ(B) + (1 − TA)µ(B))2

= (0.10/3)2
(1 + γ)2

(γTA + 1 − TA)2

≤ (0.10/3)2
(1 + γ)2

(0.5 + 0.5γ)2

= 4(0.10/3)2

= 0.0044 (15)

In addition, φ(α) ≤ 1/
√

2π, so the relative error of the mean
is at most √

0.0044√
2π

= 2.66%.

From this derivation, we can see that if the variance is smaller,
or the correlation is positive and larger, the result is more ac-
curate. In practice, this relative error is even smaller because
of the high positive correlation between delays and the small
variance.
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Now we consider the error on the variance, though the
mean plays a major role on the yield.

σ2(D) − σ2(C) = TA(1 − TA)[σ2(A) + σ2(B)

−2ρσ(A)σ(B) + (a0 − b0)
2] − θ2φ2(α)

+θφ(α)[(a0 − b0)(1 − 2TA)] (16)

If θ = 0,

0 =
√

σ2(A) + σ2(B) − 2ρσ(A)σ(B)

=

√∑
i

(ai − bi)2

Thus
ai = bi ∀i = 1 . . . n,

and
TA = 0 or TA = 1.

So
σ2(D) − σ2(C) = 0.

If θ > 0 (note θ ≥ 0),

α2 =
(µ(A) − µ(B))2

σ2(A) + σ2(B) − 2ρσAσB

≥ (γ − 1)2

(0.10/3)2(γ + 1)2

= 900
(γ − 1)2

(γ + 1)2
. (17)

According to [12], when α ≥ 3, the right hand side of Eq.(16)
approaches 0. So when γ ≥ 1.22, the error approaches 0.

When γ < 1.22, according to [12],

σ2(D) − σ2(C) ≤ 0.091θ2.

While according to Eq.(15), when ρ ≥ 0, and γ < 1.22,

θ2 ≤ 0.0022µ2(D).

Thus,

σ2(D) − σ2(C) ≤ 0.091 ∗ 0.0022µ2(D),

= 0.0002µ2(D). (18)

Therefore,
σ2(D) − σ2(C)

µ2(D)
≤ 0.02%.

So the error on the variance is at most 1.41% of the mean
value. If the correlation coefficient (ρ) is more positive, this
error gets even smaller. For example, when ρ = 1, the error
is at most 0.85%.

In summary, the results computed in UBCompSSTA are
very close to the results from the moment-matching approach.
UBCompSSTA gives a tight upper bound of the yield.

4.3.2 Non-Gaussian

In this part, we consider the cases where the random variables
do not have Gaussian distributions. The delay of a gate or an
interconnect may be affected by not only one kind of process
variation, so there may exist non-linear relations between the
delays and the process variations. For example, the delay
of a wire is affected by the process variations on the wire
length, the wire width and the wire thickness. Zhang et al. [7]

has proposed a quadratic delay model for a wire. A random
variable D is represented in the following quadratic model:

D = m + αδ + δT Υδ + γT r,

where r = (R1, R2, . . . Rp)T represents the local variances,
δ = (X1, X2, . . . Xq)

T represents the global variances, α and
γ are sensitivity vectors, and Υ is a sensitivity matrix. All
these Ri’s and Xj ’s are independent and have the standard
Gaussian distribution. The random variables represented in
this form do not have the Gaussian distribution. We will show
that our approach also gets tight upper bounds of the yield
for this situation.

Suppose random variables A and B are represented in the
quadratic model:

A = mA + αAδ + δT ΥAδ + γT
Ar, (19)

B = mB + αBδ + δT ΥBδ + γT
Br, (20)

In the computation of the maximal of two random variables
A and B represented in the quadratic model, Zhang et al. [7]
approximated the random variables as Gaussian variables by
moment matching and computed the skewness of the output.
If the skewness is greater than a threshold, the “max” oper-
ation is delayed, otherwise, the approach got

max(A, B) = mC + αCδ + δT ΥCδ + γT
Cr,

where

mC = TAmA + (1 − TA)mB + θφ(α) (21)

αC = TAmA + (1 − TA)mB (22)

ΥC = TAΥA + (1 − TA)ΥA (23)

γC = TAγA + (1 − TA)γB (24)

The output of our approach differs from the output of [7]
only in the m part. Our approach gets

m = TAmA + (1 − TA)mB .

Since m affects only the mean value, we only need to compute
the error of the mean value of our approach. Let C and D
represent the outputs of [7] and our approach respectively.
The difference between µ(C) and µ(D) is θφ(α). We can
similarly prove that the relative error of the mean is at most
2.66%.

Thus, our approach can also be applied in the situations
where the variables do not have Gaussian distributions, and
get an upper bound of the yield that is close to the result
from [7].

5 Experimental results

We have implemented LBDomSSTA and UBCompSSTA in
C++. Experiments were performed on the large cases in IS-
CAS85 benchmark. We use the cases where all the random
variables have the Gaussian distributions as examples to show
the effectiveness of our approaches. We also implemented a
Monte Carlo simulation tool to compute the maximal delay
from s to t. We made 10,000 trials for each test case. All
the random variables have at most 10% deviation from their
nominal values. All the experiments were run on a Linux PC
with a 2.4 GHz Xeon CPU and 2.0 GB memory.

The comparison results of UBCompSSTA, LBDomSSTA
and the Monte Carlo simulation are shown in Table 1. We per-
form Monte Carlo simulations to compute the 90% percentile
point of the maximal delay from s to t, and select this point
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Table 1: Comparison results of UBCompSSTA, LBDomSSTA and Monte Carlo simulation
name UBCompSSTA LBDomSSTA Monte Carlo

time (s) µ σ yield (%) time (s) µ σ yield (%) µ σ yield(%)
c1355 0.01 1580 40 91.15 0.01 1585 40 89.07 1583 40 90.00
c1908 0.01 4000 100 91.92 0.01 4019 101 88.49 4011 100 90.00
c2670 0.01 2918 61 91.15 0.01 2926 61 89.25 2922 61 90.00
c3540 0.03 4700 120 92.22 0.02 4727 120 88.30 4715 119 90.00
c5315 0.03 4900 123 91.47 0.02 4919 123 88.69 4910 125 90.00
c6288 0.03 12400 312 92.36 0.03 12477 314 87.90 12443 313 90.00
c7552 0.05 4300 107 91.47 0.04 4320 107 88.30 4311 107 90.00

as the timing constraint. We have η = 90% in LBDomSSTA.
The columns 2, 3, 4, and 5 show the running time, the mean of
the maximal delay, the standard deviation of the maximal de-
lay, and the yield computed by UBCompSSTA, respectively.
The columns 6, 7, 8, and 9 show the running time, the mean
of the maximal delay, the standard deviation of the maximal
delay, and the yield computed by LBDomSSTA, respectively.
The 10th and 11th columns show the mean and the standard
deviation of the maximal delay from Monte Carlo simulation,
respectively. The results indicate that UBCompSSTA and
LBDomSSTA always get tight bounds of the yield. The er-
rors on the yield are 1.68% and 1.43% on average, respectively.
The relative errors on the mean and the variance are also quite
small.

Fig. 2 shows the cumulative distribution functions from
LBDomSSTA, UBCompSSTA and the Monte Carlo simula-
tion for the case “c6288”. The CDF from UBCompSSTA
stays on the left side, while the CDF from LBDomSSTA stays
on the right, and the actual CDF stays between them. It
demonstrates that our approaches achieve the bounds in the
whole range.
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Figure 2: The CDFs from different approaches for “c6288”.

6 Conclusions

The state-of-the-art statistical static timing analysis approaches
cannot tell whether the computed yield is lower or higher than
the actual yield. In this paper, we proposed two block-based
statistical static timing analysis approaches by satisfying two
necessary conditions for “max” operation. We proved that
our approaches always achieve tight bounds of the yield. Fur-
thermore, for the upper bound computation, our approach
achieves the bound irrespective of the distributions of ran-
dom variables.
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