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Abstract - Estimation tools are a key component of system-level 
methodologies, enabling a fast design space exploration. 
Estimation of software performance is essential in current 
software-dominated embedded systems. This work proposes an 
integrated methodology for system design and performance 
analysis. An analytic approach based on neural networks is used 
for high-level software performance estimation. At the functional 
level, this analytic tool enables a fast evaluation of the 
performance to be obtained with selected processors, which is an 
essential task for the definition of a “golden” architecture. From 
this architectural definition, a tool that refines hardware and 
software interfaces produces a bus-functional model. A virtual 
prototype is then generated from the bus-functional model, 
providing a global, cycle-accurate simulation model and offering 
several features for design validation and detailed performance 
analysis. Our work thus combines an analytic approach at 
functional level and a simulation-based approach at bus 
functional level. This provides an adequate trade-off between 
estimation time and precision. A multiprocessor platform 
implementing an MPEG4 encoder is used as case study, and the 
analytic estimation results in errors only up to 17% when 
compared to the virtual platform simulation. On the other hand, 
the analytic estimation takes only 17 seconds, against 10 minutes 
using the cycle-accurate simulation model. 

I. INTRODUCTION

Advances in technology provide the development of 
complete multiprocessor systems integrated on a single chip 
(MPSoC), including heterogeneous processors, 
application-specific HW components, memories, digital 
interfaces, and occasionally analog interfaces. 

MPSoC complexity demands new system-level tools that 
support the design above the RT-level. Performance is usually 
one of the main criteria adopted to guide the architectural 
design. However, other aspects also need to be evaluated as 
soon as possible in the design flow, such as power, energy, 
and area. Considering the huge design space, new 
system-level methodologies have to support a fast and 
flexible design space exploration. This requires high-level 
performance estimation tools integrated with exploration 
strategies in order to help the ranking of design alternatives. 

Flexibility, time-to-market, and cost requirements have 
made software a dominant part of current embedded systems. 
Therefore, high-level software performance estimation tools 
are needed in early steps of an MPSoC design flow. Although 
software performance estimation gives basic information 
about the system performance, it does not consider some 
system-wide effects, such as those imposed by 
communication mechanisms in a multiprocessor environment. 

This requires an integrated HW/SW estimation approach that 
considers these inter-component relationships. 

Many academic and commercial tools are provided for 
software performance estimation. Analytic software 
performance estimation, however, is an open research topic. 
Proposed approaches aim at the development of fast and 
accurate methods, but they are not usually integrated in a 
complete design flow. After the design refinement, some 
approaches propose global simulation models that allow the 
complete MPSoC performance analysis. However, these 
simulation platforms are not linked in a global design flow, 
often requiring manual modeling of the virtual prototype for 
each design. 

In this paper, an appropriate methodology for performance 
analysis at different abstraction levels, offering different 
trade-offs between estimation speed and accuracy, is tightly 
coupled with a synthesis environment that provides a path to 
implementation. A software performance estimation technique 
based on neural networks is used, targeting at the processor 
selection [1]. At a high abstraction level, this estimator 
provides fast results and helps the designer select the suitable 
processor to run a given application. The processor selection 
is then used in an MPSoC design environment for a further 
HW/SW refinement [2], offering a path to the final 
implementation. This refined architecture is evaluated by 
means of a virtual prototype based on cycle-accurate 
simulation, providing an integrated design and performance 
evaluation environment. In the case study presented in this 
paper, estimation errors of only up to 17% when compared to 
virtual platform simulation results have been found, while the 
estimation process takes only 17 seconds, against 10 minutes 
executing the cycle-accurate simulation model. 

The remaining of this paper is organized as follows. 
Section 2 discusses related work. Section 3 presents an 
integrated methodology for performance estimation and 
MPSoC design. Section 4 presents the analytic neural 
network estimator, and Section 5 describes the performance 
analysis based on a virtual prototype. A case study of an 
MPEG4 encoder is presented in Section 6, and Section 7 
draws the conclusions and perspectives. 

II. RELATED WORK

A. Software performance estimation

Software estimation tools can be divided in two groups: 
simulation and analytic-based. Simulation-based methods use 
cycle-accurate simulators to estimate the software execution 
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time. Analytic methods use abstract models and cost functions 
to calculate the software execution time. An intermediate 
solution uses code annotations (at instruction or basic block 
level) with the execution cost to estimate the software 
performance [3]. In this case, the application runs natively, 
thus overcoming the large execution time of cycle-accurate 
simulators. 

Analytic software performance estimation methods are 
proposed to provide a fast estimation with a low modeling 
and execution effort. This is useful for high-level design 
space exploration. Usually, an application profiling is 
performed to extract the number of executed instructions of 
various types [3,4,5,6]. After this, a method maps these 
instructions to a performance model that computes the 
execution time. 

Giusto et al. [4] compile the application code into a virtual 
instruction set (a simplified RISC set with 25 instructions). 
The estimation is performed by evaluating the execution cost 
of the virtual instructions in the target architecture. The cost is 
estimated using a training set and applying a linear regression 
method. The authors show that, due to the linear 
approximation, the proposed method is accurate only when 
the training set and the application are similar. 

Bontempi and Kruijtzer [5] use a nonlinear method to 
estimate the execution time. For a given benchmark set, a 
profiler extracts a functional signature vector for a virtual 
processor (with a set of 42 instructions), containing the 
instruction types that appear in the code and the number of 
times each instruction type is executed. They also use a 
training approach to calibrate the estimator. In the utilization 
phase, they apply a modeling technique called lazy learning to 
choose an estimation function that is based on a criterion of 
neighbourhood between the application and the training set. 
This function, which may be locally linear, uses only points 
of the training set that are closer to the application. They 
report a mean error of 8.8% in the estimations, for a set of 6 
benchmarks, each one executed with 15 different input data 
sets. 

In this work we propose a non-linear estimator based on 
neural networks that is more precise than linear methods such 
as proposed by Giusto [4], mainly for advanced architectures. 
Our method is similar to that proposed by Bontempi [5], but 
in our case we use the instruction set of the target processor, 
resulting in a better instruction classification and 
consequently increasing the precision.

B. Performance estimation with virtual prototypes  

In a refined architecture, where the processor is already 
selected and hardware and software components have been 
defined, a global simulation model may be used for 
performance analysis. In MPSoC architectures composed of 
multiple processors, hardware IPs, memories, and peripherals, 
the evaluation of individual components is not sufficient to 
analyze the system performance. A virtual prototype provides 
a global simulation model, integrating a cycle-accurate model 
of the target processor with simulation models of the further 
hardware modules, described either at TLM or RT-level. 

Currently, virtual prototype environments for modeling and 
simulation based on SystemC, such as MaxSim [7], Coware 
ConvergenSC [8], and Synopsys System Studio [9], provide a 
rich set of components such as processors, memories, and 

peripherals that can be extended by user-defined modules. 
Using these components, an MPSoC platform is modeled and 
simulated. Additional tools support the RTL synthesis for 
given components of the library, thus providing an automatic 
path to the silicon. 

MPARM [10] is an environment for MPSoC design space 
exploration using SystemC. It is a complete platform solution 
for MPSoC simulation composed of processor models (ARM), 
bus models (AMBA), memory models, hardware support for 
SMP (hardware semaphores), and a software development 
toolset including a C compiler and an operating system 
(uCLinux). A cycle-accurate instruction set ARM simulator 
developed in C++ is encapsulated in a SystemC wrapper and 
integrated into the platform. The wrapper implements the 
interface and synchronization between the ISS and the 
SystemC simulation framework. This integration allows one 
to plug the ISS into a system simulation, activated by a 
common system clock, thus providing a consistent and 
synchronized hardware and software multiprocessor 
simulation. MPARM provides several performance statistics, 
such as cache miss/hit rate and bus contention and average 
transfer waiting time. 

Meyr et al. [11] propose a link between processor models 
generated from the LISA architecture description language 
and SystemC-based simulation. Processor models are 
described in LISA either at instruction or cycle-accurate level. 
The rest of the system, including buses, IP components, and 
memories, is described in SystemC. The goal is to jointly 
explore processor and communication using a system-level 
approach. An integrated co-verification environment provides 
a way to analyze the software-related performance, such as 
CPU load and RTOS overhead. Furthermore, shared resources 
(for example memory and buses) directly affect the SW 
performance, and an isolated analysis of a single processor 
would hide potential problems and bottlenecks. 

In virtual prototype environments, the architecture 
development starts with the virtual prototype modeling. 
Usually, a more abstract level is not supported in these 
environments. Virtual prototypes build a global simulation 
model and support performance analysis. However, the 
integration with the design flow is poor, and many manual 
configurations are needed. In this work, the virtual prototype 
is integrated with a hardware and software refinement design 
tool. This integration allows one to start the design at a high 
abstraction level and enables the automatic generation of the 
virtual prototype. This work uses the MaxSim [7] 
environment as virtual prototype environment, due to the 
support for SystemC models and predefined support for 
performance analysis. 

III. INTEGRATED METHODOLOGY FOR MPSOC DESIGN AND 
PERFORMANCE ANALYSIS

In this section, an integrated methodology for design and 
performance analysis of an MPSoC is presented. This 
methodology is proposed to support software performance 
estimation, mainly for the processor selection or evaluation at 
functional level, and global performance analysis using a 
virtual prototype. Other estimation tools that may be 
necessary to guide additional aspects of the MPSoC 
architecture exploration, such as HW/SW partitioning, task 
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partitioning, or communication interconnection design, can be 
easily integrated to the proposed methodology. 

Figure 1(a) presents the first step in our software 
performance estimation methodology. After the partitioning 
between hardware and software components, each software 
component needs to be mapped into a given processor. Our 
neural network (NN) estimator aims at the evaluation of this 
processor selection process. This methodology is adequate to 
drive the mapping of a task to a predefined portfolio of 
processors, where a trained NN estimator is available for each 
processor. 

Virtual Architecture
Model at TLM Level
Implicit CPU, abstract HW

BFM Level
Explicit CPU and OS, RTL hardware

ROSES
HW/SW interface

refinement

VM1 VM2

VM3 HW

Appl.
Tasks

OS
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CPU HW

Intercommunication Network

CPU

HW wrapper HW wrapper

Appl.
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System Specification

Architecture exploration

f1
f2

f3
f4 Processor 

selection for SW 
components

Integrated HW 
and SW 
performance 
analysis

(a)

(b)

(c)

Fig. 1. Integrated methodology for MPSoC design and performance 
analysis 

After the high-level architecture exploration, a virtual 
architecture composed of hardware and software components 
and TLM channels for communication is derived, as shown in 
Figure 1(b). Software components are organized in tasks and 
use a communication API. Hardware components are 
considered as IP blocks, and only their interfaces are known. 
The virtual architecture is used to validate the software 
functionality and the communication between the 
components. 

The virtual architecture is used as input for the refinement 
of HW and SW interfaces [2]. Software interfaces include all 
device drivers required to implement the communication API 
and a dedicated operating system for each processor. The 
HW/SW interface refinement follows a component-based 
approach. The interfaces are assembled using basic elements 
that implement the services required by the application. These 
elements are configured with adequate parameter values. For 
software components, parameters include for instance the 
processor type, and for the channels they include the 
communication protocol (e.g. FIFO or handshaking). 

After the refinement of HW and SW interfaces, a 
bus-functional model (BFM) architecture is derived, as shown 
in Figure 1(c). In this architecture, the software part is 
modeled as tasks running on an operating system. Hardware 
components are available at RT-level as IP components. A 
virtual prototype, for estimation purposes, is generated from 
the BFM architecture as input to the MaxSim [7] environment. 
An instruction set simulator is used as processor model, and 
SystemC modules are used for hardware components. 

The performance analysis at this level enables the designer 
to jointly verify the SW and HW. The designer may validate 
design decisions such as scheduling policies, drivers, and 
buffer sizes. Using a virtual prototype, the designer can also 

verify the impact of different cache sizes and memory 
hierarchies in the final performance. Profiling results, such as 
the execution time of each function, make possible the 
optimization of the software code. 

IV. SOFTWARE PERFORMANCE ESTIMATION BASED ON NEURAL 
NETWORKS

High-level performance estimation is an interesting 
alternative, since it may combine a low cost for obtaining the 
performance data with an acceptable precision. This allows a 
fast evaluation of different processor alternatives in the early 
phases of the design cycle. The main problem to develop a 
software estimation tool is an accurate performance model 
that considers advanced architectural features such as 
pipelines, caches, and branch predictors. 

The exact number of cycles required by an application may 
be obtained using the real processor or a cycle-accurate 
simulation. These techniques, however, have an inherent high 
cost for the development and setting of the simulation model. 

Neural networks have been chosen for performance 
estimation since they can generalize their behavior even when 
the process to be modeled is highly non-linear, which is the 
case of software running on processors having pipeline and 
cache effects. In this work, a feedback-forward network [12] 
has been used, due to its simplicity and adaptation to the 
non-linear behavior of software performance estimation. 

Figure 2 presents the two main steps of our estimation 
method: training and utilization. In the training phase, a set of 
samples is presented to the network. Its inputs are the number 
of executed instructions of different instruction types 
(branches, integer and floating point arithmetic, memory 
accesses, etc), while the expected result is the number of 
cycles consumed by the application. 

Fig. 2. Development and utilization of the estimation tool 

Figure 3 presents the neural network used to estimate the 
application cycle count for the ARM processor, where the 
inputs are the number of instructions of the different types. It 
is composed by an input layer, a hidden layer with 5 neurons 
containing a tansig transfer function, and an output layer with 
one neuron containing a linear transfer function. These 
transfer functions are available in the Matlab Neural Network 
Toolbox [13]. 
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Fig. 3. NN performance estimation 

For training, a cycle-accurate simulator is required to 
extract the number of executed instructions and the total 
number of cycles consumed by a set of training benchmarks. 
We have selected a small number of instruction classes that 
are sufficiently representative of the timing behavior of all 
instruction types (forward branch, backward branch, 
load/store, multiple load/store, and ALU). An iterative 
learning process, based on the back-propagation algorithm, 
modifies the weights of the input and output arcs of neurons 
in each layer, so the network presents an output that is as 
close as possible to the expected result. The training phase is 
realized using the Matlab software. After the training phase, 
the estimation tool is ready to be used in many designs. 

In the utilization phase, an application is compiled for the 
given target processor, and the number of executed 
instructions of each type is obtained by a dynamic instruction 
count and presented to the neural network, so that it can 
estimate the number of cycles consumed by the application. 
An alternative approach to obtain the number of executed 
instructions is a static method, as proposed in [14,15]. 

The training time may be long, depending on the inputs 
and complexity of the generalization. However, once the 
network is trained, its utilization has a low cost, consisting in 
the dynamic instruction count of the application and in the 
neural network cost, which requires only the multiplication of 
the inputs by the weights of the neurons. The dynamic 
instruction count dominates the time consumed in the 
utilization phase, but it is faster compared to a cycle-accurate 
simulation, as presented in Table III (Section VI). 

For each target processor, a different estimator is generated. 
This performance estimation method is especially adapted for 
evaluating if a candidate processor can execute a certain 
application or task under given performance requirements. It 
is also adequate for design space exploration in the software 
domain, for instance considering various algorithmic 
alternatives for design tasks and various partitionings of tasks 
among processors. Architectural modifications in the 
processor, however, would require a new training process and 
thus a long turnaround time. 

V. PERFORMANCE ANALYSIS USING A VIRTUAL PROTOTYPE

After the refinement of hardware and software interfaces, 
the bus-functional model (BFM) is used to generate a virtual 
prototype. The software part is composed of tasks that 
execute upon an operating system in each target processor. 

The operating system is responsible for implementing the API 
(application programming interface) used for the 
communication between components. Hardware components 
are described in SystemC. The evaluation of this virtual 
prototype is required before the physical design, giving to the 
designer detailed information about the overall system 
performance. 

In this work, the MaxSim [7] environment is used to 
generate a virtual prototype model enabling performance 
evaluation. MaxSim is based on SystemC. This simulation 
model is automatically generated from the architecture 
description that includes the components, their interfaces, and 
the connections between them. 

Hardware components are considered as IP blocks, for 
which it is supposed that cycle-accurate models are supplied. 
The hardware interface adapters generated in the HW/SW 
refinement step are also available as SystemC cycle-accurate 
models. The SystemC components are encapsulated in 
MaxSim components and added to its library. 

Software is simulated using cycle-accurate processor 
models available in the MaxSim component library. They are 
integrated to the hardware simulation models, resulting in a 
single global simulation model. Hardware and software 
simulators run in a synchronized way, making possible the 
detection of problems arising from the communication 
between components, interrupt handling, and others. 

At this level, performance evaluation allows the analysis of 
the influence of each component in the global performance. 
For the software analysis, the execution timeline gives the 
cycles consumed by each application function, easing the 
detection of bottlenecks and optimization points. Different 
cache sizes can be tested and their performance analyzed. 
MaxSim supports the custom profile of user-defined 
components and provides a profiling interface that allows the 
module instrumentation. The performance events generated 
during the simulation are visualized in XY charts. 

VI. CASE STUDY: MPEG4 ENCODER

In this section, an MPEG4 encoder platform is used as case 
study to show the application of the proposed methodology. 

A. Application overview

We evaluate the proposed approach using a parallelized 
MPEG4 encoder platform [16], shown in Figure 4. The 
execution of the MPEG4 encoder application is divided 
among two processors. The first processor is responsible for 
the core encoder algorithm, while the second one implements 
the Huffman compression code (VLC). The architecture is 
flexible and allows the parallelization of the Encoder and 
VLC tasks. Input, Combiner, and Direct Memory Access 
(DMA) are hardware IP components. The Input component 
divides one frame among the parallelized Encoder processors, 
and the Combiner is responsible for merging the results from 
VLC processes. The DMA hardware component is 
responsible for managing the transfers among the 
components.  
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Fig. 4. Virtual architecture organization of the MPEG4 encoder 

The parallelization allows the platform configuration for 
different encoder profiles, from low definition to 
high-definition video. Moreover, the platform allows the 
utilization of parallel processors running at low frequencies 
instead of a high-performance and high-power consumption 
processor. 

We consider that the system specification has been already 
partitioned in terms of hardware and software components. 
However, the processors for the software execution need to be 
defined. 

After the architecture exploration and definition of the 
virtual architecture, the HW/SW interface refinement is made 
based on the processor chosen in the previous step. Then, a 
virtual prototype is generated to evaluate the performance of 
the refined architecture. 

B. Neural network estimation 

The target processor to be evaluated was the ARM946 [7], 
with 4 Kbytes of data cache and 4 Kbytes of instruction cache. 
A set of benchmarks composed of control-dominated and 
data-dominated applications was used to train and test the 
estimator. The benchmark set is composed of 30 different 
benchmarks, with a total of 40 samples, because some 
benchmarks are used with different inputs. Table I describes 
the benchmarks used in the experiment. 

TABLE I. BENCHMARK SET

Sort and Search Quicksort, bubble sort, selection sort, sequential search, 

binary search  

Numerical Matrix multiplication, matrix inversion, matrix sum, 

matrix count, root computation, square root 

computation, LU decomposition, statistics (mean, 

variance, standard deviation), Fibonacci, complex 

number arithmetic operations 

Data 

Processing 

FFT, FIR, data compress, DES cryptography, ADPCM 

(Adaptive Differential Pulse Code Modulation), DCT 

(Discrete Cosine Transform), CRC (Cyclic Redundancy 

Check), LMS (least-mean square) algorithm 

Synthetic 6 synthetic algorithms 

Statecharts Code generated automatically from Statecharts 

descriptions 

To verify the precision of this estimator, a set of 18 samples 
was used in the training phase and the remaining ones as test 
set. The results are presented in Table II. The mean estimation 
error considering all benchmarks is 9.05%. In the test set, the 
mean error is 10.08% with maximum and minimum errors of 
11.58% and –35.59%, respectively. Such errors, even high, are 
acceptable in a high-level performance estimation. 

To obtain the dynamic instruction count used in the 
estimation step, an instruction-accurate simulator was used. 
Table III presents the speedup obtained with the NN 
estimation when compared against the cycle-accurate 
simulation. Even requiring a dynamic instruction count, the 
NN estimation is much faster due to the complexity and time 
required in the full processor simulation needed in the 
cycle-accurate simulation. 

TABLE II. ARM946 ESTIMATOR RESULTS

Min error Max error Mean error Std deviation

All benchmarks -35.59% 29.75% 9.05% 8.90%

Training set -18.30% 29.75% 7.62% 7.97%

Test set -35.59% 11.58% 10.08% 9.54%

Using the same neural network to evaluate the Encoder and 
VLC tasks, the estimated numbers of executed cycles are 
122,910 and 21,613, respectively. This estimation is 
performed only for one macroblock of 16x16 pixels, since the 
same execution is repeated for the other macroblocks in the 
frame. These values were obtained considering only the 
respective core algorithms and do not take into account the 
impact of communication or operating system. 

TABLE III. COMPARING CYCLE-ACCURATE SIMULATION AND 

ESTIMATION 

Benchmark Cycle-accurate 

execution time 

Estimation 

time 

Estimation 

error (%) 

Matrix sum 9 sec 0.39 sec 3%

LMS filter 12 sec 0.52 sec 1%

MPEG Encoder 600 sec 17 sec 17%

If we consider a frame of 174x144 pixels, the encoder will 
divide it in 99 macroblocks. From our estimation tool, the 
macroblock execution cost is 122,910 cycles, and 
consequently a complete frame encoding will demand 
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12,168,090 cycles. Using a rate of 25 frames/second, the 
deadline for frame processing is 40 milliseconds. The 
real-time requirement could be respected using an Encoder 
processor running at 265 MHz. On the other hand, if the 
processor frequency is fixed at 100 MHz, this will require 3 
processors executing the encoder task in parallel. 

C. Virtual prototype simulation 

To validate our concept, we use an architecture composed 
of one processor to execute the Encoder and another one to 
execute the VLC task. After the HW/SW interface refinement, 
we use a virtual prototype to obtain performance results using 
simulation. This integrated design and performance analysis 
approach eases the virtual prototype generation and 
evaluation. 

To evaluate the performance of the refined design, a virtual 
prototype was produced using the MaxSim environment. In 
this work, a tool automatically imports our design to MaxSim. 
It is responsible for the encapsulation of the SystemC IP 
components as MaxSim components. We consider that the 
supplier provides hardware IP components as cycle-accurate 
models. The design hierarchy is preserved in the virtual 
prototype, thus easing the system analysis. 

The global simulation model provides a suitable way to 
evaluate hardware and software components. Analyzing the 
exact software execution time in MaxSim, and comparing it 
with results obtained by the neural network estimator, we 
obtain an estimation error of 10.28% for the Encoder task and 
17% for the VLC task. These errors have two sources. The 
first source is the intrinsic error related to the neural network 
estimation. The second one is related to the overhead of the 
operating system and drivers, which are not considered in the 
dynamic instruction count used as input to the neural network. 
In fact, at specification level we are exploring the architecture, 
and consequently the operating system and the communication 
API are not yet defined. 

An important remark is that the communication between 
the processors is implemented by the DMA component and 
thus does not require shared resources such as buses and 
memories. The estimator is trained considering a 
monoprocessor system without concurrent accesses to the 
memories. In the case of an SMP architecture, load/store costs 
may have a high variability and the estimation could result in 
a larger error. 

VII. CONCLUSIONS

Early performance estimation and analysis tools have 
recently attracted the attention of the research community due 
to the complexity and heterogeneity of the current and future 
embedded systems. Fast and accurate performance estimation 
tools are needed to help the design architecture exploration. 

This work proposes an integrated methodology for design 
and performance analysis. Processor selection is supported by 
a software performance estimator based on neural networks. 
The estimator provides flexibility and precision even for 
complex processors, with pipeline and cache memories. The 
estimator is fast compared to the cycle-accurate simulation, as 
presented in Table III, helping the architecture exploration by 
enabling a rapid processor selection. 

After the processor selection and architecture exploration, a 
“golden” virtual architecture is created. This architecture is 
then refined to a BFM model containing processors, IP blocks, 
memories, and peripherals. The software part is composed of 
software tasks running under an operating system. The 
simulation model for system evaluation is automatically 
generated from the architecture description in the MaxSim 
environment. This integration allows the designer to spend 
time in the design analysis, and not in the virtual prototype 
modeling. 

Future work will investigate the use of a virtual architecture 
using TLM channels to estimate the communication 
requirements. The estimation at this level will help in design 
decisions regarding the implementation of HW and SW 
interfaces. The OS overhead is considered only in the virtual 
prototype simulation, but not in the neural network estimator. 
A possible extension is to take into account the system calls in 
the neural network model, with a fixed cost, thus increasing 
the estimation precision. 
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