
Towards scalable and secure execution platform for embedded systems 

Abstract – Reliability of embedded systems can be enhanced by 
multicore and partitioning approaches. Physical partitioning 
based on AMP multicore achieves runtime stability of multiple 
applications in a system and prevents the whole system shutdown 
as well even when a malicious code creeps in. Combined with 
logical partitioning by processor virtualization and SMP 
technologies, the multicore architecture could realize more 
flexible and more scalable platform for future embedded systems. 

I. Introduction 

Multicore processors have become popular in enterprise 
servers and PCs in order to reduce the processors’ power 
consumption, which is now close to maximum limits for the 
equipment [1]. A shift to multicore is now gradually occurring 
in embedded systems as well, in which low power with high 
performance is quite essential. In addition, embedded systems 
also strongly require operation stability and reliability. 
Although traditional embedded devices with rather simple 
functions implemented on realtime OSs have provided these 
features without difficulty, recent ones, which employ richer 
OSs such as Windows or Linux to realize more advanced 
functions, have some challenges in maintaining the features. 
For example, advanced cell phones are required to maintain 
their multimedia performance even when several rich 
applications run simultaneously, and moreover, they should 
still provide core functions such as telephone calls even when 
a user innocently downloads and runs an interesting program 
with a hidden virus. These requirements are unique to 
embedded devices, and we think that we must establish a 
special multicore architecture well suited to the characteristics 
of embedded systems. 

In this paper, we introduce physical partitioning to cope 
with these unique requirements and show two cases where we 
balance partitioning with communications. Then we present a 
more flexible partitioning mechanism free from the hardware 
restriction, and briefly study the coming SMP approach. 

II. Reliability and Partitioning 

As we mentioned, reliability is considered quite essential in 
embedded devices. Here, by “reliability” we mean two 
characteristics. 

• Performance Assurance 
Reliability in normal operation. Whatever types of 
applications are mixed in a single system, executions 
of all the tasks should be well coordinated so that each 
application fulfills its performance requirement. 
This challenge arises from the difficulties in 
application scheduling. It is hard for system designers 
to control the behavior of many entangled tasks on a 
complicated OS and layered middleware. 

• Robustness 
Reliability in abnormal situations. Safety mechanisms 
should prevent the whole system from going down, 
even when some unintentional bugs or some malicious 
viruses exist in the system. Vulnerable points are 
unpredictable and likely to be increasing. 

There are two approaches to achieve these reliability 
requirements. These approaches have tradeoffs in performance, 
certainty, flexibility and cost. 

1. Hardware approach:  
Partition the system using a multicore architecture so 
that interference between the subparts is reduced. The 
most obvious method is physical partitioning along 
each processor core boundary. 

2. Software approach: 
Reinforce the scheduling mechanisms and enhance the 
system protection functions. These are typically 
accomplished mainly by modifications in the OS 
kernel and its libraries. 

Regarding the above reliability issue of embedded systems, 
we decided to choose the hardware approach for a start, 
because we considered the certainty of reliability as the 
primary issue. 

III. Partitioning by Physical Cores 

A. Multitasking Parallel 

Fig. 1 shows our basic structure we have chosen for the 
hardware approach mentioned above. The point is that we 
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have adopted both CPU core level- and OS kernel level 
partitioning. We call the way of the partitioning “Multitasking 
Parallel.” [2] 

In the Multitasking Parallel method, an independent 
instance of the OS kernel runs on each CPU core in an AMP 
(Asymmetric Multiprocessing) type multicore LSI. Because 
task schedulers, who assign CPU resources to the tasks, stay 
on each OS instance (namely on each physical CPU core) one 
by one, it is easy to prevent bad influences from one 
application on a core from affecting another application on 
another core. For example, an interrupt-driven real-time 
application would not interfere with a CPU-centric application 
if they were on different physical cores. 

Generally, partitioning and communication are tradeoffs. 
Communication between applications becomes more difficult 
if we make the partitioning harder for the sake of good 
performance assurance. On the other hand, application 
interference will be present again if we permit unrestricted 
communications. How to manage the tradeoff between 
cooperation among cores and potential interference requires 
further development. Now we present two cases about 
physical partitioning, and we take this topic in each case. 

B. Performance Assurance by Multicore 

OS wrapper: To evaluate the performance assurance, that is, 
stability of simultaneous operations of multiple applications, 
we have to port the applications onto the multitasking parallel 
environment, where we have to take the inter-task 
communication into account. Since the OS for each CPU core 
is based on a conventional OS for a single CPU, the OS 
supports only local communications within the core. 
Programmers have to choose the best APIs to use based on 
which core the peers that will communicate exist on. This is 
undesirable because the programmers are forced to expand 
extra effort in order to port their applications to multicore 
environments. 

There are two ways of dealing with the communication 
issue.  

1. Modify the set of communication modules and their 
functions so that they support inter-core 
communications as well as intra-core ones. 

2. Achieve inter-core communications with compatible 
APIs by placing a new middleware layer above the OS 
kernel.  

We adopted the latter one since it is more independent from 
the detailed implementation of the OS kernel. We named the 

middleware “OS Wrapper” because of its placement to the OS 
kernel. 

The OS wrapper structure is shown in Fig.2. A client library 
(CLlib) linked with an application hooks the inter-task 
communication API calls, and sends messages to the 
destination through the local interrupt mechanism between 
cores if the message recipient is on another CPU core. Proxy 
tasks are placed to wake up the dormant receiver task on 
behalf of the scheduler in the OS kernel. We designed the API 
functions of the OS wrapper compatible with those of a single 
CPU OS, so that applications on any core can communicate 
with each other using the same API names as those used with 
traditional single CPU OSs. 

Implementation: We implemented the above mechanisms 
on our multicore SoC MP211 (Fig. 3) [3], which features: 

• AMP architecture including 3x ARM9 CPU cores and 
1x DSP core 

• High performance memory bus architecture to support 
simultaneous operations of the cores 

• Energy saving circuits to reduce operating and 
sleeping power consumption 

Three Linux kernels run on three ARM cores, and the OS 
wrapper is implemented as a combination of Linux device 
drivers and user-land libraries linked with applications. Our 
current implementation supports communication APIs 
compatible with SystemV IPCs (message queues, semaphores, 
and shared memory objects) and UNIX domain sockets. 

Evaluation: We chose an application set composed of: 
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• a DTV viewer which consists of an H.264 decoder (a 
DSP task) and its synchronization tasks (CPU tasks) 

• a network news reader which consists of an RSS parser 
and an HTML browser 

And we assign the application tasks to the CPU and DSP 
cores in MP211 as following:  

• CPU core0: HTML browser, X server 
• CPU core1: RSS parser 
• CPU core2: DTV synchronization 
• DSP core: H.264 decoder 

A screenshot of the application set running on MP211 is 
shown in Fig. 4. In case we run the application mix on the 
multitasking parallel environment (i.e. using all three CPU 
cores), both applications keep running smoothly. By contrast, 
in case we run them on a single CPU core, we can easily 
observe short disruptions in the sound playback. 

Fig.5 shows jitter of the DTV synchronization task intervals, 
and we can see obvious improvements in jitter occurrence in 
the multitasking parallel execution. It shows that stable 

execution of multiple applications is achieved by partitioning 
the CPU resources. Note that the above applications are 
programs for a single CPU environment and we made no 
modifications on them. This means the OS wrapper achieves a 
seamless multicore communication environment despite the 
physically partitioned hardware architecture. 

C. Robustness by Multicore 

Multicore architecture can be adapted to improve system 
robustness. Application downloading, which is now quite 
popular in Java applets for cell phones, is expected to be 
applied to native binary programs for a wider group of 
embedded devices in the near future, because native 
applications have the advantage in run-time efficiency and 
have the ability to specify detailed actions specialized for the 
devices. On the other hand, appropriate safeguards are 
necessary to prevent native applications from accessing 
unauthorized system functions. Partitioning can be applied to 
this issue so that the system can maintain proper security. 

We developed a multicore security platform called 
“FIDES” that provides a secure execution environment for 
downloaded native applications [4]. Its basic concept is to 
partition the whole system into several domains with different 
trust levels and to execute each application only in its 
corresponding domain. 

Consider the case of a cell phone. The core functions of a 
cell phone such as telephone calls, emails and PIM functions 
(e.g. address books, task lists and personal notes) are executed 
in the Base domain (Fig. 6). Downloaded applications are 
assigned to ether Trusted or Untrusted domains, depending on 
the level of trustworthiness of the applications (e.g. whether it 
has been validated by the telecommunication carrier or not). 
This separation prevents unauthorized access to the core 
functions.  

In order to make FIDES more practical, we incorporated a 
hard-wired filtering logic called Bus Filter with the 
multitasking parallel architecture. The bus filter mechanism 
prohibits unauthorized access from less trusted domains to the 
main memory and/or I/O devices that are shared among the 
domains. Thus we partitioned the memory and I/O resources 
as well as CPU resources. 

Fig. 4. Screenshots of the evaluation applications 
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The issue of how to best balance partitioning and 
communications still exists in this area. There should be 
communication paths between domains to communicate, for 
example, the downloaded contents and the DRM (digital 
rights management) functions. Malicious activities could 
propagate over the paths into the base domain. We introduced 
a mechanism called Dynamic Access Control, which restricts 
the access rights of a task dynamically when it talks with a 
less trusted task. 

We implemented the FIDES platform with MP211 and 
SELinux (Security-Enhanced Linux), and our evaluation 
results show that the bus filter logic size is estimated to be 
small enough in the total die area (<1%), and that performance 
overhead due to the dynamic access control is only 4%. Thus 
we can say that partitioning can provide secure environment, 
with necessary communications granted. 

To summarize, we have shown that the physical 
partitioning with an AMP multicore can achieve the reliability 
requirements (performance assurance and robustness) of 
embedded systems. Several examples of partitioned system 
have already been implemented on a MP211 chip. 

IV. Flexibility and Scalability 

A. Shift to Logical Partitioning 

Partitioning by physical cores can achieve reliable systems 
as we mentioned, to be sure, but when we adapt it to wider 
range of target devices, it may become a subject of discussion: 

• Flexibility 
Close correspondence between each system model 
and the number of physical cores could be considered 
as a sore spot. It is undesirable to design and 
manufacture a custom version of multicore LSIs for 
each partition model of the embedded systems, since 
manufacturing many kinds of LSIs in small quantities 
will become economically prohibitive in the near 
future, due to the rising costs of design and 
verification of complicated logic, and the increasing 
cost of LSI masks and manufacturing fabs. 

• Scalability 
Performance assurance and robustness in the physical 
partitioning approach mentioned depend on the 
hardware architecture of AMP. AMP is not 
necessarily the best architecture for performance 
acceleration of a single application, where SMP 
(Symmetric Multiprocessing) may be preferable. 

Towards more flexible and scalable architecture for the 
future embedded systems, we think it necessary to shift from 
physical partitioning to something more flexible; logical 
partitioning. Logical partitioning is an approach for fulfilling 
the required performance characteristics on a single hardware 
architecture, utilizing the software mechanisms of resource 
partitioning and scheduling. Mere denial of physical 
partitioning, however, leads to the disadvantages of software 
approach mentioned in section II, and we have to seek better 
combination in the tradeoffs. In the following, we show two 
topics which deal with the tradeoffs. 

B. Flexibility by Processor Virtualization 

Since the FIDES platform mentioned relies upon 
partitioning by physical cores, system-wide application 
management would become complicated if the number of 
required domains exceeded the number of cores in a real 
multicore LSI. We developed a dedicated processor 
virtualization architecture called “VIRTUS” to fill the gap [5]. 

VIRTUS aims to provide an arbitrary number of secure and 
efficient execution domains. Domains partitioned by hardware 
(physical partitioning such as FIDES) are good in execution 
performance but their number is limited to the number of 
cores in the chip. Domains created by software such as virtual 
machine middleware are flexible and low cost, but their 
overhead reduces system performance significantly. In the 
tradeoff between them, VIRTUS uses the combination of both; 
a base domain, in which confirmed reliability and good 
execution performance are necessary, is based upon a 
hardware domain, and other domains with less reliability 
expected, such as downloaded application domains, are 
implemented on other cores using software domain multiplex 
mechanisms (Fig. 7). Note that the base domain is surely 
protected from any unwanted interference from other domains 
because they are physically partitioned. 

The core of VIRTUS is a unique virtualization scheme, an 
asymmetric virtual machine monitor (AVMM), shown in Fig. 
8. A set of AVMM is composed of one master VMM on the 
base domain and one or more slave VMMs on other domains. 
The master VMM, which is very reliable due to its location (in 

Fig. 7. VIRTUS architecture 

Fig. 8. Asymmetric VMM and domain switch mechanism 
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the base domain), handles context switches of software 
domains and manages inter-domain communications. When 
many software domains are multiplexed and a task in a 
running domain initiates communication to a task in a dormant 
domain, the communication messages are routed via the 
master VMM, the master VMM switches the domain context, 
and finally the messages are received by the destination 
domain. 

Thus VIRTUS can effectively execute any number of OS 
instances that exceed the number of physical CPU cores, 
enabling flexible design of embedded systems with an 
arbitrary number of domains. Fig. 9 shows a screenshot where 
five OS instances are created on three CPU cores in our 
MP211 chip. 

C. Scalability by SMP Based Hardware 

In contrast with software side flexibility by VIRTUS above, 
hardware side flexibility is enhanced by an architectural shift 
from AMP to SMP. Combined with an SMP OS, SMP 
hardware could execute large-scale applications that span 
several cores, with higher efficiency than that for AMP. ARM 
and we jointly developed the world’s first embedded SMP 
processor, MPCore [6]. Its first test chip has integrated four 
ARM11 cores with cache coherency mechanisms, and SMP 
Linux ported to MPCore exploits a scalable performance 
boost by multithreading and multitasking. 

For embedded systems, however, the SMP model leaves 
room for improvement. The characteristics of a pure SMP OS, 
which primarily aims at higher throughput, do not fit 
performance assurance nor secure domains; an application 
program on an SMP OS could easily exhaust most of the CPU 
time and/or memory bandwidth, and a virus could damage not 
only the infected application but also all the tasks on the SMP 
OS altogether. One of the known approaches to this problem is 
to assign specified tasks (e.g. realtime processing tasks) 
definitely to a specific CPU core, using the processor affinity 
function [7]. Another one is an AMP/SMP hybrid approach, 
where the single SMP OS kernel applies AMP scheduling to 
some tasks specified [8]. These methods aim to balance 
reliability with the flexibility of multicore systems by 
replacing some of the SMP features with AMP ones. We 
believe that proper control of schedulers that assign hardware 
resources to software tasks is the key to the reliability in the 
future embedded systems. 

V. Summary 
Multicore architecture can be used to improve system 

reliability, which is of primary importance in embedded 
devices. The basic concept is to suppress unnecessary 
interference by functional partitioning. Partitioning by 
physical cores is considered the most reliable, and has been 
proven feasible on the specific multicore LSI MP211, with our 
OS wrapper mechanism and our dynamic access control 
scheme to relax the communication restrictions caused by the 
strict partitioning. In order to adapt the approach to wider 
range of embedded devices, we need to shift to logical 
partitioning which has more flexibility and more scalability. 
We plan to incorporate the concepts of virtualization and SMP 
into the strict physical partitioning approach, so that we 
should reach the best point in the tradeoffs for the future 
reliable embedded systems. 
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