
Towards scalable and secure execution platform for embedded systems

Abstract – Reliability of embedded systems can be enhanced by
multicore and partitioning approaches. Physical partitioning
based on AMP multicore achieves runtime stability of multiple
applications in a system and prevents the whole system shutdown
as well even when a malicious code creeps in. Combined with
logical partitioning by processor virtualization and SMP
technologies, the multicore architecture could realize more
flexible and more scalable platform for future embedded systems.

I. Introduction

Multicore processors have become popular in enterprise
servers and PCs in order to reduce the processors’ power
consumption, which is now close to maximum limits for the
equipment [1]. A shift to multicore is now gradually occurring
in embedded systems as well, in which low power with high
performance is quite essential. In addition, embedded systems
also strongly require operation stability and reliability.
Although traditional embedded devices with rather simple
functions implemented on realtime OSs have provided these
features without difficulty, recent ones, which employ richer
OSs such as Windows or Linux to realize more advanced
functions, have some challenges in maintaining the features.
For example, advanced cell phones are required to maintain
their multimedia performance even when several rich
applications run simultaneously, and moreover, they should
still provide core functions such as telephone calls even when
a user innocently downloads and runs an interesting program
with a hidden virus. These requirements are unique to
embedded devices, and we think that we must establish a
special multicore architecture well suited to the characteristics
of embedded systems.

In this paper, we introduce physical partitioning to cope
with these unique requirements and show two cases where we
balance partitioning with communications. Then we present a
more flexible partitioning mechanism free from the hardware
restriction, and briefly study the coming SMP approach.

II. Reliability and Partitioning

As we mentioned, reliability is considered quite essential in
embedded devices. Here, by “reliability” we mean two
characteristics.

• Performance Assurance
Reliability in normal operation. Whatever types of
applications are mixed in a single system, executions
of all the tasks should be well coordinated so that each
application fulfills its performance requirement.
This challenge arises from the difficulties in
application scheduling. It is hard for system designers
to control the behavior of many entangled tasks on a
complicated OS and layered middleware.

• Robustness
Reliability in abnormal situations. Safety mechanisms
should prevent the whole system from going down,
even when some unintentional bugs or some malicious
viruses exist in the system. Vulnerable points are
unpredictable and likely to be increasing.

There are two approaches to achieve these reliability
requirements. These approaches have tradeoffs in performance,
certainty, flexibility and cost.

1. Hardware approach:
Partition the system using a multicore architecture so
that interference between the subparts is reduced. The
most obvious method is physical partitioning along
each processor core boundary.

2. Software approach:
Reinforce the scheduling mechanisms and enhance the
system protection functions. These are typically
accomplished mainly by modifications in the OS
kernel and its libraries.

Regarding the above reliability issue of embedded systems,
we decided to choose the hardware approach for a start,
because we considered the certainty of reliability as the
primary issue.

III. Partitioning by Physical Cores

A. Multitasking Parallel

Fig. 1 shows our basic structure we have chosen for the
hardware approach mentioned above. The point is that we

Junji Sakai INOUE, Hiroaki Masato Edahiro

System Devices Research Laboratories,
NEC Corporation

1120, Shimokuzawa, Sagamihara, Kanagawa 229-1198, Japan
Tel : +81-42-771-0699
Fax : +81-42-771-0881

jsakai@bc.jp.nec.com h-inoue@ce.jp.nec.com eda@bp.jp.nec.com

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3D-4

350

have adopted both CPU core level- and OS kernel level
partitioning. We call the way of the partitioning “Multitasking
Parallel.” [2]

In the Multitasking Parallel method, an independent
instance of the OS kernel runs on each CPU core in an AMP
(Asymmetric Multiprocessing) type multicore LSI. Because
task schedulers, who assign CPU resources to the tasks, stay
on each OS instance (namely on each physical CPU core) one
by one, it is easy to prevent bad influences from one
application on a core from affecting another application on
another core. For example, an interrupt-driven real-time
application would not interfere with a CPU-centric application
if they were on different physical cores.

Generally, partitioning and communication are tradeoffs.
Communication between applications becomes more difficult
if we make the partitioning harder for the sake of good
performance assurance. On the other hand, application
interference will be present again if we permit unrestricted
communications. How to manage the tradeoff between
cooperation among cores and potential interference requires
further development. Now we present two cases about
physical partitioning, and we take this topic in each case.

B. Performance Assurance by Multicore

OS wrapper: To evaluate the performance assurance, that is,
stability of simultaneous operations of multiple applications,
we have to port the applications onto the multitasking parallel
environment, where we have to take the inter-task
communication into account. Since the OS for each CPU core
is based on a conventional OS for a single CPU, the OS
supports only local communications within the core.
Programmers have to choose the best APIs to use based on
which core the peers that will communicate exist on. This is
undesirable because the programmers are forced to expand
extra effort in order to port their applications to multicore
environments.

There are two ways of dealing with the communication
issue.

1. Modify the set of communication modules and their
functions so that they support inter-core
communications as well as intra-core ones.

2. Achieve inter-core communications with compatible
APIs by placing a new middleware layer above the OS
kernel.

We adopted the latter one since it is more independent from
the detailed implementation of the OS kernel. We named the

middleware “OS Wrapper” because of its placement to the OS
kernel.

The OS wrapper structure is shown in Fig.2. A client library
(CLlib) linked with an application hooks the inter-task
communication API calls, and sends messages to the
destination through the local interrupt mechanism between
cores if the message recipient is on another CPU core. Proxy
tasks are placed to wake up the dormant receiver task on
behalf of the scheduler in the OS kernel. We designed the API
functions of the OS wrapper compatible with those of a single
CPU OS, so that applications on any core can communicate
with each other using the same API names as those used with
traditional single CPU OSs.

Implementation: We implemented the above mechanisms
on our multicore SoC MP211 (Fig. 3) [3], which features:

• AMP architecture including 3x ARM9 CPU cores and
1x DSP core

• High performance memory bus architecture to support
simultaneous operations of the cores

• Energy saving circuits to reduce operating and
sleeping power consumption

Three Linux kernels run on three ARM cores, and the OS
wrapper is implemented as a combination of Linux device
drivers and user-land libraries linked with applications. Our
current implementation supports communication APIs
compatible with SystemV IPCs (message queues, semaphores,
and shared memory objects) and UNIX domain sockets.

Evaluation: We chose an application set composed of:

appA

CLlib

ipi driver

proxy
task

PE0 INTC

appB

CLlib

proxy
task msgsnd() msgrcv()

OS Wrapper

kernel kernel

PE1

ipi driver

Fig.2 OS wrapper structure

CPU core

OS kernel

Task
A

Task
B

CPU core

OS kernel

Task
C

Task
D

Fig. 1. Multitasking Parallel model.

ARM926
PE0

ARM926
PE1

ARM926
PE2

USB
OTGDMAC

DSP
SPX-K602

3D
Acc.

Image
Acc.

Rotat
er

Cam
DTV
I/F

LCD
I/F

Multi-Layer AHB

Sec.
Acc.

SRAM IF

On-Chip SRAM
(512KB)

Scheduler

Quad BUS
Interface

Frame Cache

SDRAM
Controller

DDR
SDRAM

Mobile
DDR

SDRAM

APB
Bridge1

TIM0INTC

uWIRE

SIO

PMU

Async
Bridge0

Async
Bridge1

APB
Bridge0

I2C PCM

WDT

FLASH

LCDCamera

BaseBand

GPIO

SMU

Inst.
RAM

OSCPLL

Mem.
Card

UA
RT

TIM3

TIM2

TIM1

Logic0 Area

Logic1 Area

Fig. 3. MP211 chip block diagram.

3D-4

351

• a DTV viewer which consists of an H.264 decoder (a
DSP task) and its synchronization tasks (CPU tasks)

• a network news reader which consists of an RSS parser
and an HTML browser

And we assign the application tasks to the CPU and DSP
cores in MP211 as following:

• CPU core0: HTML browser, X server
• CPU core1: RSS parser
• CPU core2: DTV synchronization
• DSP core: H.264 decoder

A screenshot of the application set running on MP211 is
shown in Fig. 4. In case we run the application mix on the
multitasking parallel environment (i.e. using all three CPU
cores), both applications keep running smoothly. By contrast,
in case we run them on a single CPU core, we can easily
observe short disruptions in the sound playback.

Fig.5 shows jitter of the DTV synchronization task intervals,
and we can see obvious improvements in jitter occurrence in
the multitasking parallel execution. It shows that stable

execution of multiple applications is achieved by partitioning
the CPU resources. Note that the above applications are
programs for a single CPU environment and we made no
modifications on them. This means the OS wrapper achieves a
seamless multicore communication environment despite the
physically partitioned hardware architecture.

C. Robustness by Multicore

Multicore architecture can be adapted to improve system
robustness. Application downloading, which is now quite
popular in Java applets for cell phones, is expected to be
applied to native binary programs for a wider group of
embedded devices in the near future, because native
applications have the advantage in run-time efficiency and
have the ability to specify detailed actions specialized for the
devices. On the other hand, appropriate safeguards are
necessary to prevent native applications from accessing
unauthorized system functions. Partitioning can be applied to
this issue so that the system can maintain proper security.

We developed a multicore security platform called
“FIDES” that provides a secure execution environment for
downloaded native applications [4]. Its basic concept is to
partition the whole system into several domains with different
trust levels and to execute each application only in its
corresponding domain.

Consider the case of a cell phone. The core functions of a
cell phone such as telephone calls, emails and PIM functions
(e.g. address books, task lists and personal notes) are executed
in the Base domain (Fig. 6). Downloaded applications are
assigned to ether Trusted or Untrusted domains, depending on
the level of trustworthiness of the applications (e.g. whether it
has been validated by the telecommunication carrier or not).
This separation prevents unauthorized access to the core
functions.

In order to make FIDES more practical, we incorporated a
hard-wired filtering logic called Bus Filter with the
multitasking parallel architecture. The bus filter mechanism
prohibits unauthorized access from less trusted domains to the
main memory and/or I/O devices that are shared among the
domains. Thus we partitioned the memory and I/O resources
as well as CPU resources.

Fig. 4. Screenshots of the evaluation applications

Fig. 5. Jitter of task intervals

(a) single core execution

(b) multicore execution

DTV

Task
switcher

News
reader

Event
watcher

DTV in an
iconized
window

Fig. 6. Domains in FIDES

AP

AP
AP

SELinux

Core 0

Base Domain

AP

AP
AP

SELinux

Core 1

Trusted Domain

AP

AP
AP

SELinux

Core 2

Untrusted Domain

External I/F

Memories I/O Devices

aBus Filter

Software

SoC

AP

AP
AP

SELinux

Core 0

Base Domain

AP

AP
AP

SELinux

Core 1

Trusted Domain

AP

AP
AP

SELinux

Core 2

Untrusted Domain

External I/F

Memories I/O Devices

aBus Filter

Software

SoC

3D-4

352

The issue of how to best balance partitioning and
communications still exists in this area. There should be
communication paths between domains to communicate, for
example, the downloaded contents and the DRM (digital
rights management) functions. Malicious activities could
propagate over the paths into the base domain. We introduced
a mechanism called Dynamic Access Control, which restricts
the access rights of a task dynamically when it talks with a
less trusted task.

We implemented the FIDES platform with MP211 and
SELinux (Security-Enhanced Linux), and our evaluation
results show that the bus filter logic size is estimated to be
small enough in the total die area (<1%), and that performance
overhead due to the dynamic access control is only 4%. Thus
we can say that partitioning can provide secure environment,
with necessary communications granted.

To summarize, we have shown that the physical
partitioning with an AMP multicore can achieve the reliability
requirements (performance assurance and robustness) of
embedded systems. Several examples of partitioned system
have already been implemented on a MP211 chip.

IV. Flexibility and Scalability

A. Shift to Logical Partitioning

Partitioning by physical cores can achieve reliable systems
as we mentioned, to be sure, but when we adapt it to wider
range of target devices, it may become a subject of discussion:

• Flexibility
Close correspondence between each system model
and the number of physical cores could be considered
as a sore spot. It is undesirable to design and
manufacture a custom version of multicore LSIs for
each partition model of the embedded systems, since
manufacturing many kinds of LSIs in small quantities
will become economically prohibitive in the near
future, due to the rising costs of design and
verification of complicated logic, and the increasing
cost of LSI masks and manufacturing fabs.

• Scalability
Performance assurance and robustness in the physical
partitioning approach mentioned depend on the
hardware architecture of AMP. AMP is not
necessarily the best architecture for performance
acceleration of a single application, where SMP
(Symmetric Multiprocessing) may be preferable.

Towards more flexible and scalable architecture for the
future embedded systems, we think it necessary to shift from
physical partitioning to something more flexible; logical
partitioning. Logical partitioning is an approach for fulfilling
the required performance characteristics on a single hardware
architecture, utilizing the software mechanisms of resource
partitioning and scheduling. Mere denial of physical
partitioning, however, leads to the disadvantages of software
approach mentioned in section II, and we have to seek better
combination in the tradeoffs. In the following, we show two
topics which deal with the tradeoffs.

B. Flexibility by Processor Virtualization

Since the FIDES platform mentioned relies upon
partitioning by physical cores, system-wide application
management would become complicated if the number of
required domains exceeded the number of cores in a real
multicore LSI. We developed a dedicated processor
virtualization architecture called “VIRTUS” to fill the gap [5].

VIRTUS aims to provide an arbitrary number of secure and
efficient execution domains. Domains partitioned by hardware
(physical partitioning such as FIDES) are good in execution
performance but their number is limited to the number of
cores in the chip. Domains created by software such as virtual
machine middleware are flexible and low cost, but their
overhead reduces system performance significantly. In the
tradeoff between them, VIRTUS uses the combination of both;
a base domain, in which confirmed reliability and good
execution performance are necessary, is based upon a
hardware domain, and other domains with less reliability
expected, such as downloaded application domains, are
implemented on other cores using software domain multiplex
mechanisms (Fig. 7). Note that the base domain is surely
protected from any unwanted interference from other domains
because they are physically partitioned.

The core of VIRTUS is a unique virtualization scheme, an
asymmetric virtual machine monitor (AVMM), shown in Fig.
8. A set of AVMM is composed of one master VMM on the
base domain and one or more slave VMMs on other domains.
The master VMM, which is very reliable due to its location (in

Fig. 7. VIRTUS architecture

Fig. 8. Asymmetric VMM and domain switch mechanism
in VIRTUS

AP
AP

AP

OS

Core 0

Hardware Domain

AP

AP

Core 1

Software Domains

AP

AP

Core 2

Pre-installed APs Downloaded APs

Master
VMM

OS Slave
VMM

OS Slave
VMM

Ph
ys

ic
al

 p
ar

tit
io

ni
ng multiplex

AP
AP

AP

OS

Core 0

Hardware Domain

AP

AP

Core 1

Software Domains

AP

AP

Core 2

Pre-installed APs Downloaded APs

Master
VMM

OS Slave
VMM

OS Slave
VMM

Ph
ys

ic
al

 p
ar

tit
io

ni
ng multiplex

OS
Slave
VMM

AP

AP

Active domain

OS
Slave
VMM

AP

AP

Dormant domain

Core 2

OS
Slave
VMM

AP

AP

Active domain

Core 0

OS
Master
VMM

AP

AP

Pre-installed APs

Core 1

Kernel
thread

1. Transfer
3. Re-transfer

2. Domain switch

Downloaded APs

AP

OS
Slave
VMM

AP

AP

Active domain

OS
Slave
VMM

AP

AP

Dormant domain

Core 2

OS
Slave
VMM

AP

AP

Active domain

Core 0

OS
Master
VMM

AP

AP

Pre-installed APs

Core 1

Kernel
thread

1. Transfer
3. Re-transfer

2. Domain switch

Downloaded APs

AP

3D-4

353

the base domain), handles context switches of software
domains and manages inter-domain communications. When
many software domains are multiplexed and a task in a
running domain initiates communication to a task in a dormant
domain, the communication messages are routed via the
master VMM, the master VMM switches the domain context,
and finally the messages are received by the destination
domain.

Thus VIRTUS can effectively execute any number of OS
instances that exceed the number of physical CPU cores,
enabling flexible design of embedded systems with an
arbitrary number of domains. Fig. 9 shows a screenshot where
five OS instances are created on three CPU cores in our
MP211 chip.

C. Scalability by SMP Based Hardware

In contrast with software side flexibility by VIRTUS above,
hardware side flexibility is enhanced by an architectural shift
from AMP to SMP. Combined with an SMP OS, SMP
hardware could execute large-scale applications that span
several cores, with higher efficiency than that for AMP. ARM
and we jointly developed the world’s first embedded SMP
processor, MPCore [6]. Its first test chip has integrated four
ARM11 cores with cache coherency mechanisms, and SMP
Linux ported to MPCore exploits a scalable performance
boost by multithreading and multitasking.

For embedded systems, however, the SMP model leaves
room for improvement. The characteristics of a pure SMP OS,
which primarily aims at higher throughput, do not fit
performance assurance nor secure domains; an application
program on an SMP OS could easily exhaust most of the CPU
time and/or memory bandwidth, and a virus could damage not
only the infected application but also all the tasks on the SMP
OS altogether. One of the known approaches to this problem is
to assign specified tasks (e.g. realtime processing tasks)
definitely to a specific CPU core, using the processor affinity
function [7]. Another one is an AMP/SMP hybrid approach,
where the single SMP OS kernel applies AMP scheduling to
some tasks specified [8]. These methods aim to balance
reliability with the flexibility of multicore systems by
replacing some of the SMP features with AMP ones. We
believe that proper control of schedulers that assign hardware
resources to software tasks is the key to the reliability in the
future embedded systems.

V. Summary
Multicore architecture can be used to improve system

reliability, which is of primary importance in embedded
devices. The basic concept is to suppress unnecessary
interference by functional partitioning. Partitioning by
physical cores is considered the most reliable, and has been
proven feasible on the specific multicore LSI MP211, with our
OS wrapper mechanism and our dynamic access control
scheme to relax the communication restrictions caused by the
strict partitioning. In order to adapt the approach to wider
range of embedded devices, we need to shift to logical
partitioning which has more flexibility and more scalability.
We plan to incorporate the concepts of virtualization and SMP
into the strict physical partitioning approach, so that we
should reach the best point in the tradeoffs for the future
reliable embedded systems.

Acknowledgements

The authors thank all the MP98 project members for their
cooperation and support.

References

[1] D. Geer, “Chip Makers Turn to Multicore Processors,” IEEE
Computer, pp11-13, May 2005.

[2] J. Sakai, et al., “Multi-Tasking Parallel Method on MP211
Multi-core Application Processor,” in Proceedings of the IEEE
Symposium on Low-Power and High-Speed Chips (COOL Chips
VIII), pp198-211, April 2005.

[3] S. Torii, et al., “A 600MIPS 120mW 70uA Leakage Triple-CPU
Mobile Application Processor Chip,” in Proceedings of the IEEE
International Solid-State Circuits Conference (ISSCC), Digest of
Technical Papers, pp136-137, February 2005.

[4] INOUE, H, A. Ikeno, M. Kondo, J. Sakai and M. Edahiro,
“FIDES: An Advanced Chip Multiprocessor Platform for Secure
Next Generation Mobile Terminals,” in Proceedings of the
IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS) , pp178-183,
September 2005.

[5] INOUE, H, A. Ikeno, M. Kondo, J. Sakai and M. Edahiro,
“VIRTUS: A New Processor Virtualization Architecture for
Security-Oriented Next-Generation Mobile Terminals,” in
Proceedings of the 43rd Design Automation Conference (DAC),
pp484 - 489, July 2006.

[6] J. Goodacre, A.N.Sloss, “Parallelism and the ARM instruction set
architecture,” IEEE Computer, pp42-50, July 2005.

[7] S. Brosky and S. Rotolo, “Shielded processors: guaranteeing
sub-millisecond response in standard Linux,” in Proceedings of
the 17th International Parallel and Distributed Processing
Symposium (IPDPS'03), April 2003.

[8] eSOL, “eT-Kernel Multi-Core Edition,”
http://www.esol.co.jp/english/embedded/et-kernel_multicore-editi
on.html

Control application on
domain0

Four applications on
domain1 – domain4

Fig. 9. VIRTUS demonstration – 5 domains on 3 cores

3D-4

354

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

