
Energy-Efficient Real-Time Task Scheduling
in Multiprocessor DVS Systems

Jian-Jia Chen, Chuan-Yue Yang, Tei-Wei Kuo, and Chi-Sheng Shih
Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan, ROC.
Email: {r90079, r92032, ktw, cshih}@csie.ntu.edu.tw

ABSTRACT

Dynamic voltage scaling (DVS) circuits have been widely
adopted in many computing systems to provide tradeoff between
performance and power consumption. The effective use of en-
ergy could not only extend operation duration for hand-held de-
vices but also cut down power bills of server systems. Moreover,
while many chip makers are releasing multi-core chips and mul-
tiprocessor system-on-a-chips (SoCs), multiprocessor platforms
for different applications become even more popular. Multipro-
cessor platforms could improve the system performance and ac-
commodate the growing demand of computing power and the
variety of application functionality. This paper summarizes our
work on several important issues in energy-efficient scheduling
for real-time tasks in multiprocessor DVS systems. Distinct from
most previous work based on heuristics, we aim at the provi-
sion of approximated solutions with worst-case guarantees. The
proposed algorithms are evaluated by a series of experiments to
provide insights in system designs.

Keywords: Energy-Efficient Scheduling, Real-Time Systems,
DVS, Multiprocessor Systems.

I. INTRODUCTION

With the advanced technology of VLSI circuit designs, a mod-
ern processor might operate at different supply voltages. Tech-
nologies, such as Intel SpeedStep R© and AMD PowerNOW!TM,
provide dynamic voltage scaling (DVS) for laptops to prolong
the battery lifetime. Different supply voltages lead to different
execution speeds on a dynamic voltage scaling processor. For
example, Intel StrongARM SA1100 processor [27] and the In-
tel XScale [28] are well-known DVS processors for embedded
systems. The power consumption of processors in the dynamic
voltage scaling is a convex and increasing function of proces-
sor speeds, and the function definition is highly dependent on
the hardware designs. The lower the speed, the less the power
consumption in the dynamic voltage scaling is.

For many applications, (average or worst-case) response time
is an important non-functional requirement of the system. For
example, embedded real-time systems must complete tasks be-
fore their deadlines to maintain the system stability. In the past
decade, energy-efficient task scheduling with different deadline
constraints has received a lot of attention. Many studies have
been done for uniprocessor systems [4, 6, 11, 12, 19–22, 24, 31].

Recently, researchers have started exploring energy-efficient
scheduling with the considerations of the non-negligible power
consumption of leakage current for nano-meter manufacture pro-

cess [21]. In such a direction, a processor might be turned off (or
into a dormant mode) when needed. For uniprocessor schedul-
ing of aperiodic real-time tasks, Irani et al. [19] proposed a
3-approximation algorithm for the minimization of energy con-
sumption with the considerations of leakage current. For peri-
odic real-time tasks, Jejurikar et al. [21] and Lee et al. [22] pro-
posed energy-efficient strategies on a uniprocessor by applying
the procrastination scheduling to decide when to turn the proces-
sor into the dormant mode.

Since many chip makers are releasing multi-core chips and
multiprocessor system-on-a-chips (SoCs), multiprocessor plat-
forms for different applications become even more popular. Mul-
tiprocessor platforms could improve the system performance
and accommodate the growing demand of computing power
and the variety of application functionality. Implementations
of real-time systems with multiple processors are often more
energy-efficient than those with a single processor [3], because
of the convexity of power consumption functions. Although
many results were proposed for uniprocessor energy-efficient
scheduling, e.g., [6, 12, 19, 20, 31], with theoretical analysis, lit-
tle work with theoretical analysis has been done for energy-
efficient scheduling in multiprocessor systems.

Various heuristics were proposed for energy consumption
minimization under different task models in multiprocessor envi-
ronments [2, 5, 15, 16, 25, 32, 33]. In particular, several energy-
efficient algorithms for task scheduling were proposed based on
list heuristics [15, 16, 32] for real-time jobs with precedence con-
straints. There are also heuristics for periodic tasks in multi-
processor environments [2, 5]. Zhu et al. [33] explored on-line
task scheduling with reclamation of slacks resulting from early
completion of tasks during the run time. Mishra et al. [25] ex-
plored energy-efficient scheduling issues with the considerations
of the communication delay of tasks. In addition to the consid-
erations of energy-efficient scheduling, Anderson and Sanjoy [3]
explored the trade-off between the total energy consumption of
task executions and the number of required processors, where all
of the tasks in the proposed solutions run at the same speed.

This paper summarizes our work in several issues in energy-
efficient scheduling in multiprocessor DVS systems for periodic
real-time tasks [1, 7–10, 17, 18, 30]. Two different topics for en-
ergy efficiency are included in this paper: (1) the minimization
of energy consumption for real-time systems [7–9, 18, 30], and
(2) the minimization of allocation cost of processors under a
given energy constraint [10, 17]. For the minimization of energy
consumption, we will first present our work for homogeneous
multiprocessor DVS systems with negligible leakage power con-
sumption when tasks have the same power consumption charac-

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3D-3

342

0 1 2 3 5 7 94 6 8 10 11 12 13 14 15 16 17 18 19 20
t

τ1

τ2

Fig. 1. An example for a set of periodic real-time tasks when n = 2
with p1 = 2 and p2 = 5.

teristics [7, 30] and different power consumption characteristics
[1, 9]. Then, we will show how to exploit the results to cope
with systems with non-negligible leakage power consumption
[8]. We will then present energy-efficient scheduling for systems
with a DVS processor and a non-DVS processor [18]. We will
then summarize our work for the minimization of allocation cost
of processors under a given energy constraint when non-DVS
processors [17] or DVS processors [10] are considered. Experi-
mental results are presented to demonstrate the capability of the
proposed algorithms.

The rest of this paper is organized as follows: Section II shows
the system models. Section III summarizes our work for mul-
tiprocessor energy-efficient scheduling designs [1, 7–10, 17, 18,
30]. Section IV provides the performance evaluation of the pro-
posed algorithms. Section V is the conclusion.

II. SYSTEM MODELS

We explore the scheduling of periodic real-time tasks that are
independent in execution. There is no precedence constraint
among tasks. A periodic task τi is an infinite number of task
instances (or jobs), in which a task is characterized by its initial
arrival time ai and its period pi. The relative deadline of τi is
equal to its period, so the arrival time and the absolute deadline
of j-th job of τi are ai + (j − 1) · pi and ai + j · pi, respectively.
The workload is measured in worst-case execution cycles, where
the worst-case execution cycles of task τi is ci. Let T be the set
of n periodic real-time tasks. The hyper-period of T, denoted by
L, is the minimum positive number L so that L/pi is an integer
for every task τi in T. For example, L is the least common multi-
ple (LCM) of the periods of tasks in T when the periods of tasks
are all integers. Figure 1 illustrates a set of task with two tasks,
in which both tasks τ1 and τ2 arrive at time 0, p1 is 2, and p2 is
5. The execution time of task τ1 is 1, and the execution time of
task τ2 is 2.5. The hyper-period L is 10, and, hence, the resulting
schedule in Figure 1 in time interval (10, 20] is the same as that
in time interval (0, 10].

The power consumption function P (s) of the adopted speed
s on a DVS processor can be divided into two parts: Pd(s) and
Pind, where Pd(s) is dependent and Pind is independent upon
the adopted speed. Leakage power consumption mainly con-
tributes to Pind, while the dynamic power consumption resulting
from the charging of gates on a CMOS DVS processor and the
short-circuit power consumption contribute to Pd(s). The dy-
namic power consumption could be modeled as a convex func-
tion of the speed. For example, in CMOS DVS processors [26],
the dynamic power consumption Pswitch(s) due to gate switch-
ing at speed s is

Pswitch(s) = CefV 2
dds, (1)

where s = κ (Vdd−Vt)
2

Vdd
, and Cef , Vt, Vdd, and κ denote the

effective switch capacitance, the threshold voltage, the supply

s

P (s)

00

(a) P (s)

s

P (s)/s

00 s∗
(b) P (s)/s

Fig. 2. An illustrative example for P (s) and P (s)/s

voltage, and a hardware-design-specific constant, respectively
(Vdd ≥ Vt ≥ 0, κ > 0, and Cef > 0). The short-circuit
power consumption is proportional to the supply voltage. As a
result, the speed-dependent power consumption function Pd(s)
is a convex and increasing function of the adopted speed. The
power consumption function can model many power consump-
tion models in [26, §5.5]. If the leakage power consumption is
related to the speeds/voltages, i.e., not a constant, the leakage
power is divided into two parts that contribute to Pd(s) and Pind

accordingly. In other words, Pd(s) models the voltage-related
power consumption while Pind models the voltage-independent
power consumption.

The number of CPU cycles executed in a time interval is lin-
ear to the processor speed, and the energy τi consumed at the
processor speed s for t time units is t ·P (s). Moreover, the time
and energy overheads on speed (voltage) switching are assumed
to be negligible. We consider two DVS types of processors: (1)
processors with a continuous spectrum of the available speeds
between the upper-bounded speed smax and the lower-bounded
speed smin, and (2) processors with distinctive speeds. The for-
mer type of processors is called the ideal processors while the
latter type is called non-ideal processors.

We explore two types of processors on handling the leakage
current: (1) processors with a dormant mode, and (2) proces-
sors without any dormant mode. The former type is denoted as
dormant-enable processors, while the latter is dormant-disable
processors. For dormant-enable processors, the processor can
be turned to the dormant mode (or be turned off). When the
processor is turned to the dormant mode, the power consump-
tion of the processor can be treated as 0 by scaling the speed-
independent power consumption. To execute jobs, the processor
has to be turned to the active mode. However, switching between
the two modes requires time tsw and energy Esw overheads. For
dormant-disable processors, the power consumption Pind cannot
be reduced, and, hence, to reduce the power consumption, we
have to reduce the speed. For dormant-disable processors, we
assume that Pd(s) and Pd(s)/s are both convex and increasing
functions of s, and we replace P (s) by Pd(s).

To execute a cycle at speed s consumes P (s)/s energy. For
dormant-enable processors, there is a critical speed, denoted by
s∗, among the available speeds, at which the processor executes a
cycle with the minimum energy consumption. The critical speed
s∗ is the available speed s with the minimum first derivative of
P (s)/s. Figure 2 illustrates the function P (s) and the function
P (s)/s when P (s) is s3 + β.

For multiprocessor systems, a schedule might be a global
schedule or a partition schedule. A global schedule allows dif-
ferent task instances of a task to be executed on different proces-
sors, while a partition schedule restricts all the task instances of
a task to be executed on a processor. Here, we consider parti-
tion schedules, in which each task is executed on a processor. As
shown in [23], the earliest-deadline-first (EDF) scheduling algo-

3D-3

343

rithm is an optimal uniprocessor scheduling algorithm for inde-
pendent real-time tasks. Here, on each processor, we apply the
earliest-deadline-first scheduling algorithm to execute real-time
jobs after task partition is done.

Since all the studied problems are NP-hard, we focus
on approximation algorithms with worst-case guarantees. A
polynomial-time α-approximation algorithm for the minimiza-
tion of energy consumption (allocation cost of processors, re-
spectively) must have a polynomial-time complexity of the input
size and could derive a feasible solution with the energy con-
sumption (allocation cost of processors, respectively) at most α
times of an optimal solution, for any input instance, in which
α is also referred to as the approximation ratio (bound) of the
approximation algorithm.

III. SCHEDULING ALGORITHMS

Energy-efficient scheduling for periodic real-time tasks in
multiprocessor systems is explored from two perspectives: (1)
on the minimization of energy consumption with satisfaction of
timing constraints in Section A, Section B, and Section C for dif-
ferent system models, and (2) on the minimization of allocation
cost of processors under specified energy and timing constraints
in Section D. The results of this section are based on the work in
[1, 7–10, 17, 18, 30].

A. Energy-Efficient Scheduling for Homogeneous Multiproces-
sor Systems

For the minimization of energy consumption in homogeneous
multiprocessor DVS systems, we consider systems with M ideal
processors or cores, where every processor has the same archi-
tecture and capability. We assume that all of the M processors
or cores can operate at any speed s in [0,∞) in this subsection.
We first focus on the scheduling of a frame-based task set T
[7, 9, 30] for different system models, in which each task τi in T
arrives at time 0 and has a common deadline D. Extensions to
periodic real-time tasks are then provided [1, 8]. We assume that
the speed-independent power consumption is negligible in this
section, where systems with non-negligible speed-independent
power consumption will be presented in the next session. Every
processor is dormant-disable in [1, 7, 9], while every processor is
dormant-enable in [30].

Frame-based Real-Time Tasks Since partition schedules are
considered in this paper, we have to first determine the task par-
tition of T onto processors, and, then, derive a speed assignment
of tasks without violating the timing constraints. We first show
how to derive optimal speed assignments when the task partition
is given, following approximation algorithms to determine the
task partitions.

If all the processors can adjust their processor speeds indepen-
dently, and all the tasks have the same power consumption char-
acteristics, i.e., the same power consumption function, the speed
assignment to minimize the energy consumption of the tasks as-
signed on a processor is to execute all the tasks at a common
speed from time 0 to D [7]. If, at any time instant, all the pro-
cessors must execute tasks at the same processor speed or be idle
at speed 0, and all the tasks have the same power consumption
characteristics, the speed assignment which minimizes the en-
ergy consumption under the task partition can be derived as fol-

lows [30]: (1) First, we re-index the task partition of T into M
disjoint task sets (T1,T2, . . . ,TM) so that the workload wi of
task set Ti is no more than the workload wj of task set Tj with
j ≥ i, i.e., wi =

∑
τk∈Ti

ck ≤ ∑
τk∈Tj

ck = wj . (2) By as-
suming w0 = 0 for the boundary condition, solve the following
problem:

minimize
∑M

i=1(M − i + 1)Pd(
wi−wi−1

ti
)ti

subject to
∑M

i=1 ti = D,
(2)

where ti is a variable for determining the execution speeds for
the i-th processor. The optimization problem in Equation (2) can
be solved by adopting the Lagrange Multiplier Method, and then
the i-th processor to execute tasks in Ti should operate at speed
(wj − wj−1)/tj in time interval (

∑j−1
k=1 tk,

∑j
k=1 tk] for j ≤ i

and be turned into the dormant mode at time
∑i

k=1 tk.
Although deriving a task partition with the minimum energy

consumption is NP-hard [7, 30], the Largest-Task-First strategy,
denoted by Algorithm LTF, is shown to be a good approxima-
tion strategy in deriving approximated solutions with worst-case
guarantees. Algorithm LTF first sorts tasks in a non-increasing
order of the worst-case execution cycles of tasks, i.e., ci ≥ cj

for i ≤ j, and, then, considers the tasks in the sorted order to
assign the to-be-assigned task to the processor with the mini-
mum workload so far. With the Largest-Task-First task partition
strategy and the presented speed assignment approaches, the ap-
proximation ratio of the scheduling algorithm is 1.13 (2.371, re-
spectively) if the operating speeds of processors can (can not,
respectively) be adjusted independently [7, 30].

For tasks with different power consumption characteristics,
i.e., different power consumption functions, applying Algorithm
LTF and executing tasks on a processor at a common speed might
be energy-inefficient since it does not take heterogeneous power
consumption functions of the tasks into considerations. How-
ever, we can revise Algorithm LTF as follows to have approxi-
mation solutions [9]: (1) Derive an estimated speed assignment
for T by treating that the available time for task execution is
from time 0 to MD, in which each task executes no longer
than D. (2) Sort the tasks in a non-increasing order of the es-
timated execution times, and, then, considers the tasks in the
sorted order to assign the task to the processor with the mini-
mum total estimated execution time so far. (3) Adjust the pro-
cessor speed on each processor individually so that the energy
consumption to execute tasks on a processor is minimized. The
above algorithm is denoted by Algorithm LEET, which stands for
the Largest-Estimated-Execution-Time-first strategy. Algorithm
LEET is proved to have a 1.412-approximation ratio [9].

In [7], we show that deriving a feasible schedule under smax �=
∞ is a NP-Complete problem regardless energy minimization
is pursued or not. Although we assume the processor speeds can
go to infinity, applying Algorithm LTF can bound the violation on
processor speeds by a constant factor as shown in [7]. For sys-
tems with the possibility on task rejection, we provide hardness
analysis and heuristic algorithms in [13].

Periodic Real-Time Tasks The results for frame-based real-
time tasks are then extended to periodic real-time tasks with
slight modifications. The largest-task-first strategy in [7] is re-
vised by considering tasks in the sorted order of the worst-case
execution cycles of tasks divided by the period, i.e., ci

pi
≥ cj

pj

3D-3

344

for i ≤ j to the processor with the minimum workload, de-
fined as the summation of ci

pi
of tasks τis on a processor, so

far [8]. Similarly, Algorithm LEET is revised into Algorithm
LEUF, stands for the Largest-Estimated-Utilization-First strat-
egy. Algorithm LTF (Algorithm LEUF, respectively) is proved to
have a 1.13-approximation (1.412-approximation, respectively)
ratio for periodic real-time tasks with the same (different, respec-
tively) power consumption characteristics in [8] (in [1], respec-
tively).

B. Leakage-Aware Energy-Efficient Scheduling for Homoge-
neous Multiprocessor Systems

This section explores energy-efficient scheduling of periodic
real-time tasks for homogeneous multiprocessor systems with
non-negligible leakage power consumption, in which the pro-
cessors are dormant-enable. We provide a 1.283-approximation
algorithm when the energy Esw of switching overhead is negligi-
ble and a 2-approximation algorithm when the energy of switch-
ing overhead is non-negligible [8]. For dormant-disable proces-
sors, the results in Section A can be directly adopted.

For systems with negligible energy of switching overhead, we
will not execute tasks at any speed lower than the critical speed.
The largest-task-first strategy is applied to perform task partition.
Once the workload on a processor is smaller than the critical
speed, the scheduler executes the tasks on the processor at the
critical speed. Theoretical analysis shows that the above algo-
rithm, denoted by Algorithm LA+LTF, is a 1.283-approximation
algorithm.

For systems with non-negligible energy of switching over-
head, the largest-task-scheduling strategy might lead into a
schedule that uses many processors to execute tasks at the criti-
cal speed. Therefore, we have to reduce the number of proces-
sors that execute tasks at the critical speed so that we can reduce
the energy consumption while the system is idle. First of all,
we collect all the tasks that are executed at the critical speed, de-
noted as task set T∗. Suppose that m̄ is the number of processors
that execute tasks at the critical speed. Initially, all of these m̄
processors are marked as unused. In each iteration, we assign
an un-assigned task τi in T∗ to a processor marked as used if
the resulting workload of the tasks, i.e., the summation of exe-
cution cycles divided by the periods, assigned on the processor
is no more than the critical speed. If no such a processor ex-
ists, and all of these m̄ processors are marked as used, then we
return the task assignment derived from Algorithm LA+LTF; oth-
erwise, we mark an unused processor as used and assign task τi

to the processor. The above algorithm is denoted by Algorithm
LA+LTF+FF, which is a 2-approximation algorithm. Moreover,
after task assignment is done, we can also use the procrastina-
tion algorithm, denoted by Algorithm PROC, proposed in [21] on
each processor to reduce the energy consumption.

C. Energy-Efficient Scheduling for Heterogeneous Two-
Processor Systems

This section explores energy-efficient scheduling of periodic
real-time tasks in a heterogeneous system with two process-
ing elements (PEs). One is a processor with DVS capability,
while the other is a processing element without DVS capabil-
ity, denoted by non-DVS PE. If the energy consumption of the
non-DVS PE depends on its workload, it is called a workload-
dependent PE. Otherwise, it is called a workload-independent

τ1 τ2 τ3 τ4 τ5

ci

pi

3.5
10

2
10

2
10

1
10

1.5
10

ui
1
10

1.5
10

2
10

2
10

3
10

TABLE I
AN EXAMPLE FOR TASK PARAMETERS

τ1 τ2 τ3 τ4
unconfigured1

10
1.5
10

2
10

2
10 τ5

1.5
10

1D FPGA DVS PE

Fig. 3. An illustrative example for 1D FPGA Model

PE. The energy consumption of the workload-dependent non-
DVS PE in the hyper-period is proportional to the utilization of
tasks assigned onto it. That is, the energy consumption in such
a case is (P2 · L)U2, where P2 is the power consumption of the
non-DVS PE and U2 is the total utilization of the tasks assigned
onto it. The energy consumption of the workload-independent
non-DVS PE is P2 · L. Here, we only present the results for
ideal DVS processors [18], while the extensions can be simply
made to non-DVS processors. For notational brevity, let ui be
the execution requirement of task τi on the non-DVS PE, while
the utilization constraint on the non-DVS PE is 100%. Table I
and Figure 3 provide an example when the non-DVS PE is a
one-dimensional FPGA.

Algorithms for Workload-Independent non-DVS PE If a
task has high computational demand on the DVS PE but low
utilization on the non-DVS PE, it should be a good candidate
to be assigned on the non-DVS PE to reduce the workload of
tasks assigned on the DVS PE. For example, task τ1 in Table I
is a good candidate to be executed on the non-DVS PE, since its
utilization on the non-DVS PE is low and its computation de-
mand on the DVS PE is high. Therefore, an intuitive greedy
algorithm, denoted by Algorithm GREEDY, is to sort tasks in T
in a non-decreasing order of ui

ci/pi
, and then assign tasks in the

sorted order to the non-DVS PE when the total utilization of the
tasks assigned on the non-DVS PE does not violate the utiliza-
tion constraint 100%. However, the resulting solution might be
unbounded to an optimal solution.

Another point of view is to reformulate the optimization prob-
lem as follows:

minimize
∑

τi∈T
ci

pi
· xi

subject to
∑

τi∈T ui · xi ≥ (
∑

τi∈T ui) − 1, and
xi ∈ {0, 1} , ∀τi ∈ T,

(3)

where xi is 0 if task τi is assigned on the non-DVS PE, and 1,
otherwise. For brevity, let U∗ be (

∑
τi∈T ui) − 1. The opti-

mization problem can be transformed into the minimum knap-
sack problem, which admits a 2-approximation algorithm [14],
denoted by Algorithm E-GREEDY in this paper.

The ideas of Algorithm E-GREEDY are: (1) Sort tasks in a
non-decreasing order of ci/pi

ui
. (2) Select the first k tasks on the

DVS PE so that
∑k

i=1 ui ≥ U∗ and
∑k−1

i=1 ui < U∗ as the initial
solution, and evict τk from T. (3) Seek the smallest index k′

with ∑

τi∈T and i≤k′
ui ≥ U∗.

3D-3

345

If
∑

τi∈T and i≤k′
ci

pi
is smaller than the best solution so far, we

replace the best solution so far by the solution. (4) Evict task
τk′ from T, and repeat Step (3) until the remaining tasks in T
do not admit a feasible solution to Equation (3). After all, we
assign all the tasks that are selected in the best solution in the
above algorithm to the DVS PE and all the other tasks to the
non-DVS PE. Then, the DVS PE executes the tasks assigned on
it with the minimum energy consumption without violating the
timing constraints. Algorithm E-GREEDY is shown to be a 8-
approximation for the minimization of energy consumption.

Moreover, we also develop an approximation algorithm, de-
noted by Algorithm DP, that can trade the approximation ratio
with the running time. The developed algorithm has a (1 + δ)-
approximation ratio for any user-specified positive parameter δ
with polynomial-time complexity by treating δ as the input. The
basic idea is to scale up the execution cycle of tasks on the DVS
PE so that we only have to construct a dynamic programming
table in polynomial time.

Algorithms for Workload-Dependent non-DVS PE For
workload-dependent non-DVS PEs, we present an algorithm that
provides worst-case guarantees on the energy saving compared
to that by assigning all the tasks on the DVS PE. Since the non-
DVS PE is workload-dependent, we have to evaluate the reduc-
tion of energy consumption on the DVS PE and the increase of
the energy consumption on the non-DVS PE, while considering
the assignment of a task to the non-DVS PE. Sometimes, moving
a task to the non-DVS PE is feasible, but the energy reduction on
the DVS PE is less than the energy increase on the non-DVS PE.
Algorithm S-GREEDY is an extension of Algorithm E-GREEDY

with additional considerations.
Initially, tasks are sorted in a non-increasing order of ci/pi

ui
,

which is different from Algorithm E-GREEDY. We put all the
tasks on the DVS PE as the initial solution. According to the
sorted order, we consider the assignment of task τi in the i-th it-
eration: According to the solution so far, if moving more portion
of task τi to the non-DVS PE can reduce more energy consump-
tion, then assign task τi to the non-DVS PE; otherwise, assign τi

on the DVS PE. After n iterations, we can have a task assignment
for task set T. If we restrict the task assignment with at most one
task on the non-DVS PE, we can find a task assignment with the
minimum energy consumption under the restriction in O(n). Al-
gorithm S-GREEDY then chooses the better one between the two
task assignments derived above. Algorithm S-GREEDY is shown
to be a 0.5-approximation algorithm for the maximization of en-
ergy savings.

D. Allocation Cost Minimization under Energy Constraints

Beside energy-efficient real-time task scheduling for a given
platform, another critical issue is on energy-aware synthesis to
allocate processors and map tasks onto the allocated processors
so that the energy and timing constraints can be satisfied. In
this subsection, we provide a parametric relaxation methodology
to provide approximation solutions for non-ideal processors [10,
17] and a greedy algorithm for ideal processors [10].

The problem considered in this section is as follows: Con-
sider a set T of independent tasks over a set M of m different
processor types. The available speeds and the power consump-
tion function Pj() of processor type M̂j are specified. Each task

τi ∈ T arrives at time 0. When task τi is executed on one pro-
cessor of processor type M̂j ∈ M, task τi is associated with its
execution cycle ci,j for each job execution on the processor type.
The objective is to allocate processors of processor types in M
with the minimum allocation cost along with a schedule of T on
these allocated processors without violating timing constraints or
the energy constraint E in the hyper-period.

Approximation Algorithms for Non-Ideal Processors The
problem under considerations is shown to be a NP-hard prob-
lem in a strong sense in [17]. Moreover, we also prove that
there does not exist any polynomial-time approximation algo-
rithm with a constant approximation ratio by providing an L-
reduction. We formulate the problem into an integer linear pro-
gramming (ILP) formulation. To solve the problem efficiently,
the ILP formulation is relaxed into a linear programming (LP)
formulation by allowing a task to be assigned on more than one
processor type. However, we show that the naive ILP relaxation
might be an unbounded relaxation. In [17], we provide a para-
metric relaxation technique on the ILP relaxation when there is
only one speed on each processor, and, in [10], we extend the
technique to DVS systems.

Suppose that sj,� is the �-th slowest available speed on proces-
sor type M̂j , and Fj is the number of speeds for M̂j . Let Cj be
the allocation cost of processor type M̂j , Ei,j,� (ui,j,�, respec-
tively) be the energy consumption in the hyper-period (utiliza-
tion, respectively) by executing task τi on processor type M̂j at
speed sj,�, and sj,κi,j be the minimum available speeds to exe-

cute task τi on processor type M̂j without violating the timing
constraint, i.e., ui,j,� > 1 for any � < κi,j . The variable yi,j,�

denotes the portion of task τi to be executed on processor type
M̂j at speed sj,�.

First, we re-index the available processor types in M so that
C1 ≤ C2 ≤ · · · ≤ Cm. The idea behind the parametric relax-
ation is that we restrict the solution of the input instance. When
the parameter is specified as m′, we are restricted to allocate at
least one processor of processor type M̂m′ and none of processor
type M̂j with j > m′. For a fixed number m′, we could relax
the ILP into the following two sub-equations:

minimize
Pm′

j=1

P
τi∈T

PFj

�=κi,j
ui,j,� · yi,j,� · Cj

subject to
P

τi∈T

PFm′
�=κi,m′ yi,m′,� · ui,m′ ,� ≥ 1,

Pm′
j=1

P
τi∈T

PFj

�=κi,j
Ei,j,� · yi,j,� ≤ E ,

Pm′
j=1

PFj

�=κi,j
yi,j,� = 1 , ∀τi ∈ T, and

yi,j,� ≥ 0,∀τi ∈ T, 1 ≤ j ≤ m′, κi,j ≤ � ≤ Fj .
(4a)

minimize Cm′ +
Pm′−1

j=1

P
τi∈T

PFj

�=κi,j
ui,j,� · yi,j,� · Cj

subject to
P

τi∈T

PFm′
�=κi,m′ yi,m′,� · ui,m′ ,� ≤ 1,

Pm′
j=1

P
τi∈T

PFj

�=κi,j
Ei,j,� · yi,j,� ≤ E ,

Pm′
j=1

PFj

�=κi,j
yi,j,� = 1 ,∀τi ∈ T, and

yi,j,� ≥ 0,∀τi ∈ T, 1 ≤ j ≤ m′, κi,j ≤ � ≤ Fj .
(4b)

Algorithm ROUNDING first finds a feasible solution with the
minimum value of the objective function among the 2m equa-
tions of all combinations in Equation (4). Let the variable as-
signment with the minimum value in the objective function of
Equation (4) be y∗

i,j,�. For a task τi with y∗
i,j,� = 1 for some

j and �, we execute task τi on processor type M̂j at speed sj,�.
For a task τi with 0 < y∗

i,j,� < 1 for some j and �, we execute

3D-3

346

task τi on the processor type M̂j′ , in which some y∗
i,j′,� > 0

and the energy consumption Ei,j′,κi,j′ is the minimum. There-
fore, each task is assigned on a processor type. Then, for each
processor type, we use the first-fit algorithm of the bin-packing
problem [29, §9] to allocate processors without adjusting execu-
tion speeds so that the utilization on each processor is at most
100%. Algorithm E-ROUNDING enhances Algorithm ROUND-
ING by finding the schedule with the minimum allocation cost
among the assignments based on the feasible solutions of the
2m equations. Theoretical analysis shows that both Algorithms
ROUNDING and E-ROUNDING are with a (m+2)-approximation
ratio, and the analysis is almost tight.

Approximation Algorithms for Ideal Processors For sys-
tems with ideal processors, we divide the available speeds into
a user-defined spectrum with a number of discrete speeds on
each processor type. Then, we apply Algorithm ROUNDING or
E-ROUNDING to assign tasks. For tasks assigned onto a proces-
sor type, the energy constraint of these tasks on the processor
type is the total energy consumption of these tasks. Under the
energy constraint Ej of processor type M̂j , we use Algorithm
RS-LEUF as follows to allocate processors of M̂j and schedule
the assigned tasks T̂j .

Let m∗ be the minimum number of processors to execute
tasks on the processor type without missing the timing or en-
ergy constraints by allowing a task to be executed simultane-
ously on more than one processor. The value of m∗ can be ob-
tained by applying the Kuhn-Tucker optimization condition in
O(|T̂j |2 log |T̂j |) time. Let t∗i be the execution time for allowing
simultaneous execution of tasks with m∗ processors. Then, the
estimated utilization u∗

i of task τi in T̂j is t∗i /pi. We could sim-
ply apply the first-fit algorithm of the bin-packing problem [29,
§9] according to the above estimated utilization. However, the
performance of the first-fit algorithm might not be good, since it
does not intend to change the execution speeds of tasks. Instead,
Algorithm RS-LEUF tries to change the execution speeds of some
tasks so that we might reduce the number of processors required
to meet the energy constraint. First, tasks in T̂j are sorted in a
non-increasing order of their estimated utilization. Let m̂ be ini-
tialized as m∗. We adopt the Largest-Estimated-Utilization-First
strategy to assign tasks without speed violation by increasing the
number of available processors m̂, until the energy consumption
of the resulting schedule is no more than Ej .

IV. EXPERIMENTAL RESULTS

A series of simulations is conducted to evaluate the capability
of the proposed algorithms. We consider systems with synthetic
real-time tasks. The power consumption function is β1 + β2s

3.
For example, we can normalize the power consumption function
of Intel XScale as P (s) = 0.08 + 1.52s3 Watt by normalizing
the highest available speed as 1.

A. Homogeneous Multiprocessor Systems

Figure 4(a) shows the average relative energy consumption ra-
tios for the simulated algorithms when P (s) = s3, where the
relative energy consumption ratio is defined as the energy con-
sumption of the schedule derived from the obtained task assign-
ment via the simulated algorithm divided by the energy con-

 10 11 12 13 14 15

 3 4 5 6 7 8

 1

 1.1

 1.2

 1.3

 1.4

 1.5

Number of T
asksNumber of Cores

A
v
e
r
a
g
e

r
e
l
a
t
i
v
e

e
n
e
r
g
y

c
o
n
s
u
m
p
t
i
o
n

r
a
t
i
o

LTF
RAND

(a)

 50 60 70 80 90 100

 5 10 15 20 25 30 35

 1
 1.2
 1.4
 1.6
 1.8
 2

 2.2

Number of T
asksNumber of Cores

A
v
e
r
a
g
e

r
e
l
a
x
e
d

r
e
l
a
t
i
v
e

e
n
e
r
g
y

c
o
n
s
u
m
p
t
i
o
n

r
a
t
i
o

LTF
RAND

(b)

Fig. 4. The simulation results of Algorithm LTF and Algorithm RAND.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

A
ve

ra
ge

 r
el

at
iv

e
en

er
gy

 c
on

su
m

pt
io

n
ra

ti
o

Ratio of number of tasks to number of processors

LEUF
RAND

(a) Common exponent

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

A
ve

ra
g
e
 r

e
la

tiv
e
 e

n
e
rg

y
co

n
su

m
p
tio

n
 r

a
tio

Ratio of number of tasks to number of processors

LEUF
RAND

(b) Different exponent

Fig. 5. The simulation results of Algorithm LEUF and Algorithm RAND.

sumption of the schedule derived from the optimal task assign-
ment by exhaustive searches. Algorithm RAND is simulated for
reference, where Algorithm RAND greedily assigns a task to a
processor with minimum workload without sorting tasks. Figure
4(b) shows the average relaxed relative energy consumption ra-
tios, which are obtained by dividing the energy consumption in
the derived schedule by a lower bound. As shown in Figure 4,
Algorithm LTF can derive solutions that are close to optimal.

Figure 5(a) shows the average relative energy consumption ra-
tios for the simulated algorithms when the power consumption
function of task τi is ρis

3. For a given ratio η of the number of
tasks to the number of processors, the number of processors M
is an integral random variable between 10 and 30, and the num-
ber of tasks is set as the floor of the multiplication of η and M ,
i.e., �η · M�. The performance of Algorithm LEUF is very close
to that of the optimal solutions. When the ratio of the number
of tasks to the number of processors is small, both of Algorithm
LEUF and Algorithm RAND might assign a task along with im-
proper tasks on a processor. Such an assignment might result in
a significant increase on the energy consumption of these tasks
when the energy consumption for the other tasks are almost as
the same as that in the optimal schedule. When the ratio of the
number of tasks to the number of processors is small, in most
cases, most processors are assigned with only one task, and the
assignment is almost as the same as that of an optimal sched-
ule. Therefore, the average energy consumption ratio is rela-
tively small when the ratio of the number of tasks to the number
of processors is less than 1.6. Figure 5(b) shows the average
relative energy consumption ratios for the simulated algorithms
when the power consumption function of task τi is ρis

αi , where
αi is a random variable in [2.5, 3].

B. Leakage-Aware Homogeneous Multiprocessor Systems

Figure 6 shows the average energy consumption of the algo-
rithms in Section III.B when there are 8 processors in the system,
normalized to the energy consumption of a lower-bounded so-
lution. Algorithm LA+LTF+FF+PROC denotes the algorithm by

3D-3

347

 1
 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 1.45
 1.5

 1.55
 1.6

 1.65
 1.7

 1.75

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
ve

ra
ge

 n
or

m
al

iz
ed

 e
ne

rg
y

Number of tasks

LA+LTF
LA+LTF+PROC

LA+LTF+FF
LA+LTF+FF+PROC

(a) Esw = 4mJ

 1
 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 1.45
 1.5

 1.55
 1.6

 1.65
 1.7

 1.75

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
ve

ra
ge

 n
or

m
al

iz
ed

 e
ne

rg
y

Number of tasks

LA+LTF
LA+LTF+PROC

LA+LTF+FF
LA+LTF+FF+PROC

(b) Esw = 12mJ

Fig. 6. Simulation results when 8 processors.

applying Algorithms LA+LTF, FF, and PROC accordingly. Al-
gorithm LA+LTF+PROC is defined in a similar way. In both
Figure 6(a) and Figure 6(b), Algorithm LA+LTF+FF+PROC al-
ways outperforms the other evaluated algorithms. Algorithm
LA+LTF+PROC outperforms LA+LTF+FF in Figure 6(a), and vice
versa in Figure 6(b). Since the break-even time when Esw =
4mJ is less than that when Esw = 12mJ, Algorithm PROC could
save more energy when Esw = 4mJ by turning a processor into
the dormant mode.

C. Heterogeneous Two-Processor Systems

We perform evaluations for two different settings on task mod-
els. In the proportional model, the utilization of task τi on the
non-DVS PE is a random variable proportional to the computa-
tion demand on the DVS PE. In the inverse model, the utilization
of task τi on the non-DVS PE is less if its computation demand
on the DVS PE is greater. We consider the non-DVS PE as an
FPGA, where the Xilinx FPGA for the XC4VLX100 part with
package FF1513 is adopted with 588mW power consumption.
The variable U∗

2 is the total utilization to execute all the tasks on
the non-DVS PE.

Figure 7 shows the energy consumption for workload-
independent non-DVS PEs, normalized to the energy consump-
tion of the optimal solution by an exhaustive search. Algo-
rithm E-GREEDY outperforms Algorithm GREEDY, and Algo-
rithm DP outperforms all the other evaluated algorithms for
workload-independent non-DVS PEs. As the utilization on the
non-DVS PE becomes greater, Algorithm E-GREEDY and Al-
gorithm GREEDY perform worse, i.e., with greater normalized
energy consumption. This is because the execution requirement
on the non-DVS PE for a task becomes larger, and the unused
utilization with improper task assignments increases the system
energy consumption significantly.

Figure 8 shows the results for workload-dependent non-
DVS PEs. Algorithm S-GREEDY greatly outperforms Algo-
rithm GREEDY. The reason why Algorithm GREEDY is worse
in energy efficiency when U∗

2 is small comes from that Algo-
rithm GREEDY assigns tasks with too much utilization on the
non-DVS PE.

D. Allocation Cost Minimization under Energy Constraints

Figure 9(a) shows the average normalized allocation cost (nor-
malized to a lower bound) of Algorithms ROUNDING and E-
ROUNDING when the energy constraint ratio is 0.2, the number
of processor types varies from 2 to 10, and the number of tasks
varies from 6 to 50. The energy constraint E for a task set T on a
set of processor types M under an energy consumption ratio γ is
set as (Emax−Emin)γ+Emin, where Emin (Emax, respectively)

 100

 100.2

 100.4

 100.6

 1.2 1.6 2 2.4N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

U2
*

GREEDY
E-GREEDY

DP with ε= 1.0

(a) inverse

 100

 100.2
 100.4

 100.6
 100.8

 101
 101.2

 101.4
 101.6

 101.8

 1.2 1.6 2 2.4N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

U2
*

GREEDY
E-GREEDY

DP with ε= 1.0

(b) proportional

Fig. 7. An ideal DVS PE and a workload-independent non-DVS PE with
n = 10 and ε = 1.0.

 100

 120

 140

 160

 180

 200

 220

 1.2 1.6 2 2.4N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

U2
*

GREEDY
S-GREEDY

(a) inverse

 100

 105

 110

 115

 120

 125

 130

 135

 140

 1.2 1.6 2 2.4N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

U2
*

GREEDY
S-GREEDY

(b) proportional

Fig. 8. An ideal DVS PE and a workload-dependent non-DVS PE with n = 10.

are the minimum (maximum, respectively) energy consumption
to complete the tasks. The performance of E-ROUNDING is no
worse than that of ROUNDING in the experimental results. Both
of the proposed algorithms could derive solutions with costs
close to those of optimal solutions. The performance gap be-
tween the two algorithms becomes wider for a larger number of
processor types. Figure 9(b) shows the average normalized al-
location cost of Algorithms ROUNDING and E-ROUNDING when
the energy constraint ratio varies from 0.05 to 1. Both of the
proposed algorithms could derive solutions with costs close to
those of optimal ones. Moreover, Algorithm E-ROUNDING out-
performs Algorithm ROUNDING in all the cases.

Figure 9(c) shows the average normalized allocation cost of
Algorithms First-Fit and RS-LEUF for one ideal processor type.
Algorithm RS-LEUF derives solutions close to optimal ones. Al-
gorithm RS-LEUF outperforms Algorithm First-Fit greatly when
the energy constraint ratio is large and the number of tasks is
small, i.e., γ ≥ 0.4 and n ≤ 20.

V. CONCLUSION

Dynamic voltage scaling (DVS) circuits have been widely
adopted in many computing systems to provide tradeoff be-
tween performance and power consumption. This paper presents
energy-efficient algorithms for real-time tasks in multiproces-
sor DVS systems to provide approximation solutions. Energy-
efficient scheduling is considered by two perspectives: (1) on
the minimization of energy consumption for real-time systems
[7–9, 18, 30], and (2) on the minimization of allocation cost of
processors under a given energy constraint [10, 17]. For energy
consumption minimization, we first present our work for ho-
mogeneous multiprocessor DVS systems with negligible leak-
age power consumption when tasks have the same power con-
sumption characteristics [7, 30] and different power consumption
characteristics [1, 9]. Then, we show how to exploit the results to
cope with systems with non-negligible leakage power consump-
tion [8]. We then present energy-efficient scheduling for sys-

3D-3

348

 2 3 4 5 6 7 8 9 10

 6 10 14 18 22 26 30 34 38 42 46 50

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 Number of

 processor types

Number of tasks

N
or

m
al

iz
ed

 a
llo

ca
tio

n
co

st

ROUNDING
E-ROUNDING

(a)

 1.36

 1.4

 1.44

 1.48

 1.52

 1.56

 1.6

 1.64

 1.68

 1.72

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 a
llo

ca
tio

n
co

st

Energy constraint ratio

ROUNDING
E-ROUNDING

(b)

 1
 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

Number of tasks

Energy constraint ratio

N
or

m
al

iz
e

al
lo

ca
tio

n
co

st

First-Fit
RS-LEUF

 5 10 15 20 25 30 35 40 45 50
 0 0.2 0.4 0.6 0.8 1

(c)

Fig. 9. The experimental results for the minimization of allocation cost.

tems with a DVS processor and a non-DVS processor [18]. We
then summarize our work for the minimization of allocation cost
of processors under a given energy constraint when non-DVS
processors [17] or DVS processors [10] are considered. Experi-
mental results are presented to demonstrate the capability of the
proposed algorithms.

For future research, we would like to extend our research re-
sults to systems with real-time tasks with precedence constraints
or resource competitions. We will also explore energy-efficient
scheduling for multiprocessor systems with considerations on
peripheral devices.

REFERENCES

[1] Energy-Efficient Scheduling of Periodic Real-Time Tasks over Homoge-
neous Multiprocessors, 2005.

[2] T. A. Alenawy and H. Aydin. Energy-aware task allocation for rate mono-
tonic scheduling. In Proceedings of the 11th IEEE Real-time and Embed-
ded Technology and Applications Symposium (RTAS’05), pages 213–223,
2005.

[3] J. H. Anderson and S. K. Baruah. Energy-efficient synthesis of periodic
task systems upon identical multiprocessor platforms. In Proceedings of the
24th International Conference on Distributed Computing Systems, pages
428–435, 2004.

[4] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez. Determining op-
timal processor speeds for periodic real-time tasks with different power
characteristics. In Proceedings of the IEEE EuroMicro Conference on Real-
Time Systems, pages 225–232, 2001.

[5] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor real-
time systems. In Proceedings of 17th International Parallel and Distributed
Processing Symposium (IPDPS), pages 113 – 121, 2003.

[6] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage
energy and temperature. In Proceedings of the Symposium on Foundations
of Computer Science, pages 520–529, 2004.

[7] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and T.-W.
Kuo. Multiprocessor energy-efficient scheduling with task migration con-
siderations. In EuroMicro Conference on Real-Time Systems (ECRTS’04),
pages 101–108, 2004.

[8] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient
scheduling of real-time tasks in multiprocessor systems. In IEEE Real-time
and Embedded Technology and Applications Symposium, pages 408–417,
2006.

[9] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient scheduling
for real-time tasks. In International Conference on Parallel Processing
(ICPP), pages 13–20, 2005.

[10] J.-J. Chen and T.-W. Kuo. Allocation cost minimization for periodic hard
real-time tasks in energy-constrained DVS systems. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, 2006.

[11] J.-J. Chen, T.-W. Kuo, and H.-I. Lu. Power-saving scheduling for weakly
dynamic voltage scaling devices. In Workshop on Algorithms and Data
Structures (WADS), pages 338–349, 2005.

[12] J.-J. Chen, T.-W. Kuo, and C.-S. Shih. 1+ε approximation clock rate as-
signment for periodic real-time tasks on a voltage-scaling processor. In the
2nd ACM Conference on Embedded Software (EMSOFT), pages 247–250,
2005.

[13] J.-J. Chen, T.-W. Kuo, C.-L. Yang, and K.-J. King. Energy-efficient real-
time task scheduling with task rejection. In Proceedings of the 8th Confer-
ence of Design, Automation, and Test in Europe (DATE), 2007.

[14] G. Gens and E. Levner. Computational complexity of approximation algo-
rithms for combinatorial problems. Springer, 1979.

[15] F. Gruian. System-level design methods for low-energy architectures con-
taining variable voltage processors. In Power-Aware Computing Systems,
pages 1–12, 2000.

[16] F. Gruian and K. Kuchcinski. Lenes: Task scheduling for low energy sys-
tems using variable supply voltage processors. In Proceedings of Asia
South Pacific Design Automation Conference, pages 449–455, 2001.

[17] H.-R. Hsu, J.-J. Chen, and T.-W. Kuo. Multiprocessor synthesis for peri-
odic hard real-time tasks under a given energy constraint. In ACM/IEEE
Conference of Design, Automation, and Test in Europe (DATE), 2006.

[18] C.-M. Hung, J.-J. Chen, and T.-W. Kuo. Energy-efficient real-time task
scheduling for a DVS system with a non-DVS processing element. In the
27th IEEE Real-Time Systems Symposium (RTSS), 2006.

[19] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 37–46, 2003.

[20] T. Ishihara and H. Yasuura. Voltage scheduling problems for dynamically
variable voltage processors. In Proceedings of the International Symposium
on Low Power Electronics and Design, pages 197–202, 1998.

[21] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. In Proceedings of the Design Au-
tomation Conference, pages 275–280, 2004.

[22] Y.-H. Lee, K. P. Reddy, and C. M. Krishna. Scheduling techniques for
reducing leakage power in hard real-time systems. In 15th Euromicro Con-
ference on Real-Time Systems (ECRTS), pages 105–112, 2003.

[23] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[24] P. Mejı́a-Alvarez, E. Levner, and D. Mossé. Adaptive scheduling server for
power-aware real-time tasks. ACM Transactions on Embedded Computing
Systems, 3(2):284–306, 2004.

[25] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem. Energy aware
scheduling for distributed real-time systems. In International Parallel and
Distributed Processing Symposium, page 21, 2003.

[26] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits.
Prentice Hall, 2nd edition, 2002.

[27] INTEL. Strong ARM SA-1100 Microprocessor Developer’s Manual, 2003.
INTEL.

[28] INTEL-XSCALE, 2003. http://developer.intel.com/design/xscale/.

[29] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[30] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo. An approximation algorithm for
energy-efficient scheduling on a chip multiprocessor. In Proceedings of the
8th Conference of Design, Automation, and Test in Europe (DATE), pages
468–473, 2005.

[31] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU
energy. In Proceedings of the 36th Annual Symposium on Foundations of
Computer Science, pages 374–382. IEEE, 1995.

[32] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage selection
for energy minimization. In Annual ACM IEEE Design Automation Con-
ference, pages 183–188, 2002.

[33] D. Zhu, R. Melhem, and B. Childers. Scheduling with dynamic volt-
age/speed adjustment using slack reclamation in multi-processor real-time
systems. In Proceedings of IEEE 22th Real-Time System Symposium, pages
84–94, 2001.

3D-3

349

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

