
RTOS and Codesign Toolkit for Multiprocessor Systems-on-Chip

Shinya Honda Hiroyuki Tomiyama Hiroaki Takada
Graduate School of Information Science, Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
e-mail: {honda, tomiyama, hiro}@ertl.jp

Abstract— Multiprocessor designs have become popular in em-
bedded domains for achieving the power and performance re-
quirements. In this paper, we present principles and techniques
for design and implementation of RTOS for embedded multipro-
cessor systems. We also present a system-level design toolkit for
rapid design and evaluation of embedded multiprocessor systems.

I. INTRODUCTION

Recently, multiprocessor designs have become popular in
embedded domains. This is mainly because increasing the
number of processors is generally more power/performance-
efficient than increasing the clock frequency. Specifically, mul-
tiprocessor systems-on-chip (MPSoCs) are considered to be a
promising solution to achieve both high-performance and low-
power consumption and to be used in a wide range of embed-
ded systems in future[1, 2]. On the software side, real-time
operating systems (RTOSs) have become commodity tools in
order to manage the growing complexity of embedded soft-
ware. In the development of embedded software running on
MPSoCs, of course, RTOSs for MPSoCs are necessary.

From a viewpoint of RTOSs, there are different types of
multiprocessor (MP) systems such as symmetric multipro-
cessor (SMP) systems, functionally distributed multiprocessor
(FDMP) systems, and so on. Out of them, the FDMP archi-
tecture is an appropriate choice for embedded systems where
application programs are fixed. We have developed a RTOS,
named TOPPERS/FDMP Kernel, for FDMP-type embedded
systems. In this paper, we present principles and techniques
for design and implementation of TOPPERS/FDMP Kernel.

In the design of embedded multiprocessor systems, one of
the most important decisions is mapping of application pro-
cesses onto processors. Recent advances in EDA technologies,
specifically hardware/software codesign and C-based behav-
ioral synthesis[3, 4], further enables smooth mapping of ap-
plications not only to processors but also to hardware modules.
In order to achieve the best mapping, accurate estimation of de-
sign quality such as performance and cost is necessary for each
candidate mapping, but it is in general a very difficult problem.
Alternatively, a designer has to evaluate the quality of mapping
very quickly.

For rapid design and evaluation of embedded multiproces-
sor systems, we have developed a system-level design toolkit,
named SystemBuilder. System design using SystemBuilder
starts with system specification in the C language. A designer
specifies the system functionalities as a set of concurrent pro-
cesses communicating with each other through channels. Sys-
temBuilder provides three primitive communication channels

(communication primitives, hereafter). SystemBuilder takes
the system specification and mapping directives as input, and
generates RTOS-dependent software, synthesizable hardware,
and hardware/software interfaces including interface circuits
and device drivers. SystemBuilder also supports cosimulation
at different abstraction levels and FPGA-based implementa-
tion.

This paper is organized as follows. Section II presents our
RTOS for multiprocessor systems, and Section III describes our
system-level design toolkit. Section IV presents a case study
with a JPEG decoder application. Section V presents our on-
going work, and Section VI concludes this paper.

II. REAL-TIME OPERATING SYSTEMS FOR
MULTIPROCESSOR SYSTEMS

A. Classification of Multiprocessor Systems
There are different types of multiprocessor (MP) systems.

Accordingly, RTOS supports should be different among the MP
types.

MP systems are broadly classified into two types: one is
tightly-coupled MP systems with shared memory, and the other
is loosely-coupled MP systems (or distributed MP systems).
The tightly-coupled MP systems are further classified into two
types: symmetric multiprocessor (SMP) systems and function-
ally distributed multiprocessor (FDMP) systems (or asymmet-
ric MP systems (AMP)). In an SMP system, every processor
can access all resources (such as memory, peripherals, etc.) in
the system. Therefore, an application task can be executed on
any processor. In an FDMP system, on the other hand, a pro-
cessor can access only a limited set of resources in the system.
Therefore, an application task needs to be statically allocated
to a specific processor.

In many embedded systems, only a predefined set of appli-
cations are executed. In other words, many embedded systems
are dedicated to specific applications. In the design of such
embedded systems, it is possible to statically map application
tasks onto processors in such a way that processor loads are
balanced well and/or inter-processor communication is mini-
mized. Thus, the FDMP architecture is a natural choice for
such systems in terms of cost, power consumption, and real-
time performance. It should be mentioned that dynamic load
balancing is still possible on an FDMP system by duplicating a
task to be mapped onto more than one processor.

B. OS Supports for FDMP Systems
In many of FDMP systems so far, each processor has its

own RTOS which is designed for single-processor systems, and

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3D-2

336



inter-processor synchronization and communication are real-
ized at the application level. However, this naive solution suf-
fers from two major problems as follows:

• Programming with application-level synchronization and
communication are difficult, and thus, time-consuming
and error-prone.

• Exploration of task mapping alternatives1 is not easy since
application programs need to be modified every time map-
ping is changed.

The first problem can be solved by developing a middleware
library for synchronization/communication. In order to solve
the latter problem, however, OS supports are desirable such
that intra-processor synchronization/communication and inter-
processor synchronization/communication should be described
seamlessly. In other words, OSs should provide the same APIs
for both intra-processor synchronization/communication and
inter-processor ones. Such OSs would not only improve the
software development productivity but also facilitate rapid de-
sign space exploration to obtain the optimal solution for task
mapping.

C. TOPPERS/FDMP Kernel

In the rest of this section, we describe TOPPERS/FDMP
Kernel which we have developed for FDMP systems.

C.1. Design Principles

TOPPERS/FDMP Kernel has been developed based on
TOPPERS/JSP Kernel which we had developed earlier for
single-processor embedded systems. TOPPERS/JSP Kernel
is an open-source RTOS designed as a reference implementa-
tion of µITRON 4.0 Standard Profile. µITRON is a standard-
ized API for RTOSs which has been developed in Japan[5],
and Standard Profile defines a fundamental subset of µITRON.
Since the first release in November 2000, TOPPERS/JSP Ker-
nel has been used in various commercial products such as print-
ers, NC machines, and so on.

µITRON Standard Profile assumes that all application tasks
are linked into a single module and all kernel objects (e.g.,
tasks, semaphores, etc.) are statically instantiated. RTOS ser-
vice calls are implemented as normal function calls. µITRON
Standard Profile does not support protection mechanism. Due
to these policies, RTOSs which conform to µITRON Standard
Profile can be small in size and achieve high real-time perfor-
mance.

One of the most important principles in extending TOP-
PERS/JSP Kernel towards FDMP systems was to keep it con-
forming to µITRON 4.0 Standard Profile as much as possi-
ble. In other words, we avoided to change existing function-
alities. Also, we tried to minimize new functionalities (ser-
vice calls and APIs) to be added to µITRON Standard Pro-
file. Thus, inter-processor synchronization/communication and
intra-processor synchronization/communication can be real-
ized with same APIs without sacrificing reusability of existing
software.

1We consider only task mapping at the design time, and do not consider
task migration at runtime.

Task1 Handler1

Task2 Handler2

Task3 Handler3

Task4 Handler4

Task5 Handler5

Task6 Handler6

API Call API Call

Fig. 1. An example of relationship between processors and kernel objects

C.2. Classification of Objects
In TOPPERS/FDMP Kernel, each kernel object belongs to

one of the processors in the FDMP system. A set of kernel
objects which belong to the same processor is called a class.
As mentioned later, allocation of kernel objects to processors
is statically determined and described in so-called a configu-
ration file. In TOPPERS/FDMP Kernel, classes are, in turn,
handled as kernel objects, and identification (ID) numbers are
given to them. The following objects can be executed only on
the processors to which the objects belong to.

• Application tasks
• Task exception handling routines
• Cyclic handlers
• Interrupt handlers
• CPU exception handlers

With TOPPERS/FDMP Kernel, a task is executable only on
a specific processor, and cannot migrate between processors at
runtime.

Figure 1 shows an example of relationship between proces-
sors and kernel objects.

C.3. Identification of Objects
Tasks can access all of the objects in the system using

µITRON system calls, no matter which processors the objects
belong to. According to the µITRON specification, unique ID
numbers are given to all objects, and system calls which ma-
nipulate an object have its ID number as an argument. In TOP-
PERS/FDMP Kernel, an object has a unique ID number of 32
bits, and the ID number consists of two parts. The upper 16
bits are used to specify a class ID number, and the lower 16
bits are used to specify an ID number in the class. A class ID
of zero means that the object belongs to the same processor on
which the system call is issued. In this way, µITRON system
calls can be used in TOPPERS/FDMP Kernel without changing
their APIs.

C.4. System States
µITRON 4.0 defines system states for exclusively executing

a specific task. Such states include locked CPU state where no
interrupt or task switch is permitted, and suppressed dispatch
state where no task switch is permitted. These states are often
used for mutual exclusion.

In TOPPERS/FDMP Kernel, the system state is controlled
processor-by-processor independently. For example, if one of
the processors is in the locked CPU state, interrupts and task
switches can be allowed on other processors. Therefore, mu-
tual exclusion across processors cannot be realized by using
these system states. With TOPPERS/FDMP Kernel, mutual

3D-2

337



¶ ³
local class CPU1{

CRE TSK(TASK1, {TA HLNG, ..});
CRE TSK(TASK2, {TA HLNG, ..});
CRE CYC(CYCHDR1, {TA HLNG, ..});

}
local class CPU2{

CRE TSK(TASK3, {TA HLNG, ..});
CRE TSK(TASK4, {TA HLNG, ..});
CRE CYC(CYCHDR2, {TA HLNG, ..});

}

µ ´
Fig. 2. A fragment of a configuration file for a dual-processor system.

exclusion should be implemented explicitly using synchroniza-
tion objects (such as semaphores). If we want to reuse software
with the state-based mutual exclusion mechanism, the software
needs to be rewritten.

C.5. Static API

µITRON 4.0 Standard Profile defines that all kernel objects
are statically instantiated. Dynamic instantiation of kernel ob-
jects at runtime is not supported. Kernel objects are defined
by means of so-called static API in a configuration file. The
configuration file is fed by so-called configurator to generate C
files where the objects are instantiated and initialized. The C
files are compiled and linked with application tasks as well as
the RTOS kernel code.

In TOPPERS/FDMP Kernel, syntax of the configuration file
has been extended in order to specify allocation of kernel ob-
jects to specific processors. Figure 2 shows a fragment of a
configuration file for a system with two processors CPU1 and
CPU2. For each processor, two tasks and one cyclic hander
are instantiated. As shown in Figure 2, changing allocation of
tasks and other objects is very easy. For example, if we want
to reallocate TASK3 from CPU2 to CPU1, the only thing to do
is to move the corresponding line from CPU2 to CPU1 in the
configuration file.

The configurator creates a directory for each processor, and
generates C files for instantiating the kernel objects assigned
to the processor. During the process, the configurator assigns
unique ID numbers for all objects. Then, for each processor,
the C files are compiled and linked with applications and the
RTOS kernel to generate an executable object code.

D. Evaluation

We have evaluated code size and performance of TOP-
PERS/FDMP Kernel. Altera NiosII/s, which is a soft-core pro-
cessor for FPGA, is used as a target processor. We have devel-
oped a multiprocessor platform with four NiosII/s processors.
Each processor has a local memory. The Avalon bus, which
is a standard bus for NiosII systems, is based on a star-type
network, so no contention happens as long as the processors
access their local memories. All the components (i.e., proces-
sors, memories, bus, etc.) operate at 50MHz.

D.1. Code Size

Comparison of code size between TOPPERS/JSP Kernel and
TOPPERS/FDMP Kernel is summarized in Table I. The size of
the text section for the FDMP kernel is about 60% larger than

that for the JSP kernel. One of the reasons for the increased
code size is that, for each system call, a routine for acquiring
and releasing a lock is inserted. Also, a new routine for avoid-
ing deadlocks is added. On the other hand, an increase in the
data and bss secsions is trivial. An increase in data size is also
small. A new data block, named CCB (Class Control Block), of
128 bytes is added for each processor. In addition, TCB (Task
Control Block) is extended by 6 bytes.

TABLE I
CODE SIZE OF JSP KERNEL AND FDMP KERNEL

Kernel text data bss
JSP 26671 bytes 5 bytes 68 bytes

FDMP 42707 bytes 6 bytes 76 bytes

D.2. Performance
We have measured execution times of two system calls. One

of the system calls is wup tak, which wakes up a task in the
wait state. We executed wup tsk in two conditions. One condi-
tion is that the system call invokes task dispatch, and the other
is that it does not. The other system call is sig sem. Sim-
ilar to wup tsk, sig sem was executed in the two conditions
as described above. The key difference between wup tsk and
sig sem is that wup tsk aquires a task lock only, while sig sem
acquires both a task lock and an object lock.

Tables II and III show the results. The row labeled ”JSP”
presents execution times of the system calls using TOP-
PERS/JSP Kernel. The next row ”FDMP (Intra-processor)”
presents execution times in case the system calls are is-
sued towards a task/object in the same processor using TOP-
PERS/FDMP Kernel. The last row ”FDMP (Inter-processor)”
shows the case the system calls are issued towards a task/object
in a different processor.

Compared with the JSP kernel, the execution times becomes
longer even in case of inter-processor system calls. This is be-
cause of the additional routine for mutual exclusion and data
structures being more complicated. In case of system calls with
dispatch, the execution times of the FDMP (inter-processor)
are longer than those of the FDMP (intra-processor). This is
because of the increased overhead for dispatching a task on a
different processor.

TABLE II
EXECUTION TIME OF SYSTEM CALL WITH TASK DISPATCH

Kernel wup tsk sig sem
JSP 5 µsec 5 µsec

FDMP�¢Intra-processor�£ 9 µsec 10 µsec
FDMP�¢Inter-processor�£ 9 µsec 10 µsec

TABLE III
EXECUTION TIME OF SYSTEM CALL WITHOUT TASK DISPATCH

Kernel wup tsk sig sem
JSP 7 µsec 6 µsec

FDMP�¢Intra-processor�£ 11 µsec 13 µsec
FDMP�¢Inter-processor�£ 17 µsec 18 µsec

III. CODESIGN TOOLKIT FOR MPSOCS

This section describes a codesign toolkit, named System-
Builder, for MPSoCs. The initial version of SystemBuilder
was developed for single-processor systems[7], but recently it
has been significantly extended towards MPSoCs.

3D-2

338



P1

P3P4

P2CP1

CP2

CP3 CP4CP5

Fig. 3. An example of system description

A. Application Description

One of the inputs to SystemBuilder is an application de-
scription. In the application specification, applications are de-
scribed as a set of sequential processes running concurrently.
SystemBuilder provides three kinds of fundamental channels,
called communication primitives, for communication between
the processes. A process will be implemented as either a soft-
ware task or a hardware module with a single FSM, depending
on hardware/software partitioning.

Figure 3 shows an example of application specification
where there exist four processes (denoted as Pn) and five com-
munication primitives (denoted as CPn).

Processes are written in the C language, and the overall
structure is written in a specific file, named the System DeF-
inition (SDF) file.

A.1. Processes

Processes have unique names. A process may consist of mul-
tiple functions. The name of the main function of the process
must be the same as the name of the process.

Processes are written in the C language. If a process might
be implemented in hardware, the C code of the process must be
synthesizable by a behavioral synthesis tool. At present, we use
a commercial behavioral synthesis tool eXCite from YXI[6],
so the coding restriction of eXCite applies to the processes on
which hardware/software partitioning is not decided.

A.2. Communication Primitives

SystemBuilder supports three communication primitives:
non-blocking communication primitive, blocking communica-
tion primitive, and memory primitive. In the application speci-
fication, inter-process communication must be described using
the communication primitives. Each communication primitive
defines access functions to use the communication primitive.
Processes communicate with each other through communica-
tion primitives by calling the access functions of the communi-
cation primitives.

Communication primitives will be synthesized differently
depending on hardware/software partitioning decision. This
synthesis step is automated by SystemBuilder.

In order to use communication primitives in processes, the
communication primitives must be declared in the SDF file.
The syntax of the communication primitives is as follows,
where XXX denotes a unique name given to the communica-
tion primitive.

Non-Blocking Communication Primitives

¶ ³
API

XXX READ(int* pdata)
XXX WRITE(int data)

SDF Syntax
NBCPRIM XXX, SIZE = 8|16|32µ ´

Blocking Communication Primitives
¶ ³

API
XXX (P)READ(int* pdata)
XXX (P)WRITE(int data)

SDF Syntax
BCPRIM XXX, SIZE = 8|16|32, DEPTH = xxµ ´

Memory Primitives
¶ ³

API
XXX READ(offset, int* pdata);
XXX WRITE(offset, data);

SDF Syntax
MEMPRIM xxx, SIZE = 8|16|32, DEPTH = xxµ ´

A.3. System Definition File
The overall structure of application specification (e.g., decla-

ration of processes and communication primitives) is described
in a System DeFinition (SDF) file. In addition, mapping of pro-
cesses to processing elements (such as processors and hardware
modules) is specified in the SDF file.

Figure 4 shows a fragment of the SDF file for a dual-
processor system with a dedicated hardware module as de-
picted in Figure 5. The application consists of four processes
and five communication primitives. Two processes P1 and P4
are mapped to CPU1, and P2 and P3 are mapped to CPU2
and the hardware module, respectively. The SDF file also de-
fines that CP1 is a blocking communication primitive whose
bitwidth is 32 and FIFO depth is two. The five lines from BE-
GIN PROCESS to END define a process named P1. P1 is writ-
ten in file ”p1.c”, and three communication primitives, CP1,
CP3 and CP5, are used in the process. For each communica-
tion primitive, the direction of the communication is specified.
For example, CP1 and CP5 are used for write accesses, while
CP3 is used for both read and write accesses.

B. Synthesis
SystemBuilder takes an SDF file and C programs as input,

and automatically generates RTOS-specific software, register-
transfer level (RTL) hardware, and interface between software
and hardware.

B.1. Software Synthesis
Processes which are mapped to processors are translated to

software tasks for TOPPERS/FDMP Kernel. Communication
primitives used for intra- and inter-processor communication
(such as CP1 and CP3 in Figure 5) are replaced with corre-
sponding synchronization/communication service calls of the
FDMP kernel.

B.2. Hardware Synthesis
Processes which are mapped to hardware are fed by a be-

havioral synthesis tool. In SystemBuilder, a commercial tool,

3D-2

339



¶ ³
#Design Name
SYS NAME = test
#Partition
SW(CPU1) = P1,P4
SW(CPU2) = P2
HW = P3

#Communication Primitives
BCPRIM CP1, SIZE = 32, DEPTH = 0
BCPRIM CP2, SIZE = 32, DEPTH = 1
...

#Processes
BEGIN PROCESS

NAME = P1
FILE = “p1.c”
USE CP = CP1(OUT), CP3(INOUT), CP5(OUT)

END
...

µ ´
Fig. 4. Fragment of the SDF file for a dual-processor system

P1

P3P4

P2CP1

CP2

CP3 CP4CP5

To Hardware

To Software

BUS

CPU1 PECPU2

P1 P4 P2 P3

Behavioral 

Synthesis

To Software

CompileCompile

Fig. 5. A dedicated hardware module and mapping

eXCite, is used for behavioral synthesis. SystemBuilder auto-
matically executes eXCite to generate RTL descriptions of the
hardware processes. Communication primitives used for hard-
ware/hardware communication are translated into handshaking
interfaces, registers, or FIFOs, depending on the types of the
communication primitives.

B.3. Interface Synthesis

Based on the SDF description, SystemBuilder automatically
generate hardware/software interface. On the software side,
device drivers are generated. On the hardware side, HDL de-
scriptions of interface circuits are generated.

Hardware/software communication is based on memory-
mapped I/O accesses. For each communication primitive be-
tween hardware and software, SystemBuilder instantiates a
register, an FIFO or a RAM according to the communication
primitive type, and assigns an address (or address space) to the
storage element. Then, an address decoder circuit and an inter-
rupt controller are synthesized. The generated circuits have an
interface to a generic bus, named VBUS, which supports sim-
ple read/write transactions. In order to connect to an actual bus

jpeg_top
・file read

Huffman iquantize

IQUANT_ME

M

192 x 16 bit

IQUANT_TBL

256 x 16bit

idct

IDCT_MEM

192 x 16 bit

pshift

PSHIFT_MEM

192 x 16 bit

yuv2rgb

YUV_MEM

768 x 16bit

bmpout

RGB_MEM

192 x 32bit 

MCU_WIDTH

32bit

MCU_HEIGHT

32bit

CURRENT_MCU

32bit
MEM

NBC NBC NBC

MEMMEMMEMMEMMEM

IQUANT_ST
BC

IDCT_ST
BC

PSHIFT_ST
BC

YUV_ST
BC

BMP_ST
BC

DECODE_ST
BC

DECODE_END
BC

Fig. 6. JPEG decoder

such as OPB, Avalon or AMBA, a bus transducer needs to be
inserted between the circuits generated by SystemBuilder and
the actual bus. At present, SystemBuilder supports transducer
IPs for OPB and Avalon.

On the software side, SystemBuilder generates device
drivers. The device drivers include read/write access functions
and interrupt handlers. Semaphores are also generated for syn-
chronization between software and hardware.

These synthesis steps are completely automated, so a de-
signer can explore a large number of different mappings by
quick specification-synthesis-and-evaluation.

C. Cosimulation

SystemBuilder supports hardware/software cosimulation at
different abstraction levels. One of the most remarkable fea-
tures in our cosimulation platform is that it has a complete
simulation model of µITRON-compliant RTOS so that appli-
cation tasks including RTOS service calls are natively executed
on a host computer. Our cosimulator also features cosimu-
lation with functional simulation models of hardware written
in C/C++ and cosimulation with HDL simulators. See [7] for
more details.

IV. A CASE STUDY

We have conducted a case study on design space exploration
for a JPEG decoder application. The flow of the JPEG de-
coder is depicted in Figure 6. The JPEG decoder consists of
seven processes, out of which four processes, i.e., iquantize,
idct, pshift, and yuv2rgb, can be implemented in software or
hardware. The other tasks need to be implemented in software
due to the IO constraint.

In the case study, two architecture platforms were built on
Xilinx Virtex-2. One is a single-processor system, and the other
is a dual-processor system. The Microblaze processor is used
in both platforms.

We have synthesized and evaluated 12 designs with dif-
ferent hardware/software partitioning on the single-processor
platform. In addition, we have synthesized and evaluated 12
designs with different hardware/software partitioning and task
mapping on the dual-processor platform. Figure 7 shows the
cost-performance trade-offs which we have obtained through
the design space exploration.

To complete the case study, it takes only a day by a single
designer. It should be also noted that most time was spent for
logic synthesis and place-and-route.

3D-2

340



P1

P6P4

P2CP1

CP2 CP4CP3

P3

P7P5

HWCPU1 Memory

HWCPU2 Memory CPU3

HWCPU1 Memory

    HWCPU2 Memory CPU3

RTOS

Driver

CP1
P1 P2

RTOS

Driver

P4 P7

CP2

CP3

CP4

RTOS

Driver

P5

BUS I/F

Device Register

B
U

S
 I

/F

D
ev

ic
e 

R
eg

is
te

r

P6

P2

Fig. 8. Next-generation SystemBuilder design flow

�

����

����

����

����

�����

�����

�����

�����

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Area[Slice]

D
ec

o
d

e 
T

im
e[

m
se

c]

1CPU + HW

2CPUs + HW

Fig. 7. Cost-performance trade-offs for JPEG decoder

V. CURRENT STATUS

We have been extending SystemBuilder in two directions.
One is abstract interfaces and the other is architecture explo-
ration.

The current version of SystemBuilder supports only three
communication primitives (i.e., non-blocking, blocking and
memory-based channels) whose abstraction level is very low.
These primitives are not sufficient at all for designers to de-
scribe their applications at high levels of abstraction. To solve
this problem, we have been working on definition and synthe-
sis of communication interfaces at higher levels of abstraction.
The new interfaces include FIFOs with a sophisticated syn-
chronization mechanism, stream data FIFOs, composite data
FIFOs, shared variables with synchronization, and so on. Pre-
liminary work on these interfaces were reported in [8].

Another ongoing work is as follows. The current version of
SystemBuilder assumes that all components (such as proces-
sors, hardware modules, memories and so on) are connected
to a single bus. At present, however, many multiprocessor
systems have more complicated interconnections. The next-
generation SystemBuilder takes as input not only an applica-
tion description but also an architecture template, as shown in
Figure 8. SystemBuilder will map processes and communica-
tion channels onto PEs and memories, and generate software,
synthesizable hardware and interface. If the quality of the de-

sign does not meet the required level, a designer can refine
his/her architecture as well as application and mapping.

VI. CONCLUSIONS

In this paper, we have described a real-time operating sys-
tem, named TOPPERS/FDMP Kernel, and system-level design
toolkit, named SystemBuilder, both of which we have devel-
oped for embedded multiprocessor systems-on-chip. The ef-
fectiveness of the two tools has been illustrated through a case
study on design space exploration of the JPEG decoder system.
We have also outlined our ongoing work on definition and syn-
thesis of abstract interfaces as well as architectural exploration.

ACKNOWLEDGMENT

This work was in part supported by IPA (Information Tech-
nology Promotion Agency, Japan) and STARC (Semiconductor
Technology Academic Research Center).

REFERENCES

[1] S. Torii, et al, : A 600MIPS 120mW 70uA Leakage Triple-CPU Mobile
Application Processor. Chip., Proc. ISSCC, 2005.

[2] T. Fujiyoshi, et.al. : An H.264/MPEG-4 Audio/Visual CODEC LSI with
Module-Wise Dynamic Voltage/Frequency Scaling, Proc. ISSCC, 2005.

[3] K. Wakabayashi, “C-based Behavioral Synthesis and Verification Anal-
ysis on Industrial Design Examples,” In Proc. of Asia and South Pacific
Design Automation Conference, pp. 344–348, 2004.

[4] C. Sullivan, and A. Wilson, S. Chappell, “Using C Based Synthesis to
Bridge the Productivity Gap,” In Proc. of Asia and South Pacific Design
Automation Conference, pp. 349–354, 2004.

[5] TRON Association : µITRON 4.0 Specification(Ver 4.00.00), Tokyo,
JAPAN, (2002).
Avaliable at http://www.assoc.tron.org/data/spec/index-e.htm

[6] http://www.yxi.com

[7] S. Honda, H. Tomiyama, and H. Takada, ”SystemBuilder: A System
Level Design Environment (in Japanese),” IEICE Trans. Information &
Systems, vol. J88-D-I, no. 2, pp. 163-174, Feb. 2005.

[8] H. Minamide, T. Yoshimoto, Y. Takagi, S. Honda, H. Tomiyama, and H.
Takada, ”Communication Interfaces for System Level Design,” In Proc.
of Workshop on Synthesis and System Integration of Mixed Information
Technologies (SASIMI), pp. 21-28, Nagoya, Japan, Apr. 2006.

3D-2

341


