
Model-based Programming Environment of Embedded Software for MPSoC

Abstract - A noble model-based programming environment of
embedded software for MPSoC is proposed. By defining a
common intermediate code (CIC), it separates modeling of the
software and implementation optimized for target architecture. It
also allows us to use diverse models for initial specification.
Another feature is to provide multi-phase debugging capabilities:
at the modeling stage, at the code generation stage, and at the
simulation stage. Preliminary experiments with a Divx player
confirm the feasibility and validity of the proposed technique.

I Introduction

Insatiable demand of system performance makes it
inevitable to integrate more and more processing elements in a
single chip, called MPSoC (Multi-Processor System on a
Chip), to meet the performance requirement. While extensive
research on the design methodology has been performed to aid
the development of SoC, all but few, if any, focus on the
design of hardware architecture. In reality, however, the
bottleneck of MPSoC design will be not hardware design but
software design, as a hardware platform is reused in platform
based design. Thus this paper focuses on the software design
methodology for MPSoC.

Compared with general purpose software, embedded
software of MPSoC has the following characteristics.
(1) Concurrency: Embedded software for MPSoC is parallel
programs on a multi-processor system that is typically a
heterogeneous system including hardware components that
run concurrently with software.
(2) Real-time constraints: An embedded system usually has
real-time constraints. A typical solution to satisfy the real-time
constraints is to use a priority-based real time scheduling of
tasks. Since common scheduling algorithms such as RM
(Rate-Monotonic) and EDF (Earliest-Deadline-First)
algorithms assume a single processor system, they cannot be
used directly for MPSoC. We need to develop a new way of
checking the schedulability of tasks in an MPSoC.
(3) Resource constraints: Since the cost-performance ratio is a
more important metric than performance alone, it is desirable
to develop an optimized software that minimizes the resource
requirement such as memory size.
(4) Verification: Since the fabrication cost of an MPSoC is
huge and run-time debugging is not possible, it is critical to
verify the software in a virtual prototyping environment
before the chip is fabricated.

Recently, it becomes more popular to use a model driven

architecture (MDA) for systematic design of software [1][2].
In an MDA, system behavior is described in a platform
independent model (PIM). Based on the hardware platform
specification, the PIM is translated to a platform specific
model (PSM) from which the target software on each
processor is generated. MDA methodology is expected to
improve the design productivity of embedded software since it
increases the reuse possibility of platform independent
software modules: The same PIM can be reused for different
target architectures. As the design cycle of MPSoC gets
shorter and the time-to-market pressure continually increases,
such methodology is also needed in the embedded software
design of MPSoC. Thus we make the proposed technique also
model-driven.

Unlike other model driven architectures, the unique feature
of the proposed technique is to allow multiple PIMs in the
programming environment. And we define a fixed form of
PSM, called CIC (Common Intermediate Code), to which a
PIM is translated after partitioning and mapping decision is
made for a given target architecture. Since the CIC is
independent of the communication architecture and OS of
target system, we can explore some design space at the later
stage of design. Another feature is to provide multi-phase
debugging capabilities: at the modeling stage, at the code
generation stage, and at the simulation stage.

We outline the proposed technique in the next section.
Section 3 explains each design step with a real example, Divx
player. The current status of implementation and some
preliminary results will be discussed in section 4. We will
draw conclusions in section 5.

II. Overview of the Proposed Methodology

Figure 1 shows the framework of the proposed embedded
software development environment for MPSoC. In this section,
4 important design steps are overviewed.

A. Model-based programming

UML might be the most well-known model for embedded
software design. UML-based software design tools, such as
Telelogic TAU and IBM Rose-RT, have appeared on market.
But the current UML-based tools do not satisfy the
characteristics of embedded software, listed in the previous
section: They do not generate parallel programs, nor check the
schedulability of the generated software. And they do not

Soonhoi Ha

School of Computer Science and Engineering
Seoul National University
Seoul, 151-742, KOREA

Tel : 82-2-880-8382
Fax : 82-2-879-1532

e-mail : sha@snu.ac.kr

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3D-1

330

consider the resource constraints at the stage of code
generation nor provide verification capability of the generated
software.

On the other hand many researchers advocate the use of
actor-based models [3]. An actor is an active object that runs
autonomously on the reception of input events or data samples.
So it is recognized more suitable to express the concurrency of
a system than a passive object in an object oriented model. In
an object oriented model, an object is invoked by a method
call from the outside. A well-known commercial tool,
SIMULINK of The Mathworks inc. [4], is based on an actor
model: And software generation from SIMULINK model is
being adopted for software generation of automobile
electronics [5][6].

While many models have been proposed for embedded
software specification, no consensus is reached to any
particular model that is good for all applications. Therefore we
propose to allow diverse models in our programming
environment instead of selecting one. In the current
implementation, we use two models: UML 2.0 model and
PeaCE model [7] as illustrated in Fig. 1. PeaCE model will be
explained in the next section.

B. Common Intermediate Code (CIC)

Once an initial specification is made, the model is
partitioned into multiple processors based on the architecture
information. Since the optimal partitioning is beyond the
scope of this paper, we assume that the partitioning results are
given somehow. From the initial specification model and the
partitioning results, we generate a common intermediate code
(CIC) that is the key element in the proposed framework. Any
model can be integrated to our framework if it can be
translated into a CIC after partitioning. The CIC code is
defined intuitively so that it can be designed manually.

The CIC contains the following information.
- partitioned tasks mapped to each processor and their codes
- communication and synchronization between tasks
- hardware information necessary for software generation

such as address mapping of memory segments
- design constrains such as performance and power

Common Intermediate Code (CIC)

CIC (w/ API) translator

Generic API

UML
Model-based
Programming

(PeaCE model)

KPN

Target HW platform

SW
Platform 1 2

API lib.
Per-processor code

Static C code analysis

Perf. & power estimation
Virtual

prototypingProcessor ISS

Common Intermediate Code (CIC)

CIC (w/ API) translator

Generic API

UML
Model-based
Programming

(PeaCE model)

KPN

Target HW platform

SW
Platform 1 2

API lib.
Per-processor code

Static C code analysis

Perf. & power estimation
Virtual

prototypingProcessor ISS

Fig. 1. The proposed embedded software development framework for
MPSoC

The CIC uses generic API (Application Programming
Interface) functions to express the I/O operation of tasks.
Therefore the CIC is independent of the software platform and
communication architecture. It means that the software
platform in each processor can be determined independently.

Another feature of CIC is that it uses OpenMP specification
[8] to express the data parallelism inside a task. We separate
the specification of task parallelism and data parallelism. Task
parallelism is accomplished by partitioning the specification
model and by generating the partitioned tasks in each
processor. Such separation is adequate especially for an
MPSoC architecture that has a SIMD unit for data parallel
executions.

C. Automatic Software Generation

The next step is to generate optimized software codes for
each processor from the CIC. We first translate each task code
into the final one by converting the generic APIs into OS APIs
or communication APIs. If a task is run on a processor that has
an OS, a generic API is translated to the corresponding OS
API. Otherwise, it is translated to a communication API that is
assumed to be optimized for the given target architecture. If
the task has data parallelism with OpenMP pragmas, it is
translated into a parallel program.

Another important issue is to schedule the mapped tasks in
each processor based on the design constraints and
optimization objectives. If a processor has no OS inside, a
run-time system that schedules the tasks should be synthesized
automatically.

D. Verification and Debugging

In the proposed framework, software is verified in three
different phases. The first verification is performed in the
modeling phase. The formality of each model enables us to
detect the syntax error of the initial specification. The
functionality of the program is verified by simulating the
initial model if possible.

The second phase of verification is to analyze the generated
code per processor in the source level. Static code analysis
tools are integrated to the proposed framework to detect the
possible error locations, particularly for memory access error
such as buffer overrun, zero de-referencing, memory leak, etc.

To find the remaining errors and debug the program, we
will provide the run-time debugging environment with a
virtual prototyping system.

III. HOPES: The Proposed Framework

The proposed embedded software development framework,
named HOPES, is under development. While it allows the use
of any model for initial specification, the current
implementation is being done with two models: PeaCE model
and UML 2.0 model. In this section, we will explain the
detailed procedure of the proposed technique, using the PeaCE
model. PeaCE model is one that is used in PeaCE
hardware-software codesign environment for multimedia
embedded systems design [9].

3D-1

331

H.263 decoder

MP3 player

Avi reader
H.263 decoder

MP3 player

Avi reader

Fig. 2. Divx specification in PeaCE model

A. Programming in PeaCE Model

In PeaCE model, the system behavior is specified with a
heterogeneous mixture of three different models of
computation. At top level, the PeaCE model uses a task model
that specifies the execution condition of each task and
communication requirements between tasks. The internal
definition of each task is specified with a formal model of
computation. An extended SDF model, called SPDF model
[10], is used to specify signal processing tasks or computation
oriented tasks. The PeaCE model uses a hierarchical and
concurrent FSM model, called fFSM [11], to specify the
control tasks.

Fig. 2 displays an example of Divx specification in PeaCE
model. At top model, three tasks are specified: Avi reader,
MP3 player, and H.263 decoder. All three tasks are
computation tasks of which the internal definition is specified
in a hierarchical SPDF graph. The granularity of an atomic
block is a reusable function such as IDCT and MC (Motion
Compensation). In this example, no control task is specified.

Dataflow model is good for parallel programming model
since it expresses only the true data dependency between
function blocks so that parallelism inherent in the system
behavior is explicitly shown. The SPDF model extends the
SDF model in two ways: First, it can express dynamic control
structure, such as if-then-else and for-loop, that is commonly
used in most complex multimedia applications. Second, it
allows shared data structure between function blocks, so the
generated code can be made as memory efficient as manually
optimized code.

In HOPES, the hardware architecture is separately specified
in a block diagram. In an architecture diagram, the atomic
block represents a processor or hardware component. Each
block has some parameters that show the information
necessary for software development. Using the architecture
information, the initial specification of PeaCE model is
partitioned into the processing components to generate the
CIC. In this step, the number and the kinds of processing
components and the approximate communication overhead are
considered.

B. CIC Format

The CIC is an intermediate representation common to all
initial specification models in the proposed environment.

Architecture Task Code

Constraints

Structure

Kernel code
_init()
_go()
_wrapup()

Generic API Parallel API

Hardware

Architecture Task Code

Constraints

Structure

Kernel code
_init()
_go()
_wrapup()

Generic API Parallel API

Hardware

Fig. 3. CIC (Common Intermediate Code) Format

The CIC format consists of two parts, architecture parts and
task code parts, as displayed in Fig. 3. The architecture part is
further divided into three sections in an xml-style file. The
“hardware” section contains the hardware architecture
information that is necessary to generate the software. The
“constraints” section specifies the real time constraints of
tasks and the power consumption constraints if any. The
“structure” section describes the communication and
synchronization requirements between tasks. Fig. 4 displays an
example of the architecture part in the CIC that is
automatically generated from the Divx specification in PeaCE
model.

<structure>
<mode name="default">
<task name="AviReaderI0">
<subtask name="arm926ej-s0">
<procMap>0</procMap>
<fileName>AviReaderI0_arm926ej_s0.cic

</fileName>
</subtask>

</task>
<task name="H263FRDivxI3">
<subtask name="arm926ej-s0">
<procMap>0</procMap>
<fileName>H263FRDivxI3_arm926ej_s0.cic

</fileName>
</subtask>

</task>
</subtask>

</task>
</mode>

<?xml version="1.0" ?>
<CIC_XML>
<hardware>
<processor name="arm926ej-s0">
<index>0</index>
<localMem name=“lmap0”>

<addr>0x0</addr>
<size>0x10000</size> // 64KB

</localMem>
<sharedMem name=“shmap0”>

<addr>0x10000</size>
<size>0x40000</size> // 256KB
<sharedWith>1</sharedWith>

</sharedMem>
<OS>

<support>TRUE</support>
</OS>

</processor>
…
</hardware>

<constraints>
<memory>16MB</memory>
<power>50mWatt</power>
<mode name="default">
<task name="AviReaderI0">
<period>120000</period>
<deadline>120000</deadline>
<priority>0</priority>
<subtask name="arm926ej-s0">
<execTime>186</execTime>
</subtask>

</task>
<task name="H263FRDivxI3">
<period>120000</period>
<deadline>120000</deadline>
…

</task>
</mode>

</constraints>

(a) Hardware part (b) Constraints part

<queue>
<name>mq0</name>
<src>AviReaderI0</src>
<dst>H263FRDivxI3</dst>
<size>30000</size>

</queue>
<queue>
<name>mq1</name>
<src>AviReaderI0</src>
<dst>MADStreamI5</dst>
<size>30000</size>

</queue>
</structure>
</CIC_XML>

(c) Structure part

<structure>
<mode name="default">
<task name="AviReaderI0">
<subtask name="arm926ej-s0">
<procMap>0</procMap>
<fileName>AviReaderI0_arm926ej_s0.cic

</fileName>
</subtask>

</task>
<task name="H263FRDivxI3">
<subtask name="arm926ej-s0">
<procMap>0</procMap>
<fileName>H263FRDivxI3_arm926ej_s0.cic

</fileName>
</subtask>

</task>
</subtask>

</task>
</mode>

<?xml version="1.0" ?>
<CIC_XML>
<hardware>
<processor name="arm926ej-s0">
<index>0</index>
<localMem name=“lmap0”>

<addr>0x0</addr>
<size>0x10000</size> // 64KB

</localMem>
<sharedMem name=“shmap0”>

<addr>0x10000</size>
<size>0x40000</size> // 256KB
<sharedWith>1</sharedWith>

</sharedMem>
<OS>

<support>TRUE</support>
</OS>

</processor>
…
</hardware>

<constraints>
<memory>16MB</memory>
<power>50mWatt</power>
<mode name="default">
<task name="AviReaderI0">
<period>120000</period>
<deadline>120000</deadline>
<priority>0</priority>
<subtask name="arm926ej-s0">
<execTime>186</execTime>
</subtask>

</task>
<task name="H263FRDivxI3">
<period>120000</period>
<deadline>120000</deadline>
…

</task>
</mode>

</constraints>

(a) Hardware part (b) Constraints part

<queue>
<name>mq0</name>
<src>AviReaderI0</src>
<dst>H263FRDivxI3</dst>
<size>30000</size>

</queue>
<queue>
<name>mq1</name>
<src>AviReaderI0</src>
<dst>MADStreamI5</dst>
<size>30000</size>

</queue>
</structure>
</CIC_XML>

(c) Structure part

Fig. 4. An example of the architecture part of an CIC

3D-1

332

As shown in Fig. 4, the hardware section defines the address
range and the size of each memory segment. The processor
indices for the shared memory segments indicate which
processors share the segments. The constraints section shows
the global constraints such as power consumption and
memory requirement and the per-task constraints such as
period, deadline, and priority. And it also includes the
estimated execution time of the tasks. Using these information,
we will determine the scheduling policies of the target OS or
synthesize the run-time system for the processor without OS.

In the structure section, two methods of task
communication are supported: message queue and shared
memory. In this example, only message queue is used for
inter-task communication. It also indicates the file name (with
“.cic” suffix) where the generated code of the task is
contained.

As depicted in Fig. 3, each task code consists of three
functions: {task name}_init(), {task name}_go(), and {task
name}_wrapup(). The {task name}_init() function is called
once when the task is invoked to initialize the task. The {task
name}_go() function defines the main body of the task and is
executed repeatedly in the main scheduling loop. The
{task_name}_wrapup() method is called before stopping the
task to reclaim the used resources.

In the proposed framework, these three functions should be
automatically generated from the initial model and
partitioning result. And estimated execution time of each
partitioned task and inter-task communication requirements
should be also written into the CIC.

Fig. 5 shows a code segment of “h263decoder_go()”
function as an example CIC task code. Note that it uses a
generic API, MQ_RECEIVE, for inter-task communication
and an OpenMP pragma to express data parallelism inside the
task. The OpenMP translator will translate the code to invoke
the same number of threads as the number of processors to run
them concurrently.

C. Automatic Software Generation: CIC Translator

The CIC does not take into account of the architecture
details. The architecture details are considered when the CIC
is translated into the final codes that are optimized for the
target architecture. The CIC translator consists of three parts.
First each task code in a CIC is translated into a parallel
program via OpenMP translator if data parallelism exists in
the task code. The number of available processors for data
parallelism is given from the architecture specification.

void h263decoder_go (void) {
...

l = MQ_RECEIVE("mq0", (char *)(ld_106->rdbfr), 2048);
...
pragma omp parallel for
for(i=0; i<99; i++) {

//thread_main()
....

}
// display the decode frame
dither(frame);

}

Fig. 5. An example of CIC task code

Generic API

OS API

Communication API

Architecture-specific
API library

Communication API
translator

OS API translator

w/o OS
w/ OS

Generic API

OS API

Communication API

Architecture-specific
API library

Communication API
translator

OS API translator

w/o OS
w/ OS

Fig. 6. Generic API translation

Depending on the target architecture, a different style of
parallel program is generated. For a shared memory
architecture, the OpenMP translator generates a
multi-threaded code while it generates an MPI program for a
distributed memory architecture.

The second part of the CIC translator is to translate the
generic APIs into target-specific APIs and the last part is to
synthesize the run-time system or to determine the scheduling
policy in each processor depending on the existence of OS.

Determining what kind of OS and which OS to use is
another important design decision in an MPSoC. One choice
is to use an OS of master-slave structure. The master OS sits
on a master processor and controls the slave OSes in other
processors. The slave OS relies on the master OS for heavy
OS-specific function except for scheduling the tasks mapped
to the processor. Or we may want to use a single OS on a
master processor and run the other processors without OS
installed. Then the other processors play the role of
co-processors of the master processor to accelerate some
time-critical computation. Another option is to install a
separate OS in each processor to make it a distributed system
as a whole. Or we may want to use a multiprocessor OS.

Since an MPSoC is typically a heterogeneous system, the
master-slave structure or co-processor style of operating
system is likely to be used for simple implementation.
Considering these possibilities, we define the CIC to be
independent of the OS structure by using the generic APIs. We
define about 70 API functions that are abstracted from IEEE
POSIX 1003.1-2004 standard APIs and standard C library
functions, carefully selecting the most heavily used. The
programmer should use generic APIs for file access, I/O,
inter-task communication, and synchronization. Some APIs
may be used only in the processor with OS installed. This
constraint should be considered when the partitioning decision
is made.

Generic APIs are translated into target specific APIs via the
procedure as shown in Fig. 6. If the target processor has an OS
installed, generic APIs are translated into OS APIs. Otherwise
they are translated into communication APIs. Communication
APIs are defined directly accessing the hardware devices. We
implement the OS API library and communication API library
optimized for each target architecture.

Fig. 7 shows the internal structure of the “OS API
translator” by which a generic API is translated into an OS
API [12]. The inputs to the translator are a CIC code, pattern
information and parameters for each generic API, and the file
that describes the translation rule. The pattern of an API
depicts the typical usage of the API in the code.

3D-1

333

OS API Translator

OS-Specific C Code

Code Analysis

Transformation

Symbol Table
Construction

CIC’s Task Code APIs, Patterns, and Rules
register

Generic APIs

modify

POSIX APIs

Non-POSIX APIs

Transformation
Rules

Translation pattern and rules
Pattern mapping

- 1-to-1, 1-to-m, n-to-m
- initialize/finalize
- acquire/release

parameters
- type, number, value

Variable names
- naming of additional

variables

OS API Translator

OS-Specific C Code

Code Analysis

Transformation

Symbol Table
Construction

CIC’s Task Code APIs, Patterns, and Rules
register

Generic APIs

modify

POSIX APIs

Non-POSIX APIs

Transformation
Rules

Translation pattern and rules
Pattern mapping

- 1-to-1, 1-to-m, n-to-m
- initialize/finalize
- acquire/release

parameters
- type, number, value

Variable names
- naming of additional

variables

Fig. 7. Internal structure of OS API translator

In some cases, the pattern is defined for a pair of APIs: for
example synchronization APIs using a semaphore. If a new
API is defined, the pattern information, parameters, and the
translation rule need to be added to the inputs. The OS API
translator analyzes the CIC code, detects the generic APIs,
constructs the symbol table, and performs translation.

After generic APIs are translated, the optimized code is
generated for each task. The remaining work is to create a
run-time system that schedules the tasks assigned to each
processor considering the real-time constraints. If there is an
OS, priority-based scheduling can be used. Otherwise, a
customized run-time system is automatically synthesized.

D. 3-Phase Verification

Software verification is critical to improve the design
productivity of MPSoC because it is not possible to debug and
correct the software after the chip is fabricated. Therefore it is
an important goal to detect as many errors as possible through
3 phase verification in the proposed environment.

The first phase is the modeling phase. We expect that the
modeling front end provides the capability to detect the
modeling error. For example, the PeaCE modeling front end
detects some semantic errors in FSM and dataflow
specification as well as syntax errors: Deadlock or buffer
overflow errors are detected in a dataflow program and
determinacy and reachability are tested in an FSM program. In
this step, we assume that function blocks have no errors inside.
Then, the CIC code is also assumed correct since the CIC is
automatically generated from the model,

The second phase is to statically analyze each task code that
is translated from the CIC on each processor. It is not easy to
debug an embedded software with a run-time debugger if
errors exist in the interface modules with the outside.
Therefore we provide a static analysis tool that can detect
buffer overrun error, memory leak, zero de-referencing, and
stack overflow error [13][14]. The static analyzer reports all
possible error locations so that the programmer examines the
locations to manually detect and correct the errors.
Performance of the static analyzer is measured by the speed
and the false alarm ratio. In this phase, we detect the
memory-related errors that exist inside function modules.

The final phase is to detect the run-time error by running
the program on a virtual prototyping system. A virtual
prototyping system is a simulation environment that mimics
the real behavior of hardware components with simulation
models. Commercial tools, such as ConvergenSC, MaxSim,
and Seamless CVE, have been successfully used and proved

its usefulness to develop software without building a real
hardware prototype. The main target of those tools is an SoC
simulation with a single processor core. While they can be
used for multi-core systems, they have limitation on
simulation speed and extensibility. Moreover, they do not
provide the debugging capability of embedded software. In
our research, we are developing a distributed simulation
environment with parallel debugging capability. We aim to
increase the simulation speed by parallel co-simulation.

In addition, we are developing a tool to analyze the
performance and power of the system. The tool gives a
detailed report of estimated performance and power for each
function in the generated C code. The programmer may find
out the candidate functions that need further optimization
from the report.

IV. Preliminary Experiments

A. Implementation

The proposed programming environment is being
developed on a Linux platform while the graphical user
interface is developed on a window platform. The GUI and the
engine are connected by TCP/IP socket. The environment
consists of a few tens of software modules that are being
developed separately. The interface between software modules
is defined by files.

The current status of implementation is as follows: the
design flow is established and software modules have been
developed for a single processor target. The design flow is
demonstrated with a Divx player example on a single ARM
processor, starting with a PeaCE model representation. On the
other hand, we have defined a new UML 2.0 subset, called
ESUML (Embedded Systems UML), that is a light-weight
UML that consists of only 5 diagrams for embedded software
specification.

Software modules are now being extended for
multi-processor targets. Partitioning algorithms are being
developed for PeaCE model and ESUML model separately.
OpenMP translator and virtual prototyping system with
parallel debugging capability are being developed.

B. Design Flow Demonstration with a Divx Player Example

A Divx player application that consists of three dataflow
tasks is specified in a PeaCE model as already shown in Fig. 2.
To confirm the 3-phase verification capability, we inserted
three different types of errors. First we modified the ratio of
decoding rate between Y, U, and V frame in H.263 decoder
task to 3:1:1 from 4:1:1. This modification generates a buffer
overflow error on the input arc of Y frame decoding module.
This error was successfully detected at the modeling stage
since the PeaCE modeling module analyzes the SPDF
specification to detect any sampling inconsistency error
between function modules.

Second, we inserted an error inside the “Avi Reader” task:
We decrease the array size to generate a buffer overrun error.
Our static analyzer, called Airac 5[14], detected the buffer
overrun error successfully. Lastly, we inserted a logical error
in the H.263 decoding task. The logical error could be
detected with the ARM simulator by manual debugging.

3D-1

334

Fig. 8. Performance analysis result: H.263 decoder

We analyzed the performance of the system as illustrated in
Fig. 8 where per-function information is reported on the CPU
cycle, number of instructions, cache misses, and so on. The
same information can be obtained in the form of call tree.

V. Conclusions

Embedded software development is very challenging task in
an MPSoC design particularly because it is parallel
programming in nature and its verification should be done
before building a chip. Software design environment for
general purpose software can not be used since they usually
do not consider the design constraints that embedded software
should satisfy: real-time constraints, resource constraints, and
concurrency. Moreover making a parallel program itself is not
an easy task.

In this paper, we proposed a new design environment, called
HOPES, that aids to develop embedded software for MPSoC.
It starts with a model-based specification that is independent
of the target architecture. By defining a common intermediate
code (CIC), it accommodates diverse models at the front end.
We explained how the CIC code is finally translated into the
software core on each processor. The proposed environment
also provides 3-phase verification to detect as many design
errors as possible. It was shown through preliminary
experiments that the proposed 3-phase verification technique
could detect various kinds of errors.

While the proposed technique is mainly targeted for MPSoC,
it can be used for software development of any embedded
system. Currently, only the feasibility of the design flow was
proved with a Divx example on a single processor core. We
expect that successful implementation of the proposed
environment will improve the design productivity of MPSoC
significantly.

Acknowledgements

This work was supported by IT leading R&D Support
Project funded by Korean MIC and BK21 project. The ICT
and ISRC at Seoul National University provided research
facilities for this study. I would like to express special thanks
to all team members who are involved in the HOPES projects.

References

[1] D. Frankel, Model Driven Architecture: Applying MDA to

Enterprise Computing, John Wiley & Sons, 2003.
[2] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and
S. Neema, “Developing applications using model-driven design
environments,” IEEE Computer, Vol. 39(2), pp. 33-40, 2006.
[3] Edward A. Lee and Stephen Neuendorffer, "Concurrent models
of computation for embedded software," IEE Proceedings,
Computers and Digital Techniques, Vol. 152, Issue 2, pp. 239-250,
2005.
[4] SIMULINK, The MathWorks Inc. (http://www.mathworks.com)
[5] dSPACE, dSPACE inc. (http://www.dspaceinc.com)
[6] Real-Time Workshop 6.5, The MathWorks Inc.
[7] Kiseun Kwon, Youngmin Yi, Dohyung Kim, Soonhoi Ha,
"Embedded software generation from system level specification for
multi-tasking embedded systems", ASP-DAC`05, Vol. 1 pp 145-150,
2005
[8] OpenMP C and C++ API, version 1.0,
http://www.openmp.org, 1998.
[9] Soonhoi Ha, Choonseung Lee, Youngmin Yi, Seongnam
Kwon, and Young-Pyo Joo, "Hardware-software codesign of
multimedia embedded systems: the PeaCE approach", The
12th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, Vol. 1 pp
207-214, 2006.
[10] Chanik Park, Jaewoong Chung and Soonhoi Ha, "Extended
synchronous dataflow for efficient DSP system prototyping", Design

Automation for Embedded Systems, Kluwer Academic Publishers
Vol. 3 pp 295-322, 2002.
[11]Dohyung Kim, Soonhoi Ha, "Static analysis and
automatic code synthesis of flexible FSM model", ASP-DAC,
pp. 161-165, 2005.
[12] J. Maeng, J.H. Kim, and M. Ryu, "An RTOS API
translator for model-driven embedded software development,"
12th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA'06)
pp. 363-367, 2006.
[13] Yungbum Jung, Jaehwang Kim, Jaeho Shin, and
Kwangkeun Yi, “Taming false alarms from a domain-unaware
C analyzer by a Bayesian statistical post analysis,” Lecture

Notes in Computer Science, Vol.3672, pp.203-217, 2005
[14] Airac5, (http://ropas.snu.ac.kr/airac5)

3D-1

335

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

