
Efficient BMC for Multi-Clock Systems with Clocked Specifications

Malay K Ganai and Aarti Gupta
NEC Laboratories America, Princeton, NJ USA 08540

Abstract - Current industry trends in system design — multiple
clocks, clocks with arbitrary frequency ratios, multi-phased
clocks, gated clocks, and level-sensitive latches, combined with
clocked — pose additional challenges to verification efforts.
We propose an integrated solution that improves SAT-based
Bounded Model Checking (BMC) by orders of magnitude, for
verification of synchronous multi-clock systems with clocked
LTL properties. Our main contributions are: a) Efficient clock
modeling schemes to handle clock related challenges uniformly,
b) Generation of automatic schedules and clock constraints to
avoid unnecessary unrolling and loop-checks in BMC, c)
Dynamic simplification of BMC problem instances with clock
constraints, and d) Customized BMC translations—with
incremental formulations and learning—to directly handle
PSL-style clocked specifications. We demonstrate the
effectiveness of our approach on some OpenCores multi-clock
system benchmarks.

I Introduction

A continuing push for high performance and low power designs
has greatly increased the system design complexity. One norm of
today’s System-on-Chip (SoC) design is the use of multiple clocks
and phases, and gated clocks. This paradigm shift from a single
global clock synchronous design paradigm was inevitable, as
distributing a single clock across the increasing size of die, number
of latches, frequencies of clocks and delays of wires poses a major
bottleneck in achieving the goals of higher performance and lower

power [1]. For power-conscious designs, designers often use gated
clocks to reduce or disable the switching activity of certain portions
of the design. Furthermore, SoC designs comprise several
intellectual property (IP) blocks that operate at different clock
frequencies and need to communicate across asynchronous clock
domains. Each of these design styles increases the verification
complexity in terms of increased number of state bits and deeper
bug traces.

Formal verification techniques like SAT-based Bounded Model
Checking (BMC) [2-5] due to several advancements — improved
DPLL-style SAT solvers [6], on-the-fly circuit simplification [7, 8],
partitioning and incremental BMC formulation [9], and SAT-based
incremental learning [8, 10, 11] — have been gaining wide
acceptance as a scalable solution compared to BDD-based
symbolic model checking [12]. The performance of SAT-based
BMC is less sensitive to the number of flip-flops (FFs) and does

not suffer from space explosion.

A. Motivation

An integrated solution to verify multi-clock systems comprising
multiple clocks, clocks with arbitrary frequency ratios,

multi-phased clocks, gated clocks, level-sensitive latches,
combined with clocked specification, that exploits recent
advancements in SAT-based BMC has been lacking. Previously
proposed solutions have been largely piece-wise, such as
translating clocked LTL properties [13] that can be handled by a
standard BMC solver, reducing the verification model size by using
phase abstraction techniques [14-17], and generating a clocking

scheme from given frequency constraints based on event queue
semantics to avoid unnecessary unrolling during BMC [18].

The following design features and specifications of clocked
systems pose additional challenges that can limit the application
and effectiveness of these previous approaches:
1. Specifying sub-formulas on various clocks: Property variables

that involve gates with support from state elements in multiple
clock domains require the use of clocks in the formula to
avoid ambiguities. The Property Specification Language
(PSL) standardized by Accellera [19] has formal semantics for
specifying clocked properties using the clock operator @,
based largely on the work of Eisner et al. [13]. The general
translation scheme for clocked properties tends to generate
large nested LTL formulas that can limit the effectiveness of a

standard BMC solver. For example, a clocked LTL formula

F(p∧ (Xq@clk1)@clk) gets translated into an unclocked LTL

formula F(p∧(!clkU(clk∧X(!clkU(clk∧(!clk1U(clk1∧ q))))))).

2. Multiple clocks with arbitrary frequencies, ratios and multiple
phases: Generating a verification model naively that ticks on a
global clock with a frequency derived from the least common
multiple (LCM) of various input clock frequencies is quite
inefficient (multiple phases effectively multiply the clock
frequencies). In particular, the BMC problem instances with
no corresponding clock events become an unnecessary
computational overhead.

3. Gated Clocks: Gated clocks limit the static simplification [17]
of a verification model due to its non-periodic behavior.

4. Latches (level-sensitive) used with flip-flops (edge-triggered):
For verification purpose [16], latches are modeled as flip-flops
clocked on a global clock in synchronous designs. Clocked
specifications with latch enabling clocks pose further
verification challenges.

B. Related Work

Here we discuss the limitations of various approaches that have
addressed some of the above-mentioned challenges. In
approaches [15-17], the goal is to reduce the number of state
elements in the model using phase abstraction techniques. First,
clock-like signals, which exhibit periodicity, are identified
manually or by using 3-valued simulation [17]. Based on these
clock signals, they identify non-overlapping latch layers (or phases),
and then retain latches in one layer as flip-flops, and replace latches
in the remaining layer by wires or multiplexers. Subsequently, they

obtain a verification model by making C (=#phases) copies of the
transition relation and simplifying the logic by propagating the
phase values of clock signals. However, the presence of gated
clocks and multiple clocks with arbitrary clock frequencies and
ratios can severely restrict the identification of clock-like signals
(and various phases) and therefore, limit the size reduction of the
verification model. Note that these approaches focus mainly on
reducing the number of flip-flops in order to improve the scalability

of BDD-based model checking, and not so much on reducing the
number of logic gates.
 In another approach by Clarke et al. [18], given multiple clock
frequency constraints, a clock state machine is built based on event
queue semantics. Each clock state maps to a configuration (i.e., a

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3C-2

310

set of events) in an event queue where each event corresponds to a
tick of an active clock. They formulate a BMC problem instance by

unrolling the design composed with the clock state machine only at
clock events, thereby avoiding the redundant unrollings. However,
the authors have not proposed any solution to combine their
approach with dynamic simplification procedures in the BMC
framework, or to handle clocked specifications.
 Ganai et al. [9] have proposed techniques for customized
translation of commonly occurring (un-clocked) properties in BMC
by using partitioning and incremental formulation, to improve the

scope of SAT-based incremental learning. The approach was shown
to be more efficient in practice than the standard monolithic BMC
formulations [2, 4]. However, as clocked property translation [13]
often leads to large and deeply nested formulas, it is difficult to
customize each such translation.

C. Our Contributions: Overview

In practice, it is important to address the scalability issues in
verifying multi-clock systems with clocked specifications.

Understanding the significance of BMC customization and the
difficulties in handling translated clocked properties in a
multi-clock system, we propose an integrated BMC-based solution
as follows:
1. We propose a uniform clock modeling scheme to handle

multiple clocks with arbitrary frequencies and ratios, gated
clocks, multiple phases, latches and flip-flops in multi-clock
synchronous system, to obtain a single-clock model.

2. Given clock characteristics, we automatically generate
schedules and clocks constraints based on event queue
semantics to eliminate redundant unrollings and loop-checks.

3. Since not all clock domains are active at each unrolling, we
perform dynamic simplification of the unrolled transition
relation using the clock constraints at each unrolling, where
we re-use the current unrolled sub-circuit corresponding to an
inactive clock-domain for the next unrolling; thereby reducing
size of the BMC problem instance.

4. We also propose novel BMC customization for translation of
clocked properties directly rather than customizing each
translated unclocked property, and simultaneously offer the
benefits of partitioning and incremental BMC formulation [9].
Though we discuss such customization for the clocked LTL
(F(f))@ it can be extended to other clocked LTL such as

(F(f∧G(g)))@ where f, g are clocked expressions with atoms
propositionally combined with nested X operators. Note, our
customized translations are more efficient than the previously
proposed general translations for clocked properties.

Outline: We give background on clocked LTL specifications and
BMC customization for un-clocked properties in Section II; we
discuss our contributions in Sections III-V with description of
modeling, and generation of schedules and constraints in Section

III, dynamic simplification in Section IV, and BMC customization
for clocked properties in V; we discuss our experimentation on
OpenCores [20] benchmarks in VI; and conclusions in VII.

II. Background

A. Clocked LTL Specifications

A clocked LTL specification (f)@clk, expressed under the context
of clk (that is always ticking) using the clock operator @, can be
equivalently translated [13] into an un-clocked LTL specification

(with an implicit global clock tick) Tclk(f)(≡ (f)@clk) where Tclk(f) is

defined recursively using the following rules R1-6:

R1: Tclk(p) = ¬clk U (clk ∧ p) // f is propositional atom p

 R2: Tclk(¬f) = ¬Tclk(f)

 R3: Tclk(f1 ∧ f2) = Tclk(f1) ∧ Tclk(f2)

 R4: Tclk(X f) = ¬clk U (clk∧X(¬clk U (clk∧ Tclk(f)))

 R5: Tclk(f1U f2) =(clk → Tclk(f1)) U (clk ∧ Tclk(f2))

 R6: Tclk((f)@clk1) = Tclk1(f)

Rules for other LTL operators F, G and W can be derived from the
above rules. Note, that in [13], the authors have differentiated

temporal operators and propositional atoms as weak or strong using
the strength operator !. For ease of understanding our approach, we
will assume that clocks in the specifications are always ticking and
therefore, the strength operator ! can be dropped.
 We first make some crucial observations regarding the rules R1,
R4 and R6. As per rule R1, p@clk holds at the current state, if
either p holds and clk ticks at the current state, or clk ticks next at a
state where p also holds. Similarly, as per rule R4, (Xf)@clk takes

us two clk ticks into the future if clk does not hold in the current
state. The rule R6 disallows accumulation of clocks in the presence
of nesting, allowing only the innermost specified clock to
supersede the outer ones.

Example: Consider two clocked LTL formulas, P1 and P2.
P1: F(ctr2[0] * (X(ctr2[0]))@clk2_r_d)
P2: F((ctr2[0] * X(ctr2[0]))@clk2_r_d)

In P1, ctr2[0] (bit 0 of ctr2) is clocked by the global clock, gclk,
while in P2 it is clocked by clk2_r_d as shown in Figure 1. One can
verify that the witness state for P1 is at gclk=6 where ctr2[0]=1 and
also two clk2_r_d ticks later ctr2[0]=1 at gclk=13. On the other
hand, P2 does not have a witness on the path shown. These
subtleties in the clocked specifications add further complexity to
the BMC method based on customized translation, described next.

Fig. 1: Example timing diagram for clocked specification

B. BMC Customization of Unclocked LTL Specifications

Instead of the standard monolithic translation in BMC, as originally
proposed by Biere et al. [2], Ganai et al. [9] use customized

property translations to build and solve a BMC problem
incrementally, by partitioning it further into several simpler SAT
sub-problems. Further, the incremental formulation has been
effectively combined with several SAT-based learning techniques,
such as those from shared constraints (L1) [10, 11], previous
satisfiable (L2) [10] and unsatisfiable (L3) results [8]. This enables
learning between sub-problems not only across time frames, but
also within the time frames.

We briefly describe the customized translation (refer [9] for details)
and various learning aspects for a negated (unclocked) safety
property, i.e., F(f) in the procedure BMC_solve_F as shown in
Figure 2. For simplicity, we consider f to be a propositional atom.
(Later, we discuss how f can be extended to allow nested X

3C-2

311

operators with propositional logic in the context of clocks.) The
sub-procedure Is_sat(C) denotes a SAT check of the Boolean

formula C; L1-L3 denote various incremental SAT-based learning
techniques as mentioned above; jLi denotes the loop transition
constraint, i.e., jLi = T(si, sj), transition from state si to sj; N
denotes the user-provided bound. The Boolean constraint f i (line 4),
denotes the property node f at the ith unrolling, obtained using
Unroll_node procedure. One can use circuit simplification with a
compose operator such as [8], to obtain the unrolled circuit nodes.

The satisfiability of sub-problem (C∧ f i) is checked at depth i (line

5). If it is satisfiable, the procedure returns true indicating the

witness found; otherwise, ¬f i is learned (L3) and added to C (line
6). If the current path cannot be extended to remain loop-free (lines

7-10), the procedure returns false, indicating that no witness is

possible. When (i≥N), the procedure aborts (line 13).

1 BMC_solve_F(prop_tree_node f){
2 C = 1; i=0;
3 while (i<N) { //L1 is active always
4 fi = Unoll_node(f,i);
5 if (Is_sat(C ∧ fi)) return true; //wit found
6 C = C ∧ ¬fi; //L3
7 for (j=i;j>=0;j--) {//loop-free check
8 C = C ∧ ¬jLi;
9 if (!Is_sat(C)) return false; //no wit exists
10 }
11 i = i+1;
12 }
13 ABORT(“Bound Reached”); //wit not found }

Fig. 2: BMC Customization for un-clocked F(f)

III. Modeling Multi-Clock Systems

A. Uniform Clock Modeling Scheme

We consider modeling of synchronous multi-clock systems that
have clocks with arbitrary but known fixed frequencies, and fixed

initial phases. Multi-clock systems with the clocks derived from a
single source generator lead to synchronized clocks with fixed
frequencies and known initial phases. However, if the clocks are
generated from independent sources, they are in general
unsynchronized, typically with fixed frequencies but unknown
initial phases. For modeling such systems, we consider one
representative at a time from the various combination scenarios of
initial phases, unlike the work of Clarke et al. [18] where all

possible scenarios are considered simultaneously in modeling. Our
goal is to trade generality for scalability of the BMC methods.
 Consider a synchronous multi-clock example shown in Figure

3(a). Here, X is a set of FFs triggered on positive edge (↑) of input

clock C1; Y is a set of FFs triggered on negative edge (↓) of input

clock C2; Z is a set of level-sensitive latches triggered on active
high of gated clock GC; f1-f5 are combinational blocks; PI the set of
primary inputs; and PO the set of primary outputs. Note, “/” on the

connectors (→) indicates multiple connecting wires.

We derive a single-clock model, as shown in Figure 3(b), such
that value change on inputs, internal signals and state elements
occurs only at the tick of gclk. In order to do so, we add
multiplexers in the next state transition logic of X, Y, and Z; and

generator circuits g1-g3 (details shown in Figure 4) for enable
clocking signals C1_r, C2_f, and GC_h that take value 1 at the
posedge of C1, negedge of C2, and high value of GC, respectively.
For example, the clocking signal posedge C1 is modeled using the

enable clocking signal C1_r=C1∧¬C1_d, where C1_d represents

clock C1 delayed by one gclk.

Fig. 3: (a) Multi-clock system, (b) Single-clock model

Fig. 4: Enable clock signal circuit

B. Generation of clock schedules and constraints

For fixed input clock frequencies and initial phases, one can model
a clock-generator ticking on gclk with frequency equal to LCM of
the frequencies of all input clocks, and use the clock-generator to

compute deterministically the values of input clocks at each tick of
gclk. For SAT-based BMC, unrolling a single-clock model at every
tick of gclk would add computational overhead, as there may be
some ticks when no input clocks change values (and so the state
elements). Instead, we use event queue semantics [18], where only
those ticks of gclk are considered when at least one input clock
changes value. We now discuss the derivation of relevant ticks, i.e.,
clock schedules, and clocking constraints on the input clocks, using

an example as shown in Figure 5.

Fig. 5: Ticks of global clock gclk

Let frequencies of input clocks C1 and C2 be 100Mhz (time period,

TC1=10ns), and 62.5Mhz (TC2=16ns), respectively, and let the initial
phases be 0ns and 4ns, respectively. Edge direction in the Figure 5
indicates the active edge. Under the event queue semantics, events
are recorded chronologically where each event corresponds to a
value change of input clocks C1 and C2. Let a 3-tuple
Si=<ti,c1

i,c2
i> denote a configuration corresponding to the ith

recorded event in the queue at time ti, with c1
i and c2

i representing
the values of clock signals C1 and C2, respectively. In the event

queue, we obtain the following configurations for 0≤t≤30:
 S0=<t0=0,1,1>,S1=<t1=4,1,0>,S2=<t2=5,0,0>,S3=<t3=10,1,0>

 S4=<t4=12,1,1>,S5=<t5=15,0,1>,S6=<t6=20,1,0>,
 S7=<t7=25,0,0>,S8=<t8=28,0,1>,S9=<t9=30,1,1>.
Observe that state elements cannot get updated between the

C1

C2

GC

gclk
0 4

5
10

12

15

20
25 28

30
35

freq=62.5M

ns

freq=100M
C1

C2

GC

gclk
0 4

5
10

12

15

20
25 28

30
35

freq=62.5M

ns

freq=100M

FF f2f1 f3

↑ C1 ↓ C2

PI

X

PO

FF L f5

f4

Y Z

GC

FF f2f1 f3

C1_r C2_f

PI

X

PO

FF FF f5

f4

Y
Z

GC_h
gclk

0

1

0

1

gclk

0

1

gclk

g1 g2
g3

C1 C2

(a)

(b)

FF f2f1 f3

↑ C1 ↓ C2

PI

X

PO

FF L f5

f4

Y Z

GC

FF f2f1 f3

C1_r C2_f

PI

X

PO

FF FF f5

f4

Y
Z

GC_h
gclk

0

1

0

1

gclk

0

1

gclk

g1 g2
g3

C1 C2

(a)

(b)

CK_r (=1 @posedge CK)

CK_f (=1 @negedge CK)

DFF
D Q

AND

CK_h (=1 when CK=1)

CK_l (=1 when CK=0)

CK

gclk
CK_d

AND CK_r (=1 @posedge CK)

CK_f (=1 @negedge CK)

DFF
D Q

AND

CK_h (=1 when CK=1)
gclk

CK_d

AND CK_r (=1 @posedge CK)

CK_f (=1 @negedge CK)

DFF
D Q

AND

CK_h (=1 when CK=1)

CK_l (=1 when CK=0)

CK

gclk
CK_d

AND CK_r (=1 @posedge CK)

CK_f (=1 @negedge CK)

DFF
D Q

AND

CK_h (=1 when CK=1)
gclk

CK_d

AND

3C-2

312

consecutive configurations, i.e., Si and Si+1. Thus, we generate
clock schedules for BMC unrolling by considering only those ticks

of gclk that correspond to these configurations, with Si occurring at
ith tick. We also generate clocking constraints at the ith tick or ith

unrolling by constraining input clock signals such as C1 and C2
with the tuple values c1

i, and c2
i. During witness generation, we use

ti to time-stamp the ith depth in the witness trace.

C. Repetition Period and Recurrence Length

Using the same example above, we now discuss the repetition of
configurations and its significance in removing some loop-checks

jLi in BMC between unrollings at the ith and jth tick of gclk. Two
configurations Si=<ti,c1

i,…,cn
i> and Sj=<tj,c1

j,…,cn
j> are said to be

equivalent (i.e., recur every R ticks of gclk), if and only if ∀0≤k<R

(∀0≤m<n (cm
i+k=cm

j+k)) and ∃o(∀0≤k<R (ti+k-tj+k=o)). In other words,

the corresponding successive configurations have matching clock
signal values and have a fixed time difference. We call R the

recurrence length. The repetition period T of the clock-generator
(i.e., when clock states repeat) can be obtained by taking the LCM
of the clock periods TC. Note, the equivalent configurations
correspond to equivalent clock states. For our running example, the
repetition period T=80ns (LCM of 10ns and 16ns) and recurrence
length R=26. We use this information in BMC to consider
loops-checks jLi between unrolling depths i and j only if (i-j) mod
R=0, i.e., when the clock states at the ith and jth ticks are the same.

(Note, the clock states are not equivalent otherwise.)

To summarize so far, we first generate a single-clock model from
the given multi-clock system. From the input clocking
characteristics, we derive clocking constraints, automatic schedules,
and the recurrence length, and use them in BMC as described later.

IV. Dynamic Simplification in BMC

The presence of gated clocks and clocks with arbitrary frequencies
limits the effectiveness of phase abstraction techniques in static
simplification of the verification model [17]. We overcome this
limitation by applying dynamic simplification during unrolling,
where simplification need not depend explicitly on the periodicity
of clocking signals. We discuss the dynamic simplification of the
unrolled model to reduce size of the BMC problem instances using
clock constraints generated as above, using the multi-clock
example and corresponding single-clock model as shown in Figures
3(a) and 3(b), respectively, introduced in Section III.A. We use the
clocking characteristics of inputs clocks C1 and C2, and assume the
dynamic behavior of gated clock GC as shown in Figure 5, with the
initial states C1_d=0 in the circuit g1 and C2_d=1 in the circuit g2.
Note, the dotted arrows indicate cause-effect relations, as GC is a
(combinational) function of Y FFs, clocked by C2. The transfer
functions for the single-clock model are as follows:

NEXT(X) = (C1_r) ? f1(Z,PI) : X; // s?b:c ≡ ITE(s,b,c)

NEXT(Y) = (C2_f) ? f2(X) : Y;
NEXT(Z) = (GC_r) ? f3(Y) : Z;
PO = f5(Z);

We use the scheduling of gclk as shown in Figure 5 to unroll the
model in BMC. We constrain the input clocks C1 and C2 at the ith

unrolling using the clocking constraints at the ith tick. In the
following, we use an 8-tuple UCi = <PIi;C1_ri;C2_f i;GC_hi;

Xi;Yi;Zi;POi> to denote the ith (i≤8) unrolled circuit nodes

(combinational logic) for PI, C1_r, C2_f, GC_h, X,Y, Z, and PO,
respectively, with X0,Y,0 and Z0 denoting respective initial states.
UC0 = <PI0;1;0;0;X0;Y0;Z0;PO0=f5(Z0)>
UC1 = <PI1;0,1,0;X1=f1(Z

0,PI0);Y1=Y0;Z1=Z0;PO1=PO0>
UC2 = <PI2;0;0;1;X2=X1;Y2=f2(X

1);Z2=Z1; PO2=PO1>

UC3 = <PI3;1;0;1;X3=X2;Y3=Y2;Z3=f3(Y
2); PO3=f5(Z

3)>
UC4= <PI4;0;0;1;X4=f1(Z

3,PI3);Y4=Y3;Z4=Z3;PO4=PO5>

UC5= <PI5;0;0;1;X5=X4;Y5=Y4;Z5=Z4;PO5=PO4>
UC6= <PI6;1;1;1;X6=X5;Y6=Y5;Z6=Z5;PO6=PO5>
UC7=<PI7;0;0;0;X7=f1(Z

6,PI6);Y7=f2(X
6);Z7=Z6;PO7=PO6>

UC8= <PI8;0;0;0;X8=X7;Y8=Y7;Z8=Z7;PO8=PO7>
 Note that by using dynamic simplification, UC8 has far fewer
copies of combinational blocks in its cone-of-influence (COI) than
without its use, i.e., three f1, two f2, one f3 and two f5, compared to
nine copies each of f1, f2, f3, and f5. This is due to our simplification

where the circuit nodes of a clock-domain in one time frame map to
those of the previous time frame, if the clocking signal for that
domain is inactive in the previous time frame. For example, circuit
nodes X3 and X2 map to X1 as C1_r=0 at i=1,2. We also use
on-the-fly circuit simplification procedures [7, 8] for further
compacting the unrolled circuits.

V. Customization of Clocked Specifications in BMC

Given a clocked specification of the form (F(f))@clk, we present
our BMC customization using the procedure BMC_solve_F@ as
shown in Figure 6. We allow f to be a Boolean combination of
nested X operators with propositional atoms, where
sub-expressions can have clocks specified with @. For our
discussion in this paper, we only allow input clocks in the design to
be in the support (i.e., COI) of clk in the specification. For

example, a clocked specification can be of the form (F(p ∧ ¬X(q ∧
X(r))@clk1))@clk with input clocks only in COI of clk and clk1.

Note that the specification clock clk corresponds to the enable
clock signal in our single-clock model.
 We construct a tree expression for f where each node
prop_tree_node represents a sub-expression. Each node is of type

AND (∧), NOT(¬), LEAF, or X, where LEAF corresponds to a

propositional atom. Note, we use ckt_node to denote a
propositional atom or gate in the transition relation, and uckt_node
such as f i to denote a propositional logic node corresponding to the

ith unrolling of f. For a prop_tree_node g, we use g→clk to denote

the associated specification clock.
 We first discuss the procedures used in BMC_solve_F@. The

procedure Is_clock_enable(clk,d) (lines 4, 35) returns true if clk
evaluates to 1 at depth d, and returns false otherwise. Note, as we
allow only input clocks in COI of clk, we obtain the value of clk by
simulating the logic circuit in its COI until d, using the values on
the input clock constraints. The procedure Get_clk_tick_depth(clk,
d) (lines 1-8), uses Is_clock_enable to determine when clk ticks
next, starting from depth d. The procedure Is_ckt_node_valid
returns false if clk is not valid, i.e., for unclocked property. (Note,

for invalid clk, procedure Get_clk_tick_depth returns d.)
 Now, we discuss the procedure BMC_solve_F@ for an
unclocked LTL formula F(f), and compare it with BMC_solve_F
(Figure 2) in the presence of nested X’s in f. In the absence of
associated clk, the procedure Get_clk_tick_depth (lines 12, 22, 30)
returns value equal to its input (e.g., j=i at line 12) as
Is_ckt_node_valid(clk) returns false at line 2. The procedure
Prop_node (line 31) returns f i using the procedures Unroll_node

(line 15), Create_and (line 17), and Create_not (line 20). If f→type

is X, the current unroll depth is advanced by one (line 22). The rest

of the description of BMC_solve_F@ is similar to BMC_solve_F,
except lines 35-36 which are relevant only for a valid clock. For
clocked properties, we do additional pruning of loop checks using
the procedure Is_clock_state_equal(i,j) (line 36) which returns true
if and only if ((i-j) mod R) = 0 where R is the recurrence length
(Section III.C). The correctness of the translation for unclocked

LTL is based on the re-write rules: ¬Xf ≡ X¬f, and X(f∧X(g)) ≡ X

3C-2

313

f∧ XXg. Note, we choose to build a uckt_node f i, instead of

partitioning the problem into separate conjunctions/disjunctions of
X operators and propositional atoms. In our experience, too many

SAT sub-problems add a performance overhead and thus, we
restrict our sub-problem partitioning at conjunctions/disjunctions
with one operand being F or G. Also, the procedure Prop_node
allows sharing of common sub-expressions in f by mapping
identical structures of uckt_node logic nodes, using on-the-fly
simplification procedures during unroll [7, 8].

 Example: For the given LTL F(p∧¬X(q∧X(r))), the procedure

Prop_node(f,i,NULL) at depth i (NULL denoting no associated

clock) returns the Boolean expression f i= pi∧¬ (qi+1 ∧ ri+2).

1 Get_clk_tick_depth(ckt_node clk, int d){
2 if (!Is_ckt_node_valid(clk)) return d;
3 while(d < N) {//check up to the bound N
4 if (Is_clock_enable(clk,d)) return d;
5 d = d + 1;
6 }
7 ABORT(“Bound Reached”);
8 }
9 //Create property circuit node at depth i
10 Prop_node(prop_tree_node f, int i, clk_node clk){
11 if (Is_ckt_node_valid(f→clk)) clk = f→clk;
12 j = Get_clk_tick_depth(clk,i);
13 switch(f→type) {
14 case LEAF://ckt_node
15 return Unroll_node(f,j);//uckt_node at j
16 case AND://f = f1 ∧ f2
17 return Create_and(Prop_node(f1,j,clk),
18 Prop_node(f2,j,clk));
19 case NOT: //f = !f1
20 return Create_not(Prop_node(f1,j,clk));
21 case X: //f = X(f1)
22 j = Get_clk_tick_depth(clk,j+1);
23 return Prop_node(f1,j);
24 }
25 }
26 //N: Bound, LTL@: (F(f))@clk
27 BMC_solve_F@(prop_tree_node f, ckt_node clk){
28 C = 1; k=0;
29 while (k<N) {//L1 is active always
30 i= Get_clk_tick_depth(clk,k);
31 fi = Prop_node(f,i,clk);
32 if (Is_sat(C ∧ fi)) return TRUE; //wit found
33 C = C ∧ ¬fi; //L3
34 for (j=i;j>=0;j--) {//loop-free check
35 if (!Is_clock_enable(clk,j)) continue;
36 if (!Is_clock_state_equal(i,j)) continue;
37 C = C ∧ ¬jLi;
38 if (!Is_sat(C)) return FALSE; //no wit exists
39 }
40 k = i+1; //increment depth
41 }
42 ABORT(“Bound Reached”); //wit not found}

Fig. 6: BMC Customization for Clocked Property (F(f))@clk

 We now describe the procedure BMC_solve_F@ in the presence
of a valid clock specification. In the procedure Prop_node (line 11)
the nested rule R6 (Section II.A) is applied. Next, the procedure

Get_clk_tick_depth returns j≥ i where clk ticks next (line 12). If clk

is associated with X operator, another call to the procedure
Get_clk_tick_depth (line 22) returns next clk tick depth after j.
Again, correctness of the translation for clocked LTL formula is

based on the re-write rules: (¬Xf)@clk ≡ ¬((Xf)@clk), and

(X(f∧X(g))@clk1)@clk ≡ ((Xf@clk1)@clk)∧(X(Xg)@clk1)clk.

 Example: For the clocked LTL (F(p∧¬X(q∧X(r))@clk1)@clk,

when we apply the procedure Prop_node(f,i,clk) at depth i on the
sub-expression f (line 31) with clk enabled at i, i+2, i+4, and clk1

enabled at i+1, i+3, i+5, the procedure returns uckt_node f i= pi∧¬
(qi+3 ∧ ri+5). To compare, the general clock translation [13] to an

equivalent unclocked LTL would give f=(¬clk U clk∧p)∧¬(¬clk U

(clk∧ X(¬clk U (clk∧(¬clk1 U clk1 ∧ q)∧ (¬clk1 U (clk1 ∧

X(¬clk1 U (clk1 ∧ r)))))))).

 Our approach of translating clocked sub-formulas directly into
property circuit nodes (such as f i) overcomes the problem of

devising customized translations for deeply nested equivalent
un-clocked formulas. This also allows us to take advantage of
sharing, partitioning and SAT-based incremental learning, as in the
unclocked BMC translations [9]. We can similarly extend our
translation approach to handle other commonly occurring clocked

specifications such as (F(f∧G(g)))@
.

VI. Experiments

We have implemented the ideas discussed in previous sections,
collectively called as BMC@, in a SAT-based model-checking
framework VeriSol (formerly DiVer [5]), that includes
state-of-the-art BMC advancements. For evaluating the
effectiveness of our solution, ideally we should compare it with a
some tool, say BestBMC, that uses previously proposed piece-wise

solutions [13, 15-18]. However, due to unavailability of such a tool,
we obtain BestBMC by disabling only the customization of BMC
for clocked properties in BMC@, but keeping all other
improvements [6, 8-11, 17, 18]. Thus, BestBMC uses our standard
state-of-the-art BMC formulation [2, 4] on translated [13] clocked
properties, while BMC@ handles clocked properties directly using
the BMC customization procedure shown in Figure 6.

We experimented on a workstation with 2.8 GHz Xeon

processor with 4GB running Linux 2.4.21-27. We experimented on
two OpenCores [20] multi-clock systems: VGA/LCD Controller
and Tri-mode Ethernet MAC Controller. We obtained input
clocking characteristics, reset sequences and other constraints from
the accompanying testbenches. Based on the specification
documents, we identified several clocked LTL reachability
properties. We used a time limit of 2 hours for each run.

A. VGA/LCD Controller

The controller core provides VGA capabilities for embedded
systems supporting several available CRT and LCD displays with
video memory outside the core. It has two positive edge triggered
input clocks: wishbone clock (freq=416.66Mhz, T=2.4ns) and pixel
clock (freq=33.33Mhz, T=30ns). Using this clock information, we
computed automatically the clock scheduling, the clock constraints
and a recurrence length of 55 (repetition period = 83.33ns). The
core design has 162 FFs on pixel clock, 2340 FFs on wishbone

clock, 87 primary inputs, and 44K 2-input gates. We identified all
together 13 clocked properties P1-13 and classified them as
reachability of control condition/states of the horizontal timing
generator (P1-P6) and the vertical timing generator (P7-P11),
assertability of line FIFO request (P12), and line underflow
interrupt across clock-domain (P13). Note, P1-12 are of the form

(F(p ∧X(q)))@px_clk_r and P13 is of the form F(p@wb_clk_r∧
X(q)@px_clk_r).

We present the comparison results in Table 1(a). Columns 1 lists
different properties P1-13; Column 2 lists the number of unrollings

in a witness (depth #D) if we were to consider every tick of global
clock with LCM frequency; Column 3 reports the number of
non-redundant BMC unrollings (#U) based on using our clock
schedules; Columns 4 and 5 show whether the witness was found
(F?), and time taken (in sec) respectively by BMC@; and similar
statistics for BestBMC in Columns 6 and 7. Columns 4 and 6 also
present number of depths (U*) analyzed just before time-out (TO).

BestBMC finds witnesses for only 5 properties in the given

time limit while BMC@ easily finds witnesses for all 13 properties,
outperforming BestBMC by 1-2 orders of magnitude. Note, using

3C-2

314

automatic schedules, we require far fewer non-redundant unrollings
(#U) in comparison to witness depth (#D) we had considered all

ticks of a global clock at LCM frequency.

B. Tri-mode Ethernet MAC Controller

This core implements a MAC controller conforming to the IEEE
802.3 specification with support for 10/100/1000 Mbps. It has 5
external clock inputs: Clk_125M (freq=125Mhz), Clk_user
(freq=100Mz), Clk_reg (freq=50Mhz), Rx_clk
(freq=125/25/2.5Mhz) and Tx_clk (freq=125/25/2.5Mhz), where

frequencies of Rx_clk and Tx_clk depend on the input mode
selected. In addition, there are 5 gated clocks derived from these
external clocks. Using the clocking information, we computed
automatically clock schedules and constraints, and a recurrence
length of 19. The design has 3961 FFs, with 815 clocked on
Clk_reg, 835 clocked on Clk_user, 764 clocked on Rx_clk (and its
derivative), 775 on Tx_clk (and its derivative) and rest on the
gated clocks. It has 142 primary inputs and 33K 2-input gates.
We identified 16 clocked properties E1-E16 corresponding to

receiver and transmitter modules and input speed modes. We
classified these properties as reachability of control states
(E1,E3-8,E10,E12-16) and assertability of high water mark of
receiving FIFO (E2,E11), and update of packet size across clock
domain (E9). Note, E2,E11 are of the form (F(p))@Clk_user_r,
E9 is of the form (F(p*X(q)@Clk_user_r))@Rx_clk_gated_r and
rest are of the form (F(p *X(q)))@Clk_user_r.

We present the results in Table 1(b) with descriptions as in Table

1(a). Again, BestBMC finds witnesses for only 5 properties in the
given time limit while BMC@ easily finds witnesses for all 16,
outperforming BestBMC by 1-2 orders of magnitude. As an
example, for E2 BMC@ takes 16 sec while BestBMC takes 4400 sec.
Our integrated approach BMC@ also requires far fewer
non-redundant unrollings.

TABLE 1(a-b): Comparative evaluation on benchmarks
(a) VGA_LCD (b) Ethernet MAC

F?: Witness Found (Y/N)?

#U: Number of BMC Unroll

U*: Depth analyzed before TO

VII. Conclusions

We presented an integrated and scalable solution for improving the
verification of multi-clock synchronous systems with PSL-style
clocked specifications. We provide a uniform modeling scheme for
various design features such as multiple clocks with arbitrary

frequencies (non-integral ratios), multiple phases, gated clocks and
latches. Using event queue semantics, we generate automatic

scheduling and clocking constraints for BMC unrolling to avoid
computation at every tick of the global clock and to filter
loop-checks. Further, we use dynamic simplification to reduce the
size of the BMC problem instance. We also propose customization
of BMC translations for clocked specifications and show its
effectiveness on two large OpenCores multi-clock systems.

References

[1] G. Semeraro, G. Magklis, R. Balasubramonian, D. H.
Albonesi, S. Dwarkadas, and M. L. Scott, "Energy-Efficient
Processor Design Using Multi-Clocks with Dynamic Voltage
and Frequency Scaling," in Proceedings of HPCA, 2002.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, "Symbolic
Model Checking without BDDs," in Proceedings of TACAS,
vol. 1579, LNCS, 1999.

[3] P. A. Abdulla, P. Bjesse, and N. Een, "Symbolic Reachability

Analysis based on {SAT}-Solvers," in Proceedings of TACAS,
2000.

[4] M. Sheeran, S. Singh, and G. Stalmarck, "Checking Safety
Properties using Induction and a SAT Solver," in Proceedings
of FMCAD, 2000.

[5] M. Ganai, A. Gupta, and P. Ashar, "DiVer: SAT-Based Model
Checking Platform for Verifying Large Scale Systems," in
Proceeding of TACAS, 2005.

[6] L. Zhang and S. Malik, "The Quest for Efficient Boolean
Satisfiability Solvers," in Proceeding of CAV, 2002.

[7] M. Ganai and A. Kuehlmann, "On-the-Fly Compression of
Logical Circuits," in Proceedings of IWLS, 2000.

[8] M. Ganai and A. Aziz, "Improved SAT-based Bounded
Reachability Analysis," in Proceedings of VLSI Design, 2002.

[9] M. Ganai, A. Gupta, and P. Ashar, "Beyond Safety:
Customized SAT-based Model Checking," in Proceeding of

DAC, 2005.
[10] J. Whittemore, J. Kim, and K. Sakallah, "SATIRE: A New

Incremental Satisfiability Engine," in Proceedings of DAC,
2001.

[11] O. Strichman, "Pruning Techniques for the SAT-based
Bounded Model Checking," in Proceedings of TACAS, 2001.

[12] K. L. McMillan, Symbolic Model Checking: An Approach to
the State Explosion Problem: Kluwer Academic Publishers,

1993.
[13] C. Eisner, D. Fishman, J. Havlicek, A. McIsaac, and D. V.

Campenhout, "The definition of a temporal clock operator,"
in Proceedings of ICLAP, 2003.

[14] A. Albright and A. Hu, "Register transformations with
multiple clock domains," in Proceedings of CHARME, 2000.

[15] J. Baumgartner, A. Tripp, A. Aziz, V. Singhal, and F.
Andersen, "An abstraction algorithm for the generalized
C-slow designs," in Proceedings of CAV, 2000.

[16] J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz, "An
abstraction algorithm for the verification of level-sensitive
latch based netlists," in Proceedings of FMSD, 2003.

[17] P. Bjesse and J. Kukula, "Automatic generalized phase
abstraction for formal verification," in Proceedings of ICCAD,
2005.

[18] E. M. Clarke, D. Kroening, and K. Yorav, "Specifying and
Verifying Systems with Multiple Clocks," in Proceedings of

ICCD, 2003.
[19] "Accellera. http://www.accellera.org."
[20] "Opencores: http://www.opencores.org."

BMC@ BestBMC
Prp

WIT

#D
#U

F? sec F ?(U*) sec

E1 299 149 Y 41 N(143) TO

E2 269 134 Y 16 Y 4.4k

E3 279 139 Y 14 Y 5.3k

E4 463 232 Y 1.6k N(145) TO

E5 289 144 Y 21 144 5.9k

E6 309 154 Y 25 N(148) TO

E7 299 149 Y 19 Y 6.7k

E8 319 159 Y 48 N(149) TO

E9 434 216 Y 126 N(127) TO

E10 299 159 Y 2 Y 3.1k

E11 2110 1235 Y 202 N(224) TO

E12 2120 1240 Y 261 N(221) TO

E13 2130 1247 Y 314 N(221) TO

E14 2150 1259 Y 277 N(213) TO

E15 2140 1252 Y 240 N(221) TO

E16 2160 1264 Y 268 N(220) TO

BMC@ BestBMC
Prp

WIT

#D
#U

F? sec F?(U*) Sec

P1 2 1 Y <1 Y <1

P2 50 27 Y 1 Y 19

P3 101 55 Y 3 Y 186

P4 151 82 Y 5 Y 694

P5 351 190 Y 16 N(160) TO

P6 101 55 Y 3 Y 186

P7 401 217 Y 18 N(161) TO

P8 600 324 Y 32 N(162) TO

P9 800 432 Y 52 N(162) TO

P10 1000540 Y 78 N(162) TO

P11 800 432 Y 54 N(162) TO

P12 850 459 Y 61 N(61) TO

P13 906 489 Y 2.1k N(81) TO

3C-2

315

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

