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Abstract— The increasing processing power of em-
bedded devices have created the scope for certain ap-
plications that could previously be executed in desk-
top environments only, to migrate into handheld plat-
forms. An important feature of the computing sys-
tems of modern times is their support for applica-
tions that interact with the user by synthesizing nat-
ural speech output. Such applications deliver state of
the art performance in desktop environments. How-
ever, the real-time performance of such applications in
handheld platforms with on-line incoming text streams
have not been explored till date.

In this work, the performance of a Text to Speech
Synthesis application is evaluated on embedded pro-
cessor architectures and modifications in the underly-
ing hardware platform are proposed for real time per-
formance improvement of the concerned application.

I. INTRODUCTION

In recent years, embedded computing has been grow-
ing tremendously in both popularity and complexity. In-
creased processing power, technology scaling and avail-
ability of heterogeneous design platforms like FPGAs,
multi-core processors,custom ASICs, CPLDs etc. have
resulted in powerful handheld devices that complement
and accelerate human actions in almost every sphere of
modern society. This philosophy of portable computing
requires novel interface technologies that increase the ef-
fectivity of such platforms. Text to Speech (TTS) con-
version is one such application which has the potential
to enhance the Human-Computer Interaction (HCI) ca-
pabilities of portable devices. TTS engines are integral
parts of desktop applications like Screen Reader, assistive
software for the physically challenged etc. However, such
interfacing technologies have much higher implication in
the domain of portable and pervasive devices.

In real life situations, an embedded handheld device
may require to handle on-line incoming text and synthe-
size the output speech in real-time. However, the perfor-
mance of such speech synthesis engines have been found to
be lacking in the context of low power embedded proces-
sors, given a situation where the processing has be done
on-line with high throughput requirement. This situation
calls for architectural optimizations while respecting the
constraints of embedded processing like low-power Pro-
cessing Elements (PEs), small on-chip memories, moder-

ate bus speed etc.

This work explores such domain specific architectures
for speech synthesis by exploiting application characteris-
tics like availability of concurrency, scope of custom hard-
ware and memory demands.

The paper begins with a brief introduction to relevant
speech synthesis techniques as well as an introduction to
Shruti [1], the concatenative speech synthesis engine used
in this work in Section II. Section III provides a brief
review of relevant architecture design works. Section IV
describes an initial performance analysis of the application
which provides an insight into the memory demands and
bottlenecks. Section V reports the gradual architectural
refinement steps driven by design decisions based on the
performance analysis and initial refinements which finally
lead to the conclusions and planned future directions in
Section VI.

II. TEXT TO SPEECH SYNTHESIS

Speech synthesis involves the algorithmic conversion of
input text data to speech waveforms. Speech synthesizers
can be broadly classified into two different classes. There
are different approaches to speech synthesis such as rule-
based, articulatory modeling and concatenative technique.
The best known method for speech synthesis is the artic-
ulatory method [2]. In this method the human larynx,the
main speech production system is modeled electronically.
However, recent speech research has been directed to-
wards concatenative speech synthesizers due to difficulties
in modeling the human larynx accurately. There are three
basic approaches to concatenative synthesis. Unit selec-
tion synthesis uses a large database of segmented speech
waveforms. At runtime, the best chain of candidate seg-
ments is selected from the database to form the desired
output utterance. The size of the database is directly pro-
portional to the quality of the output speech. Some ex-
amples of unit selection based synthesis are Laureate [3],
CHATR [4], Shruti [1] etc.

A. Shruti: The Indian Language TTS System

A schematic diagram of the speech synthesis system se-
lected for this work is shown in Fig.1 . The system con-
sists of two main blocks: block A, the language dependent
block and block B, the Indian Language Phonetic Synthe-
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Fig. 1. Architecture of Shruti

sizer (ILPS). Block A consists of an input device, a natural
language processor and an intonational and prosodic rule
base. The natural language processor in block A com-
prises of a phoneme parser, which uses either a phonolog-
ical dictionary, syllable and word marker to produce an
output phonemic string. Part B is the synthesizer. The
output speech is produced by taking the output string
of phonemes (in ILPS symbols) and information for in-
tonation and prosody from the basic rule base as input.
Thus the output phonemic string is utilized by block B
to produce the speech output. For this case study Shruti
was cross-compiled for arm-linux platform and ported to
OMAP1510 [5] which is a dual core architecture combining
a TMS320C55xDSP core with a TI-enhanced ARM925T
processor.

III. RELATED WORKS

An hardware architecture for TTS systems have been
reported in [6] which proposes an ASIP solution for Para-
metric Speech Synthesis. Design of a speech synthesis
ASIC, based on the line spectrum pair (LSP) scheme can
be found in [7]. However, these works do not address con-
catenative speech synthesizers and they do not present
any generic performance evaluation and architecture de-
sign based on standard embedded processors. Design of a
speech ASIP for concatenative speech synthesizer can be
found in [8] which considers an instruction set extension
approach for performance improvement.

IV. PERFORMANCE ANALYSIS

The architecture exploration task in the present work
begins with a workload analysis of the speech synthesis
engine in the Simplescalar architecture simulator [9]. The
baseline configuration was selected to model the Stron-
gARM architecture.
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A. Execution Profiles

The procedure level profile information were ex-
tracted for Shruti in ARM platform. The TTS engine
has two main modules: Analyze, the Natural Lan-
guage Processing (NLP) intensive language dependent
block and Generate, the DSP intensive synthesizer.
The most frequently used procedures in Shruti are Find-
Length,verb_morph_analysis, Concatenate_Consonant_Vowel
and filter which are all components of the DSP phase of
the speech synthesizer. In particular, the filter procedure,
which does 4-point moving average filtering on audio
signals, consumes 66.44% of the execution time for an
input dataset of 600 characters as shown in Fig.2 .

0% 58 10.16

O Concatenate_Consonat Vowel Bfilter
Dinitphono Overh_morph_analysis
B FindLength

Fig. 2. Profile Results for Shruti

The execution time of the DSP phase increases with
input text size as shown in Fig.3 . As the figure suggests,
the execution time of the DSP phase, increases with input
size in a sub-linear fashion and saturates to about 80% of
the total execution time. Without loss of generality, it can
be stated that concatenative speech synthesis applications
spend most of the execution time in the DSP intensive
phonetic synthesis phase.

B. Memory Demands

A detailed cache regression analysis was performed with
varying block sizes and number of sets to provide some in-
tuition into spatial versus temporal relationships in mem-
ory access. In this work, the memory system is modeled
with access latencies of 1 cycle for L1 caches, 6 cycles for
L2 caches and 18 cycles for the DRAM. Since, L1 caches
have minimum access latency, L1 misses have the most
pronounced effect on the number of execution cycles. The
block size of both L1 instruction and data cache was varied
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from 8 to 64 bytes keeping the number of sets fixed at 128
followed by variation in number of sets upto 4096 keep-
ing the block size fixed at 64. The reduction in miss% is
evident from Fig.4 which shows the analysis for L1 instruc-
tion cache. Results are shown for three cache associativity
values.
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Fig. 4. Miss ratio for L1 instruction Cache with 128 sets

The block size variation leads to roughly 71% decrease
in the number of execution cycles as shown in Fig.5 and

the set size variation provides about 11% decrease in the
cycle count.
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Fig. 5. Speedup due to Cache block-size variation

Performance evaluation was also performed assuming a
bi-modal branch predictor hardware with branch history
table size variation from 8 to 4096 which provided roughly
16% savings in execution cycles.

V. ARCHITECTURAL REVISIONS

The architectural revisions reported in this work are
based on the performance analysis carried out assuming
a baseline machine configuration. The analysis phase re-
sulted in identifying the application bottlenecks and fix-
ing up appropriate memory parameters for the TTS. This
Section reports the gradual architecture refinements and
their evaluations leading to the final architecture and its
validation.

A. Exploiting Parallelism

The profile information reveals that the execution time
of the DSP intensive module saturates to almost 3 times
the execution time of the NLP module for high values
of input string length. Hence, for achieving throughput
values higher than what is possible by software only ex-
ecution, one possible solution is to implement a multi-
threaded architecture that accelerates the execution of the
time-consuming moving-average filter computation loop in
the DSP block by concurrent execution.

Performance results were obtained by porting the TTS
into a multi-threaded version of the simplescalar simulator
[10] with proper store and allocate locks implemented for
data-points shared between the threads. The simulated
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super threaded architecture has unified level-2 cache and
symmetric threading units (TUs). The TUs were indi-
vidually modeled on the simplescalar base processor plat-
form with communication units attached in a ring topol-
ogy and memory buffers. The architecture is modeled on
the philosophy of thread-pipelining which allows threads
with data and control dependencies to be executed in par-
allel and run-time checking [11]. The improvement in exe-
cution time of the phonetic synthesis phase due to the par-
allelization of the TTS code is evident from Fig.6 which
also shows the impact of loop-unrolling and TU varia-
tion on the execution time of the parallel threads. The
speedup obtained by loop-unrolling is noticeable specially
in the case where the parallelization effort with 2 TUs and
no unrolling lead to performance degradation due to the
threading overhead.

100000000
90000000
i [[] Sequential
g 70000000 B Threaded-
S 60000000 TU
5 P [ | Threaded-
§ 40000000 2TU-unroll
30000000 [ ] Threaded-
20000000 - 4Tu
10000000 - B Threaded-
o 4TU-unroll
200 chars 400 chars 800 chars
Text Length

Fig. 6. Execution Pattern for 2 and 4 TUs

Although the multi-threaded architecture provided sub-
stantial speedup results for the TTS, implementing such
a full-fledged high performance multi-processing environ-
ment seems to be an overkill for the concerned application
keeping in mind the domain of low-power portable de-
vices where such sophisticated memory systems, memory
buffers and thread-level communication units of a high-
performance superscalar core are not practically realiz-
able. A learning from this initial revision work has been
that the computation intensive DSP phase contains mas-
sive scope of parallelization which can be exploited by
employing multiple low-power embedded cores like ARM
and the performance penalty can be nullified by executing
bottleneck code in custom hardware.

B. Accelerating the Bottlenecks

As reported previously, the 4-point moving average fil-
ter operation was found to be the bottleneck in the TTS
system, consuming almost 70% of the TTS engine execu-
tion time for large input text length. This time-consuming
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operation can be accelerated using an application specfic
custom accelerator. Although such an implementation
will perform the operation in a single cycle, the com-
munication overhead from the processor memory to the
loosely coupled accelerator using external bus will lead
to a massive overhead, thus finally killing the achieved
speedup. Hence, the co-processor was tightly coupled
with the processor core using a fixed sized shared mem-
ory. The software code was modified to prepare 100 data
points from the initially synthesized and unfiltered speech
waveform file in each iteration and map the values into
the shared memory location to be processed by the co-
processor. The processor will prepare the next set of
data points in an overlapped manner. Signals for mem-
ory access control and synchronization, co-processor ac-
tivation,reset,acknowledgement and halt were also imple-
mented as part of establishing the communication between
main processor and the co-processor. Due to limitation of
instruction length, a custom instruction approach to solve
the problem could take only two data points and perform
single cycle add and shift thus requiring 3 instruction cy-
cles in total for a 4-point moving average calculation. Such
was not the case with the co-processor approach. In this
case, add and shift of all four operands became a single
cycle hardware operation. Due to the choice of a fixed win-
dow size, the shared memory implementation was possi-
ble thus helping to minimize the communication overhead.
The resultant speed-up was about 2.1 times over the soft-
ware only execution of the TTS. The result is shown for
different input lengths in Fig.7 . Some statistics regard-
ing the implemented co-processor is given in Table I. The
GeZel [12]design language and environment was chosen
for implementing and integrating the co-processor with
SimIt-Arm [13], an instruction set simulator (ISS) of the
StrongARM instruction set architecture (ISA).
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Fig. 7. TTS-speedup results

C. Final Architecture

From the procedure level analysis, it has been clear that
the TTS can be modeled as a streaming application with
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TABLE 1
CO-PROCESSOR STATISTICS

Application TTS

Operation 4point moving average
Computation Cycles 1

Lines of Gezel Code 271

Lines of VHDL generated 838

No. of Logic cells(Altera Stratix FPGA) 800
Area consumption(0.18y process ASIC) 0.038 mm?

consecutive tasks, each operating on the output data pro-
duced by its predecessor. The single-core based architec-
ture proposed in Section V-B provides more than twice
the throughput of the software-only execution. However,
in order to meet throughput requirements higher than this
while respecting the processor clock-speed, task-level par-
titioning into multiple PEs is required. Initially, the NLP
and DSP tasks were partitioned into subsequent PEs for
gaining the advantage of overlapped execution. The filter-
accelerator unit is coupled with the PE which processes
the DSP intensive speech-synthesis task. However, the ex-
ecution pattern reveals that even with the accelerator unit,
the execution time of the DSP task saturates to almost
2.5 times that of the NLP task with variation of the input
text length (initially without the accelerator it saturated
to about 4 times). Performance analysis of the DSP task
revealed the huge scope of parallelization as shown in Sec-
tion V-A. This immediately suggests the use of Symmetric
Multiprocessing (SMP) or Simultaneous Multi-threading
(SMT) style of architectures. However, the unsophisti-
cated memory systems found in portable devices will lead
to inefficient processor utilization for a standard arrange-
ment of SMPs. On the other hand, a single SMT processor
will require a massive number of resources for exploiting
the available concurrency. Hence, keeping in mind the
target domain of embedded handheld devices, this work
proposes a hybrid architecture comprising of simple low-
power processing elements based on the StrongARM ISA
with an initial static partitioning of the speech synthesis
tasks to maximize load balancing.

The proposed hybrid architecture exploits the avail-
able parallelism in the DSP phase by applying task-level
threading techniques. Based on the ratio of execution
times of the two coarse-grained tasks, it was initially as-
sumed that partitioning the DSP task into three paral-
lel PEs (an architecture comprising four PEs including
the front-end NLP unit) will nullify the execution time
gap. It was experimentally found that if the number of
DSP threads is more than three, it leads to performance
degradation due to the threading overhead and PE under-
utilization because of the simple fact that the NLP unit
was now taking more time to generate the phoneme tokens
required by the DSPs. This will again call for task thread-
ing for the NLP unit and subsequent threading of the DSP
units which takes the total number of cores from four to
eight which is unrealistic keeping in mind the commer-
cially available embedded multi-cores. With technology
scaling and more number of cores in a low-power embed-
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Fig. 8. Final Architecture

ded processor in the future, the only thing required will be
to continue threading of the pipelined tasks maintaining
the proper ratio. Hence, the final architecture has been
designed with 4 processing elements as shown in Fig.8 .

The proposed architecture implements a shared mem-
ory multi-processor system with four ARM processors.
The StrongARM processor cores run at a frequency of 206
MHz. Each processor core has got its own data and in-
struction cache. No cache coherence protocol or hardware
test-set locks have been implemented as data consistency
has been maintained at the software level by partitioning
and locking. The front-end NLP unit was also used as
the controller for activating the PEs which performed the
DSP task and synchronizing their access to the intermedi-
ate phonemes generated by natural language analysis and
grapheme-to-phoneme conversion [14]. The synchroniza-
tion signals from both sides were established by imple-
menting a separate 4-bit bi-directional bus. Each of the
DSP units were customized with closely coupled acceler-
ators for moving average computation and shared mem-
ory based communication as described in Section B. The
shared memory multi-processor architecture, accelerator
units and communication infrastructure were developed
using GeZel and Simlit-Arm.

An important point in this regard is that the through-
put achieved by this architecture depends on the num-
ber of overlapped executions (the number of times this
pipelined design operates) which again will depend on the
number of input characters (a dynamic value for streaming
text) that needs to be processed and the processing-length
in each pass.

Performance Results: The throughput (in
bytes/sec(bps)) offered by three architectural configura-
tions for an input of 2000 characters is given in Table II
along with area estimates.

For higher input values, the speedup is bound to in-
crease as the pipeline will operate more number of times.
In the final architecture, the front-end controller selects
an execution mode based on the throughput requirement.
For low throughput (th) requirement (th < 500bps), the
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TABLE II
THROUGHPUT VS AREA

2

Architecture Throughput(bps) area mm
single ARM 515 11.8
ARM + accelerator 1081 11.838

4 ARM + 3 accelerators® 1700 47.314

%Final pipelined architecture working with processing-length
of 150 chars creating [2000 + 150] = 14 rounds of overlapped
executions

controller itself performs both of NLP and DSP tasks.
For 500bps < th < 1100bps, the NLP task is executed in
the controller and the DSP task is executed in one of the
three PEs with accelerator. For higher throughputs, all
the threading elements are activated. In each of the exe-
cution modes, the unused PEs are put into idle mode by
the controller for power savings. The area and power con-
sumption estimates of the cores at different power modes
are taken from StrongARM data sheets [15]. Similar es-
timates for the accelerator are generated using Synopsis
Design Compiler [16] with a 0.18u process which is the
same process technology used for the current ARM cores.
Variation of average power consumption with throughput
requirement of the final architecture is given in Table III.

TABLE III
AVERAGE POWER CONSUMPTION OF FINAL ARCHITECTURE

Throughput(bps)Active units Power(mW)
th < 500 Controller 700
500 < th < 1100 Controller, 1 PE, accelerator 1014.18

th > 1100 Controller, 3 PEs, 3accelerators 1642.55

VI. CONCLUSION

The present work considered domain specific architec-
ture exploration for text to speech synthesis in embedded
handheld devices. The design approach has largely been
dominated by exploiting the available concurrency in the
DSP intensive phase of speech synthesis and custom hard-
ware implementation for application bottlenecks. With
multiple revisions, a multi-processor architecture was ar-
rived at which is flexible in terms of resource utilization
depending on the performance requirement. The final ar-
chitecture provided 3.3 times speedup over single proces-
sor execution for a test input of 2000 characters and as
the trend shows, the speedup achieved increases with in-
put size.

The architecture design work has been largely based on
the rough assumption that the use of low-power embed-
ded cores and simple custom hardware components will
not create an overall system with prohibitive power con-
sumption. Though this is a valid assumption in embedded
system design (for example, cache power result is based
on average dissipation value), a more detail power anal-
ysis by attaching cycle accurate power models of each of
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the individual cores, memory and cache components is
necessary for an end-to-end design. The intention has
been to achieve power-awareness by task migration and
resource utilization depending on the performance require-
ment. However, finer control can be achieved by modify-
ing the simulation infrastructure with frequency scaling of
the PEs by the main controller (StrongARM can operate
at 206 and 133 MHz). These architectural refinements are
part of the intended future work.
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