
Protocol Transducer Synthesis using Divide and Conquer approach

Shota Watanabe Kenshu Seto Yuji Ishikawa
Dept. of Electronic Engineering VLSI Design and Education Center Dept. of Electronic Engineering

University of Tokyo University of Tokyo University of Tokyo

Satoshi Komatsu Masahiro Fujita
VLSI Design and Education Center VLSI Design and Education Center

University of Tokyo University of Tokyo

e-mail : {shota, seto, yuji, komatsu}@cad.t.u-tokyo.ac.jp, fujita@ee.t.u-tokyo.ac.jp

Abstract— One of the efficient design methodologies for large
scale System on a Chip (SoC) is IP-based design. In this method-
ology, a system is considered as a set of components and inter-
connects among them. The designers try to reuse existing IPs as
much as possible. Communications among components have to
be conducted using a common protocol, however, IPs available to-
day use various communication protocols. Thus the protocol con-
version is one of the most important topics in IP-based design[5].
In this paper, we propose a method for automatic protocol trans-
ducer synthesis which is applicable to complex protocols. The
main idea of our proposed method is division of the exploration
space into smaller ones for avoiding explosion of the exploration
space, namely with a divide and conquer approach. We demon-
strate our method by synthesizing transducers which translate be-
tween the real and complicated protocols with advanced features
such as non-blocking transactions and out-of-order transactions.

I. INTRODUCTION

With rising complexity of the circuits on a single chip, IP-
based design methodology is attracting attention to shorten the
design periods. By reusing existing designs for a new design,
the design period is expected to be much shortened. In the IP-
based design, the most significant issue is the connectabilities
among IPs. Since IPs usually have their own interfaces, IPs
cannot communicate with one another if they use different pro-
tocols. In other words, an IP’s interface limits IPs which can
communicate with it.

In actual designs, designers usually insert protocol transduc-
ers (also called wrappers or bridges) between IPs with incom-
patible protocols, which consume additional time to design. As
a result, the advantage of IP-based design is reduced. To re-
solve the problem, automatic synthesis of protocol transducers
is an attractive solution [5]. However, the state-of-the-art pro-
tocols have various complicated functionalities such as non-
blocking (pipelined) and out-of-order transactions[1, 2]. Un-
fortunately, the methods proposed so far are hard to deal with
such advanced features in complicated protocols[4, 6], because
the input protocol specifications of the previous methods are
not good at describing these features.

In this work, we propose a protocol transducer synthesis
method which is applicable to those complicated protocols.
The basic idea of our method is divide-and-conquer approach.
The main reason why the existing methods are difficult to deal
with the complicated protocols is the explosion of the explo-
ration space due to the complicated protocol specifications.
Since an automaton is often adopted as a formal description
of a protocol, modeling a protocol supporting advanced fea-
tures results in quite large size of the specification automa-
ton. Trying to synthesize the transducer from these compli-

cated protocol specifications with the previous methods fails
because of the large exploration space. Therefore, we divide
the protocol specifications into smaller ones called Sequences.
A Sequence corresponds to one operation such as Single Read,
Burst Write, etc., and it consists of a set of automata. We apply
Sequence level transducer synthesis to one pair of Sequences,
and we call the synthesis result as a partial transducer. Then,
we construct the whole transducer from a set of partial trans-
ducers. The synthesized transducer consists of several FSMs
so that it can handle parallel transactions. With this approach,
the protocol transducer for complicated protocols such as those
supporting non-blocking and out-of-order can be synthesized,
and we demonstrate it through experiments.

The rest of this paper is organized as follows: After dis-
cussing related work in Section II, we briefly explain the out-
line of our method in Section III. The detail of each process
of the method are explained in Section IV,V,VI, and VII. Then
we demonstrate our method by experiments in Section VIII.
The last section gives concluding remarks.

II. RELATED WORK

Roughly speaking, the approaches for protocol transducer
synthesis are classified into two types: one is library-based
method[9, 10, 11], and the other is protocol specification based
method[4, 6, 7]. The library based method uses a library which
has transducer designs for various protocols. The target trans-
ducer is obtained by combining some of the designs in the
library with small modification. However, the usefulness of
the synthesizer which uses the library based approach depends
on the richness of the library. On the other hand, the specifi-
cation based method takes two formal protocol specifications
as inputs and automatically synthesize a transducer as output.
The protocol specifications are written in formal descriptions
such as automata descriptions[6], regular expressions which
are equivalent to automata[4] or sequence charts[7].

In [4], the two input protocol specifications described in the
form of regular expressions are translated into two equivalent
automata. The synthesizer judges whether each state of the
product automaton of them is legal or not in terms of data de-
pendency. The output transducer is an FSM which is the sub-
set of the product automaton that consists of legal states. We
employ this method as a part of the proposed method with sev-
eral extensions. The details of the extensions are explained in
SectionVI-B.

In [6], D’silva et al. proposed a formal approach that is a
product automaton based synthesis method. This method can
handle multiple clock speeds by inserting redundant states to
the automaton which runs at higher clock speed. Their ap-
proach can handle non-blocking transactions only in the lim-

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3B-2

280

ited case. It cannot accept new requests when response data
corresponding to the previous request is not ready because of
slave’s long latency, although it can accept a new request si-
multaneously with the previous response.

In the above two approaches, there are following limitations
because a protocol is described in a single automaton, while
our approach represents a protocol in a set of automata. Since
input automata grow into large size in case the target protocols
are complicated, the exploration space often becomes too large
to handle. Additionally, this representation makes the descrip-
tion of parallelism (interleaving) complex, therefore it becomes
difficult to handle the advanced features in the state-of-the-art
protocols.

In [7], Roychoudhury et al. used High-level Message Se-
quence Charts (HMSC) as the formal description of a protocol.
They proposed a transducer synthesis method that takes HM-
SCs as input. An HMSC is a scenario based specification simi-
lar to the abstracted automaton which has a “sequence chart” as
a node of the automaton. This method represents a protocol in
a single HSMC so that it has the same limitations as we pointed
out above.

To resolve the limitations of the previous works, we pro-
pose a specification based method that takes protocol specifi-
cations in the hierarchical automata form, and outputs the RTL
description of the transducer. The proposed method can deal
with complicated protocols with non-blocking and out-of-order
transactions.

III. OUTLINE OF PROPOSED APPROACH

A. Protocol Classification

In this section, we classify protocols into three types and
explain the classification rules. We consider that a protocol
consists of requests and responses. A module which issues re-
quests is called master, and one which issues responses is called
slave. We classify protocols into the following types by the is-
sue timing and the order of requests/responses.

1. Blocking Protocol
The blocking protocol is a protocol in which the master
cannot issue the next request until the slave returns the re-
sponse for the previous request. AMBA AHB protocol[3]
is a blocking protocol. Hereafter, “BK” stands for “Block-
ing”.

2. Non-Blocking Protocol
The non-blocking protocol is a protocol in which the mas-
ter can issue the next request before the slave returns the
response. The slave of a non-blocking protocol has to
return responses in the same order as the corresponding
requests’ order. Open Core Protocol(OCP)[1] is a non-
blocking when it is configured to have only basic signals.
Hereafter, “NB” stands for “Non-Blocking”.

3. Out-of-Order Protocol
The out-of-order protocol is a protocol in which the mas-
ter can issue the next request before the slave returns the
response, and the slave can respond in different order from
the requests’. The master detects correspondences be-
tween requests and responses by comparing tags buried
in requests and responses. AMBA AXI[2] and OCP with
tag extension are out-of-order protocols. In the follow-
ing sections, we call OCP with tag extension as “Tagged
OCP”. Hereafter, “OoO” stands for “Out-of-Order”.

B. Basic Idea

The novel idea of our method is employing divide-and-
conquer approach to the protocol transducer synthesis for com-
plicated protocols. The main reason why the existing methods
are difficult to deal with complicated protocols is the explo-
sion of the exploration space caused by the complicated proto-
col specifications. As a single automaton is often adopted as
a formal description of a protocol, modeling a protocol sup-
porting advanced feature can result in a quite large size of the
specification automaton. So, we divide the protocol specifica-
tions into smaller ones called Sequences (divide process). A
Sequence corresponds to one operation in the protocol such
as Single Read, Burst Write, etc, and it consists of several au-
tomata. We apply Sequence level transducer synthesis to one
pair of Sequences, and we call the synthesis result as a partial
transducer (conquer process). Then, we construct the whole
transducer from a set of partial transducers (combine process).

The Sequence level synthesis employs automaton level syn-
thesis. As the automaton level synthesizer, we employed an
existing work which is done by Passerone et al.[4]. However,
Passerone’s synthesizer needs several extensions to be used in
our work because it cannot deal with loops in the specification
automata. The details of the extensions are explained in Sec-
tion VI-B. We call the result of an automaton level synthesis as
an element transducer, which is an FSM.

Figure 1 shows the outline of our approach. With this ap-
proach, the protocol transducer for complicated protocols can
be synthesized.

For the ease of explanation, we define two terms: “starting
condition” and “return to initial edge”. “starting condition” is a
state transition condition which is associated to the edge from
the initial state of an FSM to other states. “return to initial
edge” is a state transition whose destination is the initial state
of an FSM. Also, we use descriptions such as (protocol type1,
protocol type2) when the master uses a protocol whose type is
protocol type1, and the slave uses protocol type2.

Automaton Level Synthesis
(2 automata an FSM)

S equence Level Synthesis (conquer)
(2 Sequences a partial transducer)

Construction Phase
(combine)

Partial transducers

Whole transducer

Input of our synthesizer (divide)
(2 hierarchically modeled protocol specifications)

Element Transducer

(Section4)

(Section6)

(Section5)

(Section7)

Fig. 1. Outline of proposed protocol transducer synthesis

IV. PROPOSED PROTOCOL MODELING

We propose a protocol specification model shown in
Figure 2 to overcome the explosion of the solution space. The
novelties of the proposed protocol model are the following:

• Consider a protocol as a set of Sequences.

• A Sequence consists of either a single automaton or two
automata.

3B-2

281

SequenceSequenceSequenceSequenceProtocol = Sequence

Sequence =

A protocol consists of a set of Sequences

ii

Req.Automaton

Automaton

Res.Automaton

A Sequence is described in an automaton,
if the protocol is a blocking protocol

A Sequence is described in two automata,
if the protocol is a NB protocol or an OoO protocol

Each automaton in a Sequence starts from the initial state,
ends in the same initial state like the left example.

Fig. 2. Proposed Protocol Modeling Method

• For blocking protocols, a Sequence has an automaton
which accepts both request procedure and response pro-
cedure.

• For NB or OoO protocols, a Sequence has two automata:
a request automaton, and a response automaton. Each
handles either requests or responses.

• Each automaton in a Sequence starts from and ends in the
same initial state.

Figure 4 shows an example of this modeling method which
describes essential parts of OCP[1]. In this protocol model,
each Sequence corresponds to a “Timing Chart” which ap-
pears in protocol specifications written in natural languages.
So, we believe this modeling scheme is a natural translation of
specification into a formal description.

Using this model has the following advantages. First, we can
apply transducer synthesis for each Sequence independently.
The independent application of transducer synthesis to each
Sequence reduces the total amount of computation. Also by
modeling requests and responses independently, non-blocking
and out-of-order transactions can be easily handled. Second,
modeling of a whole protocol is facilitated. By describing in
a unit of a Sequence, number of states in each automaton be-
comes relatively small. Hence unintentional errors in the pro-
tocol modeling process can be suppressed. Moreover, in [12],
Y.Kakiuchi et al. use divided protocol model that is similar to
ours for formal verification of protocol itself. So, the proto-
col specification can be verified by applying their verification
method before the transducer synthesis.

V. SEQUENCE LEVEL SYNTHESIS

In this section, we explain the method to synthesize a partial
transducer from a pair of Sequences (one from each protocol).
First, we have to select a target Sequence from each proto-
col. The selected Sequences have the same semantics, such as
single read (get the value stored in the specified address). Al-
though this selection is not automated and it has to be done by
users, it should not be so difficult in general.

Each of the selected Sequence has one or two automata de-
pending on the protocol’s type. We apply automaton level syn-
thesis to the automata in the target Sequence pair considering
the types of the protocols. As the automaton level synthesizer,
we employ the algorithm proposed by Passerone et al.[4]. We
modified their algorithm to allow loops in the input automata.
The outline of their algorithm and the details of the extensions
are explained in Section VI.

The output of a Sequence level synthesis is a partial trans-
ducer. A partial transducer consists of one or two FSMs, and
it is used to construct the whole transducer. The construction
method is explained in Section VII.

As explained in Section IV, Sequences from NB or OoO
protocols have two automata, and Sequences from blocking
protocols have an automaton. So, we have to apply Sequence
level synthesis in the following way for each case :
•Both are BK protocols(see Figure 3-(a)): Simply apply au-
tomaton level synthesis to the two automata. Then we have an
FSM as the partial transducer.
•Both are NB or OoO protocols(see Figure 3-(b)): Apply au-
tomaton level synthesis to the two request automata, and apply
again to the two response automata. Then we have two FSMs
as the partial transducer.
•One is blocking, the other is NB or OoO(see Figure 3-(c)):
Make an automaton by connecting the request automaton and
the response automaton in the Sequence which belongs to the
NB or an OoO protocol . Then, apply automaton level synthesis
to the generated automaton with the automaton in the blocking
protocol’s Sequence. The connection of the request automa-
ton and the response automaton is simply done by changing the
destinations of the return to initial edges to the other’s initial
states.

SlaveSlaveMasterMaster

FSMFSM

Automaton Level Synthesis

(a) BK-BK

Master
Req. Res.

Slave
Req. Res.

FSM
Req. Res.

Automaton Level Synthesis

Automaton Level Synthesis

(b) NB-NB / OOO-OOO / NB-OOO / OOO-NB

SlaveSlaveMaster
Req. Res.

Master
Req. Res.

(Generated)

FSMFSM

Automaton Level Synthesis

(c) BK-NB / BK-OOO / NB-BK / OOO-BK

note: [BK]:blocking protocol, [NB]:Non-blocking protocol,

[OOO]: Out-of-Order protocol
Fig. 3. Sequence Level Synthesis

VI. AUTOMATON LEVEL SYNTHESIS

A. Passerone’s Method

Passerone et al. proposed a protocol transducer synthesis
method which synthesizes a transducer FSM from two protocol
specifications in [4]. Figure 6 shows the outline of Passerone’s
method.

According to their algorithm, the synthesizer makes a prod-
uct graph of the two protocol specification. Each state in the
graph corresponds to the pair of states from each automaton
and the synthesizer judges if each state is consistent or not. We
say “a state in the product graph is inconsistent” when the state
causes to output un-received data. The output FSM is gener-
ated by selecting proper states from the consistent states. The

3B-2

282

ID:0
idle

ID:1
OWrite

MCmd=>OCP_WR
MAddr=>addr
MData=>data

*SCmdAccept<=1
MCmd=>OCP_WR
MAddr=>addr
MData=>data

*SCmdAccept<=0
MCmd=>OCP_WR
MAddr=>addr
MData=>data

ID:0
idle

ID:1
ORead

 MCmd=>OCP_RD
 MTagInOrder=>1
 MAddr=>addr
 MTagID=>tag

*SCmdAccept<=1
MCmd=>OCP_RD
MTagInOrder=>1
MAddr=>addr
MTagID=>tag

*SCmdAccept<=0
MCmd=>OCP_RD
MTagInOrder=>1
MAddr=>addr
MTagID=>tag

Single Write Sequence Tagged Single Read Sequence

ID:0
idle

*SR esp<=OCP_DVA
S Data<=data

Single Read Sequence

ID:0
idle

ID:1
ORead

 MCmd=>OCP_RD
 MAddr=>addr

*SCmdAccept<=1
MCmd=>OCP_RD
MAddr=>addr

*SCmdAccept<=0
MCmd=>OCP_RD
MAddr=>addr

ID:0
idle

*SResp<=OCP_DVA

Non-Posted Write Sequence

ID:0
idle

ID:1
ONPWrite

 MCmd=>OCP_WR NP
 MAddr=>addr
 MData=>data

*SCmdAccept<=1
MCmd=>OCP_WR NP
MAddr=>addr
MData=>data

*SCmdAccept<=0
MCmd=>OCP_WR NP
MAddr=>addr
MData=>data

ID:0
idle

 *SR esp<=OCP_DVA
 *STagInOrder<=1
 S Data<=data
 S TagID<=tag

Sequences

R
eq

ue
st

 A
ut

om
at

on
R

es
po

ns
e

A
ut

om
at

on

N/A

Fig. 4. Example protocol model: OCP

i

i

i

i

e

e

E
xp

lo
ra

tio
n

i

e

i

Fig. 5. Handling of loops

• Take one state from each input automata, and make them into a pair.
• A pair of states corresponds to a state of output FSM.
• Illegal pair in terms of data consistency is not adopted.

Protocol
A

Protocol
B

Regular
Expression

Parser

Specifications in
Regular Expressions

Specifications in Automata

Exploration
Algorithm

Transducer
FSM

Exploration Algorithm

Fig. 6. Outline of Passerone’s method

novel aspect of their method is using “Equivalence Classes” to
minimize the latency of the transducer. The equivalence class is
a subset of available transitions which have the same input. By
choosing the best transitions from each equivalence class, an
output FSM can have the least latency. Since we employ their
method as an automaton level synthesizer, our method can also
synthesize transducers with the least latency.

B. Extension to Passerone’s Method

B.1 Handling of Loops

To use Passerone’s method as an automaton level synthesizer,
we modified Passerone’s method so that it can deal with the
cases in which the specification automata include loops. In this
section, we explain the details of the extension. The point of
the extension is adding an “end state” which acts as a substi-
tute for the initial state. The outline of this scheme is shown
in Figure 5. Before exploration, we add an “end state” to each
input automaton, and change the destinations of the return to
initial edges to the end state. As a result, the input automata be-
come to have no loop edges except for immediate loops(loops
to the same state). Thereby, the input automata are accept-
able by Passerone’s method. After application of Passerone’s
method, the output FSM has a state which corresponds to the
pair of end states (we call this state end state of the output
FSM). Finally, we change the destinations of all the incoming
edges into the end state of the FSM to its initial state.

B.2 Multiple Data Sequences

In a complex protocol, some Sequences have arbitrary num-
ber of data transactions (e.g. Imprecise Burst of OCP[1],

Undefined-Length Burst of AMBA AHB[3]). Automata in this
kind of Sequence have loops which are not immediate loops
nor return to initial loops. We call this kind of Sequences Mul-
tiple Data Sequences.

In order to deal with multiple data Sequence, we introduce
“Super State”. A super state is a state which behaves like a
normal state, but contains a state-graph in itself. Introduction of
super states helps us to apply transducer synthesis to Multiple
Data Sequences.

It is applied in the following way:

1. Extract a transaction unit from the multiple data
Sequence. (Kernel Part Graph)

2. Replace the extracted states with a super state.
(Shell Graph)

3. Synthesize two FSMs, one from the Kernel Part Graphs
and the other from the Shell Graphs.

4. Combine them into one, to make the solution transducer.

The outline of this scheme is shown in Figure 7. Figure 7-(a)
shows extraction of Kernel Part Graph from an automaton of a
multiple data sequence. Figure 7-(b) shows transducer synthe-
sis flow. This extraction of a transaction from a multiple data
Sequence is also applicable to nested case. Additionally, by
regarding a single data sequence as a superstate, we can divide
a multiple data transaction into a series of single data transac-
tions, namely we can translate from a burst Sequence to a set
of single Sequences.

VII. CONSTRUCTION OF THE WHOLE TRANSDUCER

After a set of Sequence level syntheses, we have several
partial transducers. In each partial transducer, there can be one
FSM or two FSMs depending on the combination of the proto-
col types. We construct the whole transducer from these partial
transducers. The construction process consists of two phases.
The first phase is uniting FSMs, and the second one is the in-
sertion of a buffer. The details of these processes are explained
in the following sections. Figure 8 shows the outline of the
construction process.

A. Uniting FSMs

In case that at least one of the master and the slave uses
blocking protocol, each partial transducer consists of an FSM.

3B-2

283

S SS S

(S h e l l G r a p h)

(K e r n e l P a r t G r a p h)

(a)

SS
A

SS
A

Super State ASuper State A

SS
C

SS
B

SS
B

Super State BSuper State B

Super State CSuper State C

Exploration

Exploration

(b)
Fig. 7. Synthesis for Multiple Data Sequence

U
ni

te

U
nite

U
ni

te

buffer

Whole Transducer

(b) Both master and slave use NB or OoO protocols

(a) One or both of master/slave use
blocking protocols

Fig. 8. Construction Process

In this case, we construct the whole transducer by uniting ev-
ery FSM in the partial transducers, and skip the buffer insertion
as shown in Figure 8-(a). Otherwise, every partial transducer
consists of two FSMs: a request FSM and a response FSM.
In this case, we generate two FSMs, one by uniting every re-
quest FSM and the other by uniting every response FSM. We
call the generated FSMs as “request transducer” and “response
transducer” as shown in Figure 8-(b).

We unite FSMs simply by co-owning the initial states. To
unite FSMA and FSMB , we remove the initial state of
FSMB and modify the transitions from/to the initial state of
FSMB into transitions from/to the initial state of FSMA.

B. Insertion of a buffer

If both the master protocol and the slave protocol are not
blocking protocols, we have to insert a buffer between the re-
quest transducer and the response transducer. In case (NB,NB),
the responses from the slave keep the order of the requests.
So, the inserted buffer should be a FIFO. Each entry of the
FIFO buffer stores “Sequence ID”s. A Sequence ID is a
unique number among all partial transducers. We modify the
request/response transducers to allow accesses to the inserted
buffer. The modifications are done in the following way:

1. Add “FIFO-push” to the all the return to initial edges in
the request transducer.

2. Change all the starting conditions of the response trans-
ducer into “original condition ∧ the Sequence ID in

the front entry(the oldest entry) of FIFO equals to the
Sequence ID of the Sequence ”

3. Add “FIFO-pop” to the all the return to initial edges in the
response transducer.

This process is also usable in case (OoO,NB), since the master
can accept request-ordered responses. In this case each entry
of the FIFO becomes [Sequence ID, tag].

(NB,OoO) is the most difficult case. The order of the re-
sponses is not equal to the request order, although the master
expects responses in the request order. In this case, we have
to insert a “re-order table” and modify the response transducer.
Figure 9 shows the architecture of the re-order table. The re-
order table is basically a FIFO buffer, however each entry of
the buffer has a “ready flag(Rdy)”. The response transducer
can pop this FIFO buffer only when the ready flag of the front
entry is set. To allow transducer to access this re-order table,
we generated a “receive response transducer” and a “send re-
sponse transducer” from the response transducer (Figure 9-(b)).
The receive response transducer is generated by removing all
I/Os with the master from the response transducer and adding
“ready flag set” to the return to initial edges. The send response
transducer is generate by removing I/Os with the slave from the
response transducer and adding “ready flag of the front entry is
set ∧ the Sequence ID in the front entry of FIFO equals to the
Sequence ID of the Sequence” to the start conditions.

In case (OoO,OoO), we need no buffer as long as we are
using the same tag.

FIFO

Tag of
current response

Seq.ID Tag Rdy DataSeq.ID Tag Rdy Data

=

Seq.ID Tag Rdy DataSeq.ID Tag Rdy Data

=

Seq.ID Tag Rdy DataSeq.ID Tag Rdy Data

=

D
ata of

current response

Send Response Transducer

Request Transducer

R
ec

v
R

es
po

ns
e

Tr
an

sd
uc

er

(a) re-order buffer
Request

Transducer

Send
Response

Transducer

Re-Order Table

Request Tagged Request

S
LA

V
E

M
A

S
TE

R

Response Tagged Response

D
at

a

R
dy

Fl
ag

S
eq

.ID

Receive
Response

Transducer

R
eady

D
ata

S
eq

.ID

Ta
g

PUSH

POP SET

(b) (NB,OoO) transducer

Fig. 9. Architecture of (NB,OoO) transducer

VIII. EXPERIMENTAL RESULTS

We implemented a transducer synthesis tool based on our
method and carried out several experiments. The inputs of our
tool are XML descriptions that describe protocol specifications
in the proposed hierarchical model, and the output is RTL de-
scriptions of the whole transducer. We synthesized the trans-
ducers under several conditions, and checked if they work cor-
rectly by RTL simulations. We used ModelSim XE III as the
RTL simulator. Table I shows the experimental results. The
column “Seqs” shows the number of total Sequences which
we modeled for the each input protocol, and the column “Time”

3B-2

284

shows the consumed time for each transducer synthesis. The
number in the column “Gates” are gate count of the transducer
after logic synthesis by Xilinx ISE v.8.1. The experiments were
carried out on a Windows XP computer with 2GHz Athlon 64
processor, and 1GB of memory. In the following sections, we
show the simulation waveforms for the notable two results.

TABLE I
EXPERIMENTAL RESULTS

Master Slave Type Seqs Time Gates

OCP AHB (NB,BK) 4 1.1[s] 2,352

AHB OCP (BK,NB) 4 1.3[s] 1,843

OCP OCP (NB,NB) 2 1.9[s] 1,568

OCP TaggedOCP (NB,OoO) 2 2.2[s] 3,514

TaggedOCP AXI (OoO,OoO) 2 4.8[s] 1,377

AXI OCP (OoO,NB) 2 4.9[s] 1,731

A. NonBlocking⇔NonBlocking

We synthesized a transducer which translates a non-blocking
protocol into another non-blocking protocol. As the target pro-
tocols, we used two differently configured OCP[1]. The master
uses single read and non-posted write Sequences, and the slave
uses single read, single write Sequences. Non-posted write is
a single write operation which requires the slave to return re-
sponse. Because the master requires a response for write, al-
though the slave does not return any response, the transducer
has to return a response to a non-posted write request on behalf
of the slave.

The waveforms of the simulation are shown in Figure 10.
The requests and the responses are overlapped and translated
correctly. Also we can see the transducer inserts the responses
to the non-posted write requests in the correct order.

000 001 011 001 011 000

0000 aaaa bbbb cccc dddd 0000

0000 d001 0000 d002 0000

00 01 00 01 00 01 00

0000 aaaa 0000 cccc 0000

000 001 010 001 010 000

0000 aaaa bbbb cccc dddd 0000

0000 d001 0000 d002 0000

00 01 00 01 00

0000 aaaa 0000 cccc 0000

CLK

M_MCmd

M_MAddr

M_MData

M_SCmdAccept

M_SResp

M_SData

S_MCmd

S_MAddr

S_MData

S_SCmdAccept

S_SResp

S_SData

ReadReq.1
NP-Write

Req.1 ReadReq.2
NP-Write

Req.2

ReadReq.1 WriteReq.1 ReadReq.2 WriteReq.2

Read Res.1 Read Res.2

Read Res.1 Read Res.2 NP-Write Res.1 NP-Write Res.2

M
aster Transducer

S
lave Transducer

Fig. 10. Wave forms of OCP(RD, NPWR) - OCP(RD, WR) Transducer

B. NonBlocking⇔Out-of-Order

As another example, we show a transducer which translates
a non-blocking protocol into an out-of-order protocol. The
master uses OCP with only basic signals, and the slave uses
Tagged OCP. Figure 11 shows the wave forms for the synthe-
sized transducer. Two read requests are issued by the master
and the transducer translates the requests into two tagged-read
requests. The slave returns tagged-responses in the opposite
order as the order of requests. The responses for the master
are re-ordered by the transducer, and the master receives the
responses in the same order as it requested.

000 001 000

0000 aaaa bbbb 0000

0000 ffff eeee 0000

00 01 00

000 001 000

0000 aaaa bbbb 0000

0000 1001 1010 0000

00 01 00 01 00

0000 eeee 0000 ffff 0000

0000 1010 0000 1001 0000

CLK

M_MCmd

M_MAddr

M_SCmdAccept

M_SData

M_SResp

S_MCmd

S_MAddr

S_MTagID

S_MTagInOrder

S_SCmdAccept

S_SResp

S_SData

S_STagID

S_STagInOrder

M
aster Transducer

S
lave Transducer

Read
Req.1

Read
Req.2

Tagged Read
Req.1

Tagged Read
Req.2

Tagged Read
Res.2

Tagged Read
Res.1

Read
Res.1

Read
Res.2

Fig. 11. Wave forms of OCP-TaggedOCP Transducer

IX. CONCLUSION

In this paper, we proposed a protocol transducer synthesis
method which used divide-and-conquer approach. We used
several automata in the hierarchical structure as a specifica-
tion of a protocol to describe complicated protocol concisely.
We applied Sequence level synthesis which employs automata
level syntheses to synthesize a partial transducer. Then we con-
structed the whole transducer from the partial transducers. In
this approach we could synthesize protocol transducers which
can handle non-blocking and out-of-order transactions, and we
demonstrated it in the experiments.

REFERENCES

[1] Open Core Protocol Specification version 2.1
[2] AMBA 3 AXI Specification v.1.0
[3] AMBA 2 AHB Specification Rev.2.0
[4] R.Passerone, J.A.Rowson, A.Sangoivannni-Vincentelli, “Automatic

Synthesis of Interfaces between Incompatible Protocols”, Proc. of the
35th. Design Automation Conference, pp.8-13, 1998

[5] Daniel D. Gajski, Allen C.-H. Wu, Viraphol Chaiyakul, Shojiro Mori,
Tom Nukiyama, Pierre Bricaud, “Essential Issues for IP Reuse”, Proc.
of ASP-DAC, pp.43-48, 2000

[6] Vijay D’silva, S. Ramesh, Arcot Sowmya, ”Bridge Over Troubled
Wrappers : Automated Interface Synthesis”, 17th International Confer-
ence on VLSI Design, p.189, 2004

[7] Abhik Roychoudhury, P.S.Thiagarajan, Tuan-Anh Tran, Vera A.
Zvereva, ”Automatic Generation of Protocol Converters from Scenario-
Based Specifications”, RTSS’04, pp.447-458

[8] J. Smith and G. De Micheli, ”Automated Composition of Hardware
Components”, Proc. of Design Automation Conference, 1998.

[9] F. Gharsalli, S. Meftali, F. Rousseau, and A. A. Jerraya, ”Automatic gen-
eration of embedded memory wrapper for multiprocessor SoC.”, Proc.
of the 39th Design Automation Conference, June 2002.

[10] Drew Wingard. ”MicroNetwork-based integration of SOCs.”, Proc. of
the 38th Design Automation Conference, June 2001.

[11] A.Grasset, F.Rousseau, A.A.Jerraya, “Automatic Generation of Compo-
nent Wrappers by Composition of Hardware Library Elements Starting
from Communication Service Specification”, The 16th IEEE Interna-
tional Workshop of Rapid System Prototyping, pp.47-53, 2005

[12] Y.Kakiuchi, A.Kitajima, K.Hamaguchi, T.Kashiwabara “Behavioral
Model Construction for Formal Verification of Advanced On-Chip Bus
Protocol”, The Workshop on Synthesis And System Integration of
Mixed Information technologies, pp.282-289, 2004

3B-2

285

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

