
LEAF: A System Level Leakage-Aware Floorplanner for SoCs

Aseem Gupta†, Nikil D. Dutt†, Fadi J. Kurdahi† Kamal S. Khouri‡, Magdy S. Abadir‡
†Center for Embedded Computer Systems ‡Design Technology Organization

University of California, Irvine Freescale Semiconductor Inc.
Irvine, CA 92697 USA Austin, TX 78729 USA

{aseemg,dutt,kurdahi}@uci.edu {kamal.khouri,m.abadir}@freescale.com

Abstract— Process scaling and higher leakage power have re-
sulted in increased power densities and elevated die temperatures.
Due to the interdependence of temperature and leakage power,
we observe that the floorplan has an impact on both the tem-
peratures and the leakage of the IP-blocks in a system on chip
(SoC). Hence, in this paper we propose a novel system level Leak-
age Aware Floorplanner (LEAF) which optimizes floorplans for
temperature-aware leakage power along with the traditional met-
rics of area and wire length. Our floorplanner takes a SoC netlist
and the dynamic power profile of functional blocks to determine
a placement while optimizing for temperature dependent leakage
power, area, and wire length. To demonstrate the effectiveness of
LEAF, we implemented our methodology on ten industrial SoC
designs from Freescale Semiconductor Inc. and evaluated the
trade-off between leakage power and area. We observed up to
190% difference in the leakage power between leakage-unaware
and leakage aware floorplanning.

I. INTRODUCTION

Process scaling has enabled electronic devices to offer much
higher computational power and performance at the expense
of increasing power densities. Leading semiconductor chip
makers have already announced a discontinuation of increase
in clock frequencies because of high operating temperatures
resulting from the power consumption [1]. In order to re-
duce switching delays of transistors and to reduce dynamic
power consumption, CMOS devices are scaled down along
with the supply voltage (VDD) and the transistor threshold volt-
age (Vth). This causes an increase of up to 5X in the leak-
age power dissipation per technology generation [2]. This has
resulted in leakage power becoming a major part of the total
power dissipation in a chip. In addition, the leakage current of
a transistor increases with increasing die temperatures.

Floorplanning at the system level is the placement of func-
tional IP-blocks with uncertain dimensions, but with fixed area.
The objective of floorplanning is to determine a layout of
blocks while optimizing the total area of the chip and the to-
tal wire length.

The following three observations motivate our research:
1. The subthreshold current (the main component of leakage

current) of a transistor has been shown to have a super-
linear dependency on temperature [3]. For newer tech-
nologies, the size of a transistor is even smaller and hence
the sensitivity of leakage power due to temperature is even
more pronounced.

2. Different functional blocks have different dynamic power
dissipation profiles and hence produce varying local tem-
peratures. The die temperature for a IP-block in a system-
on-chip (SoC) is not confined to the block itself and ef-
fects the temperatures of all its neighboring blocks be-
cause of thermal diffusion. Thus the placement of blocks
in the SoC determines the temperatures of the blocks. A
functional block can have widely different temperatures
for the different floorplans of the same SoC.

3. The floorplan has a direct effect on the leakage power of
the SoC. Indeed, it has been shown that different floor-
plans have different leakage power [4].

The above observations, when considered together, lead us to
believe that floorplanning should have an effect on the leak-
age power. This motivated us to investigate temperature depen-
dent leakage power-aware floorplanning for SoCs at the system
level. A leakage power-aware floorplanner considers the dy-
namic power profile of the blocks to calculate the block temper-
atures using which the leakage power of the SoC is estimated.
The floorplan is then optimized for leakage power along with
area and wire length.

The main contribution of our work is a system level Leakage
Aware Floorplanner (LEAF) which optimizes floorplans for
temperature-aware leakage power. Our floorplanner takes SoC
netlist and dynamic power profile of the functional blocks to
determine a placement while optimizing for temperature de-
pendent leakage power, area, and wire length.

II. RELATED WORK

The related work can be divided into three classifications:
dependency of leakage power on temperature, classical floor-
planning algorithms, and thermal-aware floorplanning.

In the area of temperature dependent leakage power S. Nas-
sif et al. [5] propose a model estimating the leakage power for
a chip while considering power supply and temperature vari-
ations. W. Liao et al. [6] also propose a temperature depen-
dent leakage power model with an assumption that the com-
plete chip is at one uniform temperature.

Floorplanning to reduce area and wire length has been a well
studied area of research. There are slicing floorplanning algo-
rithms [7] and non-slicing floorplanning algorithms [8]. The
most widely used algorithm is the simulated annealing based
slicing tree algorithm by Wong et al. [7]. Sarrafzadeh and
Wong [9] present a comprehensive survey of floorplanning al-
gorithms in their book.

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3B-1

274



Recent research on thermal-aware floorplanning has focused
on managing peak temperatures at the micro-architectural level
for concerns about reliability, design of cooling mechanisms,
and Dynamic Thermal Management (DTM) schemes. The ob-
jective of these thermal-aware floorplanners is to reduce the
peak temperature reached by any of the blocks during opera-
tion, using different layouts. Sankaranarayanan et al. have pro-
posed thermal-aware floorplanning at the micro-architectural
level for processors [10], [11]. Their objective also is to re-
duce the peak temperature. A study on the floorplanner’s ef-
fectiveness in lowering the maximum processor temperatures
was done by Han et al. [12]. Ekpanyapong et al. [13], Healy
et al. [14], and Cong et al. [15] have proposed thermal-driven
and communication profile-driven floorplanning with the ob-
jective to reduce peak temperatures. Hung, Vijaykrishnan et al.
[16] have used floorplanning with genetic algorithms to reduce
the peak temperatures and optimize area. Reduction of clock
tree power using activity based register clustering and thermal
aware placement has been proposed by Cheon et al. [17] and
Obermeier et al. [18] respectively.

All of the above described works aim at peak temperature
reduction and not at leakage power reduction. Moreover their
work focuses on micro-architectural level where there is a lot of
homogeneity in the activities of different blocks of the pipeline.
As we see in the next section, floorplans with lower peak
temperatures do not necessarily have a lower leakage power.
Our work focuses on leakage power management using sys-
tem level floorplanning for SoCs where the block activities are
much more non-uniform. Thus for SoCs there is a lot more
potential for leakage aware floorplanning.

III. LEAKAGE-AWARE VS. THERMAL-AWARE

FLOORPLANNING

Our experiments on an industrial SoC design have shown
the disconnect between peak temperature and leakage power
for different floorplans of a SoC. A floorplan when compared
to another can exhibit a higher leakage power for a lower peak
temperature. Fig. 1 shows the distribution of peak temperature
and leakage power for various floorplans of the same SoC from
Freescale Semiconductor Inc. We have used a system level
temperature and floorplan-aware leakage power estimation tool
STEFAL, which is described in detail in [4] and is summa-
rized briefly in Section V. STEFAL estimates the temperature
dependent leakage power of a SoC while considering the floor-
plan and the dynamic power profiles of the blocks. Floorplans
A through D are marked in increasing order of their peak tem-
peratures. Floorplan A has the minimum peak temperature;
however, its leakage power is not the least. The lowest leakage
power was observed for Floorplan B, but its peak temperature is
higher by about 23oC than that of Floorplan A. Neither Floor-
plan C, with maximum leakage power, is the floorplan with the
highest peak temperature, nor does Floorplan D, with maxi-
mum peak temperature, have the highest leakage power. This
example experimentally establishes the following:

(i) Different floorplans of a SoC have different leakage power
dissipation, which is the motivation for LEAF.

(ii) There exists no definite correlation between the leakage
power and the peak temperature of a floorplan.

Fig. 1. Peak Temperature and Leakage Power for Various Floorplans of a SoC

(iii) Leakage power-aware floorplanning is distinct from
thermal-aware floorplanning.

IV. BACKGROUND

This section covers some of the fundamentals of effect of
thermal diffusion and simulated annealing floorplanning.

A. Thermal Diffusion Among Blocks

The power consumed during transistor switching and during
standby, due to leakage, is dissipated as heat. The principal
job of the package and cooling mechanisms is to facilitate the
transfer of this heat from the die to the outside environment.
Regions of the chip with high power densities usually have
higher temperatures as well. But this may not always be true
because the heat of a block is not confined to itself and tends
to move from a high temperature region to a low temperature
region, primarily by the mechanism of conduction. The tem-
perature of a particular block in the chip depends on the power
densities of the adjacent blocks as well. Han et al. [12] have
shown that in a core, a block whose power density is 5X the
power density of another block, has its temperature lower than
that of the other block by 12oC. They also show that the tem-
peratures of two blocks can differ by as much as 55oC. Hence
the effects of diffusion cannot be ignored and the floorplan be-
comes a key component while computing block temperatures
from their known power densities.

B. Slicing Tree Floorplanning with Simulated Annealing

A slicing floorplan is a rectangular area that is sliced recur-
sively by a horizontal or a vertical cut into a set of rectangular
rooms to accommodate the blocks. Simulated annealing is a
generic probabilistic meta-algorithm for the global optimiza-
tion problem for a large search space [19]. Each step of the
algorithm replaces the current solution by a random nearby so-
lution, chosen with a probability that depends on the difference
between the corresponding cost function values and on a global
parameter Simulated Annealing Temperature (SAT ), which is
gradually decreased during the process. The dependency is
such that the current solution changes almost randomly when
SAT is large, but smaller cost function solutions are increas-
ingly chosen as the SAT goes to zero. The algorithm employs
a random search which not only accepts changes that decrease
the cost function, but also some changes that increase it, which
saves the method from becoming stuck at a local minima.

3B-1

275



Leakage Aware Floorplanner 
(LeAF)

Output
Temperature- Dependent
Leakage Aware Floorplan

Thermal
Properties
of Chip’s 
Package

Temperature vs. 
Leakage Power

Tables for 
Different Types 
of Transistors

Dynamic
Power For Each

Block in SoC

Netlist of the SoC with
Areas of Blocks, 

Aspect Ratio Range, 
Connectivity List of Blocks

Input SoC Design

Transistor
Composition

of each Block
in the SoC

Fig. 2. Overview of LEAF

We have used slicing tree based simulated annealing floor-
planning in our work. We briefly introduce some of the other
terminology. Total area of the chip is the sum of active area
(sum of the areas of the transistors of all the blocks) and inac-
tive area (sum of the areas of dead space, interconnects routed
between the blocks, and connecting ports of the blocks).

In slicing tree floorplanning based on simulated annealing
algorithm, a new candidate floorplan solution is generated by
making a move randomly on the current floorplan solution.
Three types of moves are defined, which are applied on the
current solution to generate more candidate solutions. They
are: swap two adjacent blocks, complement a chain of non-
zero length, and swap an adjacent block and a cut. After mak-
ing the moves, the cost function is calculated for the candidate
solutions and the simulated annealing algorithm decides which
moves will be accepted.

V. LEAKAGE-AWARE FLOORPLANNER (LEAF)

Fig. 2 shows an overview of LEAF. LEAF is motivated by
our observations in Section III which show that there is a sig-
nificant difference in leakage power among floorplans of the
same SoC. Similar to a traditional leakage-unaware floorplan-
ner LEAF also takes the netlist of the SoC which has the ar-
eas of the functional blocks, the range of aspect ratio for each
block, and the connectivity list between the blocks. Unlike tra-
ditional floorplanners, LEAF also takes as input the dynamic
power profile of the functional blocks. This dynamic power
profile of the SoC can be obtained by profiling the application
on system- or RT- level simulators. Additionally, LEAF uses
the transistor composition of the functional blocks. Each IP-
block is synthesized into a combination of many different types
of transistors. The transistor composition for the blocks con-
tains details about the different types of transistors used within
the block and the number of each type of transistors. Different
types of transistors have different leakage power and exhibit
different temperature sensitivity. Using a library of temperature

vs. leakage power tables for the different types of transistors
and the thermal properties of chip’s package, LEAF outputs a
system level placement while optimizing the temperature de-
pendent leakage power, area, and wire length.

Fig. 3 presents the details of LEAF and the pseudocode is
shown in Fig 4. The left side of Fig. 3 shows the schematic
diagram of LEAF. The cost function of a traditional simulated
annealing based slicing tree floorplanner is supplemented with
leakage power. This leakage power is both temperature-aware
and floorplan-aware. Hence, in Fig. 3, we have added a box
to calculate temperature- and floorplan-aware leakage power,
labeled A©. Thus the cost function of LEAF is now a function
of total area, wire length, and leakage power:

Cost Function = WArea ∗ SArea ∗ Total Area

+ WLength ∗ SLength ∗ Wire Length (1)

+ WLeakage ∗ SLeakage ∗ Leakage Power

where WArea, WLength, WLeakage are the respective
weights and SArea, SLength, SLeakage are the respective
scaling factors. The weights are relative such that:

WArea + WLength + WLeakage = 1 (2)

The total area is the sum of active area and inactive area.
Active area is the sum of the areas of the transistors of all the
blocks and inactive area is the sum of the areas of dead space,
interconnects routed between the blocks, and connecting ports
of the blocks.

Total Area = Active Area + Inactive Area (3)

The wire length is the sum of the lengths of all the connecting
wires between the blocks in the connectivity list. The floor-
planner estimates the wire length without doing actual routing
by using the Manhattan distance between the blocks. Manhat-
tan distances are calculated to get the length of wire between
two connected blocks. Let (xi, yi) be the location of block i:

WireLength =
∑

(i,j)∈ connectivity list

|xi−xj |+|yi−yj | (4)

The leakage power of the floorplan for which the cost function
is to be calculated is floorplan and temperature dependent. The
leakage power is estimated using a tool called STEFAL [4]
which is described only briefly here.

LEAF uses the leakage power to compute the leakage-aware
cost function which in turn drives the floorplanner. The out-
put floorplans are optimized for leakage power, area and wire
length, and their respective weights determine the degree of in-
fluence. As we will see in Section VI the output floorplans do
have a reduced leakage power. Since the leakage power, area,
and wire length are weighted in the cost function from Eqn.
(2), there is a tradeoff between leakage power and other opti-
mization parameters.

3B-1

276



Initial Simulated Annealing Temperature
(SAT) & A Random Initial Floorplan

New Floorplan = 
Random Move(Current Floorplan, SAT)

Calculate Cost Function of New Floorplan =
f(Area, Wire Length, Leakage Power)

Cost
Function of New Floorplan
better than that of Current

Floorplan ?
NY

Accept New Floorplan
as Current Floorplan

Accept New Floorplan as
Current Floorplan with

Probability(SAT, Cost Function)

Reached
Maximum Tries for this 

SAT step ?

N

Reduce SAT by Step-Size(SAT)

SAT
Reached Minimum or Total 
Number of Steps Reached

Maximum ?

Output
Current

Floorplan

Y

N Y

Calculate Temperature Aware & 
Floorplan Aware Leakage Power

Dynamic
Power For Each

Block in SoC

Floorplan

Estimate
Floorplan-Aware

Temperatures
For the Blocks

Thermal
Properties
of Chip’s 
Package

Output Temperature-
& Floorplan-

Aware Leakage Power

Steady
Temperatures

Reached?

Y

N Calculate Temperature -
Aware Leakage Power

For Blocks of SoC

Blocks’ Transistor
Composition

----------------------------------------------------------------------------

Temperature vs. 
Leakage Power Tables

For Different Types
of Transistors

Temperature Dependent
Leakage Power
For the Blocks

Total
Power For Each

Block in SoC

+

1
2

AA

S
T
E
F
A
L

Fig. 3. Leakage Power Aware Floorplanner (LEAF) with Overview of STEFAL

LEAF()
Input SoCDesc � Input SoC Description with netlist

� Input dynamic power & transistor composition for all blocks,

� and package characteristics

Input DPSoC , Trns, and Pkg
� Input temperature-leakage tables for all transistor types

Input LPTbl

Initialize SAT
Flp ← RANDOM(SoCDesc)
while (SAT > 0)

N Steps ← 0
while (N Steps < MAX STEPS)

NewFlp ← RANDOMMOVE(Flp)
LPFlp←STEFAL(Flp,DPSoC , Pkg, Trns, LPTbl)
CostFlp←COST(LPFlp, AreaFlp,WireLenFlp)
LPNew←STEFAL(NewFlp,DPSoC ,Pkg, Trns, LPTbl)
CostNew←COST(LPNew, AreaNew,WireLenNew)
if (CostNew < CostFlp) Flp ← NewFlp

if CostNew ≥ CostFlp

Prob ← PROBABILITY(SAT, CostFlp)
Flp ← NewFlp(Prob)

N Steps ← N Steps + 1
endwhile
step size ← FUNCTION(SAT )
SAT ← SAT − step size

endwhile
Output Flp

Fig. 4. Pseudocode for LEAF

A. STEFAL

The right side of Fig. 3 expands the box A© for calculat-
ing temperature- and floorplan-aware leakage power into the
STEFAL estimator tool used. The system level temperature
and floorplan aware leakage (STEFAL) estimator tool is pre-
sented in [4] and is briefly described here. This leakage power
estimation tool takes the inputs of the dynamic power profiles
of all the blocks in the SoC and the floorplan for which the
cost function has to be calculated. The procedure Estimate
Floorplan-Aware Temperatures for the Blocks, labeled ①, es-
timates the temperatures of the blocks using the input floorplan
and total power (Dynamic + Leakage) for the blocks, along
with the library of thermal properties of the chip’s package.
Procedure ① uses a freely available tool HotSpot [20] to do the
temperature estimation. The procedure Calculate Temperature
Aware Leakage Power for Blocks of the SoC, labeled ②, cal-
culates temperature-aware leakage power using the block tem-
peratures estimated by ①, library of blocks’ transistor compo-
sition, and the library of temperature vs. leakage power tables
for different types of transistors. The temperature vs. leakage
power tables are pre-generated library tables at 65nm technol-
ogy and have the leakage power values for each type of transis-
tor from 27oC to 150oC. For each block, Procedure ② calcu-
lates the leakage power by multiplying the number of transis-
tors of each type in its composition by the corresponding leak-
age power at the block’s temperature (from the temperature vs.
leakage power tables).

For each block, the leakage power calculated by Procedure

3B-1

277



② is added to its dynamic power to get its total power which
is then used to estimate the block temperatures using Proce-
dure ①. This is done iteratively to find the stable operating
temperatures of the IP-blocks and the leakage power at stable
temperatures. At stable temperatures all the dynamic and the
leakage power is dissipated to the environment by the pack-
age. If the maximum difference in the block temperatures of
two consecutive iterations is less than a small value, ε, the SoC
has reached steady state temperature and the iteration is termi-
nated. The estimation tool then outputs the total leakage power
of the SoC.

B. Assumptions

LEAF is based on several assumptions as detailed below:
• We used industrial SPICE-like simulation models to generate
the temperature vs. leakage power tables for different types of
transistors that were used in our industrial designs.
• Currently we do not consider the interconnect power and as-
sume that the dynamic power remains constant with the floor-
plan. This is a part of our future work.
• We assume that the application’s profile is available, which
can be obtained by system- or RTL-level simulation of the ap-
plication. In some cases different benchmarks may have to be
averaged to get an average dynamic power profile.

VI. RESULTS

We applied LEAF on ten industrial SoC designs from
Freescale Semiconductor’s PowerQUICC family of SoCs. Be-
cause of the proprietary nature of the data we provide only the
normalized values in results. The influence of leakage power
on the floorplanning can be adjusted using the weight of leak-
age power (WLeakage) from Eqn. (1). For a higher value of
WLeakage, the output floorplans are expected to have less leak-
age. However, for a higher value of WLeakage, the area and
the wire length of the output floorplans increase because their
degree of influence on the cost function is decreased. For all
the results that we present in this paper the wire length of the
output floorplans meet the wire length constraints of the SoC
designs provided by the designer. There is a trade-off between
area and leakage power because of the relative weights in Eqn.
(2). However, we do not claim that the leakage power of a SoC
can be reduced by increasing its area alone. We will point out
some instances where a floorplan had a lower leakage power
as well as a lower area. To compare leakage-unaware floor-
planning with LEAF, we vary the degree of leakage aware-
ness by varying WLeakage. We executed LEAF for different
values of WLeakage by varying WLeakage from 0 (LEAF be-
comes leakage-unaware) to 1 (LEAF optimizes only for leak-
age power). We collected data on the leakage power and the
inactive area (as a % of the active area) of the resultant floor-
plans. Though different designs have different area constraints,
floorplans with less than 30% inactive area are generally ac-
ceptable [21]. Conservatively we assume that the floorplans
with less than 20% inactive area will be feasible and give sup-
plementary comments about them. Many floorplans have very
high inactive area and these supplementary comments will help
identify the feasible floorplans.

0

10

20

30

40

50

60

70

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Weight of Leakage Power in Cost Function

In
ac

tiv
e

A
re

a
(%

of
A

ct
iv

e
A

re
a)

of
O

ut
pu

tF
lo

or
pl

an

0

0.5

1

1.5

2

2.5

3

3.5

N
or

m
al

iz
ed

Le
ak

ag
e

P
ow

er
of

O
ut

pu
tF

lo
or

pl
an

Inactive Area (%) Leakage Power

A

B

C

B

C
A

E

E

D

D

Fig. 5. Results for Design-I

0
20
40
60
80

100
120
140
160
180

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
Weight of Leakage Power in Cost Function

In
ac

ti
ve

A
re

a
(%

o
f

A
ct

iv
e

A
re

a)
o

f
O

u
tp

u
t

F
lo

o
rp

la
n

0

0.5
1

1.5
2

2.5

3
3.5

4

N
o

rm
al

iz
ed

L
ea

ka
g

e
P

o
w

er
o

f
O

u
tp

u
t

F
lo

o
rp

la
n

Inactive Area (%) Leakage Power

A

A

B

B

C

C

D

D

Fig. 6. Results for Design-II

A. Design-I

This design is for a relatively small SoC with eight blocks.
We executed LEAF for a set of different values of WLeakage

by incrementing WLeakage in steps of 0.05 thus outputting 21
floorplans. The results are shown in Fig. 5. The difference in
the leakage power for leakage-unaware (WLeakage = 0, Floor-
plan A) and leakage-only aware (WLeakage = 1, Floorplan B)
floorplans is 190%. The difference in the leakage power be-
tween Floorplan C (the floorplan with ≈ 20% inactive area)
and Floorplan A is 83.6%. Thus leakage aware floorplanning
can significantly reduce leakage power of SoCs. We also ob-
serve that the for Floorplans D and E, there was a decrement in
the area along with a decrement in the leakage power as well.
Thus there is no definite indication that the leakage power of
a floorplan can be reduced by increasing its area alone and de-
signers can use LEAF for leakage power optimization at the
system level.

B. Design-II

This design is a medium sized industrial SoC with twenty-
three blocks and the resultant floorplans from 11 executions of
LEAF by varying WLeakage in steps of 0.1 are in Fig. 6. The
difference in the leakage power for leakage-unaware (Floor-
plan A) and leakage-only aware (Floorplan B) floorplanning is
134.8% and the difference in the leakage power between Floor-
plan C (the floorplan with ≈ 20% inactive area) and Floorplan
A is 37.3%. We also observe that Floorplans D through A are
compact and have very small inactive area, but their leakage
power differs by 5.8%.

3B-1

278



TABLE I
SUMMARY OF DESIGNS-IV THROUGH X

(1) (2) (3) (4) (5) (6) (7) (8)
WLeakage = 0 WLeakage = 1 Difference Normalized Leakage of Difference

Design Inactive Normalized Inactive Normalized in Leakage the Floorplan with in Leakage
(Number of blocks) Area Leakage Area Leakage (3)-(5) ≈ 20% Inactive Area (3)-(7)
Design IV(10) 2.23% 4.1 68.94% 2.61 56.81% 3.47 18.06%
Design V(6) 0.98% 3.07 34.84% 2.24 36.85% 2.48 23.74%
Design VI(12) 0.30% 4.74 78.53% 3.01 57.43% 4.62 2.68%
Design VII(17) 0.22% 10.76 93.98% 5.34 101.54% 8.78 22.63%
Design VIII(31) 1.08% 11.19 120.0% 5.42 106.14% 8.95 25.01%
Design IX(9) 0% 1.51 46.05% 1.0 51.12% 1.32 14.8%
Design X(18) 0.31% 3.69 67.38% 2.27 62.82% 3.33 11.0%

C. Design-III

This design is the largest industrial SoC made available to
us with forty-nine blocks. For this SoC the five outputs from
WLeakage = 0 to WLeakage = 0.4 in steps of 0.1 had an in-
active area of less than 6%. However, the difference in the
leakage power of the floorplans is 29.2%. Thus even for small
inactive area, LEAF optimized floorplans for significant leak-
age power savings. This design offered an interesting design
space because of its size and nature. Out of the forty-nine IP-
blocks in the SoC, many blocks were of small area. Because of
this the floorplans were compact and had a small inactive space
area of less than 6%. The floorplan for WLeakage = 1 had an
inactive area of 103.53% and its leakage power was 67.4% less
than the floorplan for WLeakage = 0.

D. Results on Designs-IV to X

The results for industrial Designs-IV through X are summa-
rized in Table I. For each of these designs LEAF was executed
11 times for a range of values of WLeakage from 0 to 1 in steps
of 0.1. Columns (2) and (3) have the inactive area and the nor-
malized leakage power at WLeakage = 0 respectively while
for WLeakage = 1, they are shown in Columns (4) and (5) re-
spectively. The difference between the leakage of the leakage-
unaware and the leakage-only aware floorplans (Columns (3)
and (5)) is in Column (6). We observe that among these de-
signs, Design-VIII had the largest difference of 106.14%. For
most of the designs, 9 out of the 11 floorplans had less than
20% inactive area and Design-V had 10 such floorplans. This
indicates that a majority of points in the design space have low
inactive area while being leakage aware. The normalized leak-
age power for the floorplan with ≈ 20% inactive area is shown
in Column (7). Column (8) shows the difference in the leakage
power between leakage-unaware floorplan (Column 3) and the
floorplan with ≈ 20% inactive area (Column (7)). We observe
a maximum difference of 25.01% in the leakage power for
Design-VIII. These results on industrial designs further sup-
port the rationale behind leakage power aware floorplanning at
the system level.

E. Summary of Results

From the ten industrial designs, we observed that: there is a
significant variation in the leakage power for various floorplans
of the same SoC and indeed, leakage aware floorplanning can
output floorplans with lower leakage power.

We executed LEAF using cygwin, which provides a linux-
like environment for windows operating system, on a Intel Cen-
trino 1.8 GHz processor with 512 MB RAM. The runtime over-

head for LEAF compared to leakage-unaware floorplanning
was only about 4%, which we believe is reasonable.

VII. CONCLUSION

In this paper we demonstrated the impact of floorplanning
on the leakage power of a SoC and we proposed a novel sys-
tem level leakage power-aware floorplanner LEAF, which op-
timizes floorplans for leakage power. LEAF is generic and can
be useful for a wide variety of SoCs. In our future work we
plan to explore leakage aware floorplanners which can guide
the floorplanning towards a floorplan with lower leakage.

Acknowledgment: This work was supported by Freescale
Semiconductor Inc.

REFERENCES

[1] Stephan Ohr, “Efforts heat up to remove processor hot spots,” EE Times,
February 2005.

[2] V. De and S. Borkar., “Technology and design challenges for low power
and high performance,” ISLPED, 1999.

[3] MW. Liu et al., BSIM3v3 MOSFET Model, Silicon and Beyond-Advanced
Device Models and Circuit Simulators, World Scientific Pub. Co., 2000.

[4] Aseem Gupta et al.,“STEFAL: A System Level Temperature- and
Floorplan-Aware Leakage Power Estimator for SoCs,”VLSI Design Con-
ference, 2007.

[5] H. Su, S. Nassif et al., “Full Chip Leakage Estimation Considering Power
Supply and Temperature Variations,” ISLPED, 2003.

[6] W. Liao et al., “Microarchitecture Level Power and Thermal Simulation
Considering Temperature Dependent Leakage Model,” ISLPED, 2003.

[7] D. F. Wong et al., “A new algorithm for floorplan design,” DAC, 1986.
[8] P. Guo et al., “An O-tree Representation of Non-Slicing Floorplan and Its

Application,” DAC, 1999.
[9] M. Sarrafzadeh and C. K. Wong, An Introduction to VLSI Physical De-

sign, McGraw-Hill Higher Education, 1996.
[10] K. Sankaranarayanan et al., “A Case for Thermal-Aware Floorplanning

at the Microarchitectural Level,” Journal of Instruction Level Parallelism,
2005.

[11] K. Sankaranarayanan et al., “Microarchitectural Floorplanning for Ther-
mal Management: A Technical Report,” University of Virginia, 2005.

[12] Y. Han et al.,“Temperature Aware Floorplanning,” Workshop on Temper-
ature Aware Computer Systems, June 2005.

[13] M. Ekpanyapong et al., “Thermal Aware 3-D Microarchitectural Floor-
planning,” Technical Reports, Georgia Tech, December 2004.

[14] Healy, Ekpanyapong et al., “Microarchitectural Floorplanning Under
Performance and Thermal Tradeoff,”DATE,2006.

[15] J. Cong, J. Wei et al.,“A Thermal-Driven Floorplanning Algorithm for
3D ICs,”ICCAD-2004.

[16] W.L. Hung et al.,“Thermal-Aware Floorplanning Using Genetic Algo-
rithms,” ISQED, 2005.

[17] Y. Cheon et al., “Power-Aware Placement,” DAC, 2005.
[18] B. Obermeier et al., “Temperature Aware Global Placement,” ASP-DAC,

2004.
[19] S. Kirkpatrick et al., “Optimization by Simulated Annealing,” Science,

Vol. 220, 1983.
[20] K. Skadron et al., “Control-theoretic Techniques and Thermal-RC Mod-

eling for Accurate and Localized Dynamic Thermal Management,”
HPCA, 2002.

[21] Personal communication with designers at Freescale Semiconductor Inc.

3B-1

279



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


