
A Fast and Stable Algorithm for Obstacle-Avoiding Rectilinear Steiner Minimal Tree
Construction *

Pei-Ci Wu, Jhih-Rong Gao, and Ting-Chi Wang

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
g944310@oz.nthu.edu.tw, g944309@oz.nthu.edu.tw, tcwang@cs.nthu.edu.tw

ABSTRACT - In routing, finding a rectilinear Steiner minimal
tree (RSMT) is a fundamental problem. Today’s design often
contains rectilinear obstacles, like macro cells, IP blocks, and
pre-routed nets. Therefore obstacle-avoiding RSMT (OARSMT)
construction becomes a very practical problem. In this paper we
present a fast and stable algorithm for this problem. We use a
partitioning based method and an ant colony optimization based
method to construct obstacle-avoiding Steiner minimal tree
(OASMT). Besides, two heuristics are proposed to do the
rectilinearization and refinement to further improve wirelegnth.
The experimental results show our algorithm achieves the best
wirelength results in most of the test cases and the runtime is
very small even for the larger cases each of which has both the
number of terminals and the number of obstacles more than 100.

I. INTRODUCTION

Routing plays an important role in the physical design
stage of very/ultra large scale integrated circuits (VLSI/ULSI).
Routing a net, i.e., finding a rectilinear Steiner minimal tree
(RSMT) is a fundamental problem. In fact, today’s design
often contains rectilinear obstacles, like macro cells, IP blocks,
and pre-routed nets. Therefore by taking obstacles into
consideration, obstacle-avoiding RSMT (OARSMT)
construction becomes a very practical problem.
 It has been proved that the RSMT problem is NP-complete
[1] and taking obstacles into account even increases the
complexity of the problem. Thus there exists no efficient
optimal algorithm for finding an OARSMT.
 There are many recent works focusing on the OARSMT
problem. FORst [2] is a 3-step heuristic which can tackle
large-scale problems efficiently. An-OARSMan [3], using ant
colony optimization [10] on the track graph [7], can achieve
shorter wirelength than FORst when the number of terminals
is less than 100. CDCTree [4], based on a current driven
circuit model, can achieve shorter wirelength than
An-OARSMan when the number of terminals is less than 50.
Zion et al. [5] propose an effective approach which constructs
an OARSMT from a connection graph called spanning graph.
Although [3-5] can find an OARSMT with good length
performance, they tend to have a long runtime on finding a
good solution when the number of terminals is large.

 In the experiment of [5], there is an industrial test case
where the total number of nets is 47730 has 0.3% nets whose
number of terminals is more than 100. Besides, in detailed
routing or ECO routing, it is possible that the number of
obstacles in a routing region is more than 100 or even more.
Therefore in practice, there exist cases which have more than
100 terminals and 100 obstacles. Thus how to find an
OARSMT efficiently for a large case having many terminals
and obstacles becomes a practical and useful problem. An
O(nlogn) algorithm is proposed in [6] where n is the sum of
the number of terminals and the number of obstacles. Because
of its lower time complexity, [6] has very small runtime in
large cases which have many terminals and obstacles. Since
there are no other recent works which are able to deal with
such large cases, [6] cannot tell whether its performance is
good enough. From our experimental results (to be shown in
section V), we see that for large cases reported in [6], they
still have much room to improve wirelength.
 To the best of our knowledge, all existing heuristics for
OARSMT construction cannot achieve both small wirelength
and small runtime for large cases. Therefore an algorithm
which can get the best wirelength and efficiency is needed. In
this paper, we present a fast and stable algorithm for
constructing OARSMTs. Given a complete graph formed by
terminals, our algorithm first applies a partitioning method,
which is to find a minimum spanning tree (MST) on the graph,
and remove the segments intersecting obstacles. Thus the
MST will be partitioned into sub-trees. Our algorithm then
uses an ant colony optimization based approach, which is
different from the one proposed in An-OARSMan [3], to
connect the sub-trees into a single tree and get an
obstacle-avoiding Steiner minimal tree (OASMT). Notice that
An-OARSMan [3], a connection graph based approach, is
applied on track graphs, and we find that if the numbers of
terminals and obstacles are large, the size of the track graph
becomes huge and significantly increases the runtime. Instead
our ant colony optimization based method works on spanning
graphs. As indicated in [5], a spanning graph is an efficient
and effective connection graph. Although for large cases a
spanning graph may lose some information, we show that it
can produce an OASMT with good wirelength performance
from our experiments. After obtaining an OASMT, our
algorithm continues to use a rectilinearization heuristic to
generate an OARSMT, and apply a refinement method on it
for further improvement and get the final OARSMT.

* This work was partially supported by National Science Council
under Grant No. NSC-95-2220-E-007-037, and Ministry of
Economic Affairs under Grant No. MOEA-95-EC-17-A-01-S1-031. The experimental results indicate that our algorithm obtains

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3A-4

262

the best wirelength results for most of the test cases when
compared with the recent works [2-6]. The runtime is just a
little worse than [6], and much better than the others [2-5].
For the largest test case which has 1000 terminals and 10000
obstacles, our algorithm only spends 4.2 seconds and reduces
54.37% wirelength as compared with [6], an O(nlogn)
algorithm whose runtime is 2.8 seconds. As a result, our
algorithm is very fast and stable.
 We organize the rest of the paper as follows. In section II,
we formally define the problem. In section III, the overview
of our algorithm is introduced. Section IV describes the
details of our algorithm. Section V presents the experimental
results and we conclude the paper in Section VI.

IV. DETAIL OF OUR ALGORITHM

A. Partitioning Terminals into a Set of Sub-trees

The goal of the partitioning method is to obtain a set of
sub-trees, SST. Our algorithm only needs to merge them into
a Steiner tree in a later step, and the SST will be the partial

II. PROBLEM FORMULATION

Given a set of terminals, T = {t1, t2,…, tn}, and a set of
rectangular obstacles, O = {o1,o2,…,om}, the
obstacle-avoiding rectilinear Steiner minimal tree (OARSMT)
problem is to find a rectilinear Steiner minimum tree (RSMT)
which connects all terminals together but does not intersect
any obstacle, and the wirelength of the RSMT should be as
small as possible. Note that if all boundaries of a
non-rectangular obstacle are either horizontal or vertical, we
can dissect it into a set of rectangular obstacles. For simplicity,
we assume all obstacles in our problem to be rectangular in
the rest of the paper.

III. OVERVIEW OF OUR ALGORITHM

Our algorithm contains four steps, which are overviewed as
follows:

Step 1: We construct a complete weighted graph formed by all
pairs of terminals, and then we construct a minimum spanning
tree (MST) connecting all the terminals (see Fig. 1 where
grey rectangles represent obstacles, and black points represent
terminals). The weight between two terminals is the
Manhattan distance between them plus an obstacle penalty
which will be defined in section IV-A. After constructing an
MST, there might be some edges whose L-shaped segments
(including upper and lower L-shaped segments) intersect
obstacles. For example, in Fig. 1 there is no L-shaped
segment that can connect terminals v1 and v2 without
intersecting any obstacle. Therefore we remove those
intersecting segments from the MST so that the MST can be
partitioned into a set of sub-trees, SST (see Fig. 2).

Step 2: A spanning graph of all terminals and obstacles is
generated using the idea proposed in [5] (see Fig. 3). This
graph will be used in Step 3.

Step 3: We merge the sub-trees of SST obtained in Step 1
using an ant-colony optimization based algorithm modified
from [3] to find the connections between sub-trees and
transform SST into an obstacle-avoiding Steiner minimal tree
(OASMT). In order to reduce the runtime, the ant colony
optimization based algorithm is running on a spanning graph
rather than a track graph, which means that a path connecting

two sub-trees must be a set of edges on the spanning graph
(see Fig. 4 where the bold lines represent the path connecting
two sub-trees on the spanning graph after using the ant colony
optimization based algorithm).

Step 4: After finding the OASMT connecting all terminals, a
rectilinearization procedure is applied on the tree to generate
an initial OARSMT, called IOARSMT (see Fig. 5). Then we
use a refinement method to further improve the wirelength of
IOARSMT by removing redundant segments which will be
defined in section IV-D. Finally we can get the final
OARSMT, called FOARSMT (see Fig. 6).

Fig. 6. FOARSMT after
refinement.

Fig. 5. IOARSMT after
rectilinearization.

v1
v4

v2 v3

Fig. 4. Merge. Fig. 3. Spanning graph.

Fig. 2. Partition MST into
sub-trees.

Fig. 1. MST.

v1

v2

3A-4

263

part of the Steiner tree. Therefore doing partitioning first can
save a lot of runtime but it may cause worse wirelength
because of losing some solution space.

Our partitioning method is based on an MST. We first
construct a complete weighted graph Gc = (Vc, Ec), where Vc

is the set T of terminals, and Ec is the set of edges connecting
all pairs of terminals. In Ec, the weight of an edge e
connecting vi and vj is defined below:

weight(e) = Manhattan distance(e) + obstacle penalty(e)
Manhattan distance(e) = | xi – xj | + | yi – yj | where vi has

coordinate (xi, yi) and vj has coo dinate (xj, yj).

Obstacle penalty (OP) is the estimation of additional
distance if both L-shaped segments of an edge intersect
obstacles. An edge connecting two terminals has two
L-shaped segments (including upper and lower L-shaped
segments). If an L-shaped segment intersects obstacles, OP is
the sum of the lengths of the intersecting boundaries of the
obstacles, otherwise it is zero. But we do not check all
obstacles to find intersections with respect to an edge because
it is too time consuming. We just check the nearest obstacles
from a terminal in the four directions (top, down, left, right).
Because an edge may have two OPs corresponding to two
L-shaped segments of the edge, we choose the smaller of
these two as the OP of the edge. We take Fig. 7 as an example
to describe the definition of OP in detail. In Fig. 7(a), the
upper L-shaped segment of edge e intersects two obstacles,
obstacle o1 from vertex v1 in the top direction and obstacle o2

from vertex v2 in the left direction. The OP of the upper
L-shaped segment is w1+h2. Similarly, the OP of the lower
L-shaped segment is h3. Then the OP of the edge e is h3 which
is the smaller one. In Fig. 7(b), because the upper L-shaped
segment of edge e does not intersect any obstacle, the OP of
edge e is 0.

o the SST helps to keep
go

2

 the number of
edges in the complete graph Gc. Because the number of edges,

m

relative geometrical relationship between vertices
in e plane using O(n) edges. Moreover, by using an O(n log

uction of a spanning graph

 Das et al [10] proposed an for
constructing a Steiner tree in a gi de
some improvements and change h,
An-OARSMan [3] c on the track gr h.

e further modify the ant-colony optimization based
al

ined by
so

w rds the vertices already visited to avoid revisiting
. ies, and the vertices in
’s tabu-list are added into A’s. By the movement, the

O2

r

Fig. 7. Obstacle penalty.

We use the Kruskal method [8] to find an MST on the
complete graph Gc, and then traverse each tree edge on the
MST to check whether both L-shaped segments of an edge
intersect obstacles. If both L-shaped segments of an edge
intersect obstacles, we remove the edge from the MST. After
traversing all segments of the MST, the MST can be
partitioned into a set of sub-trees, SST. These sub-trees are
the partial part of the MST, and we observe that the MST is a
good initial solution for an OASMT. S

od wirelength performance of the final OARSMT.
Constructing the complete weighted graph Gc needs O(n)

time where n is the number of terminals. The time complexity
of he Kruskal method is O(mlogm) where m ist

, in the complete graph is O(n2), the time complexity of the
Kruskal method is O(n2logn). And checking if an edge in the
MST intersects obstacles can be done in linear time.
Therefore the partitioning step can be done in O(n2logn) time.

B. Constructing a Spanning Graph

In [3], the ant colony optimization based algorithm runs on a
track graph [7]. The size of a track graph is O(r2), where r is
the number of the rectilinear boundaries of all obstacles.
Therefore it takes a long time to get a solution. In order to
reduce the runtime when running the ant colony optimization
based algorithm, we choose spanning graph as our connection
graph.
 In a spanning graph, every vertex (including terminals and
four corners of each rectangular obstacle) is connected to the
nearest vertices in its four directions, upper-right, upper-left,
lower-right, and lower-left. Fig. 3 is an example of a spanning
graph. Considering all given vertices, the connections will
form a spanning graph of cardinality O(n) where n is the total
number of vertices. In other words, spanning graph is able to
describe the

 th
n) sweep line algorithm, the constr
can be done in O(n log n) time.

C. Merge: Ant-Colony Optimization Based Algorithm

 ant-colony approach
ven graph. Having ma

s on the basic approac
aponstructs an OARSMT

W
gorithm used in An-OARSMan and then apply it on the

spanning graph to merge the sub-trees in SST into an OASMT.
In this section, we will briefly explain the ant-colony
approach and focus on the difference between [3] and ours.
 The basic ant-colony approach consists of multiple
iterations. In each iteration, an ant is to be placed on each
terminal which needs to be connected, and then one ant is
randomly chosen each time to execute a movement, leaving
behind a pheromone trail for others to follow. The ant selects
an edge to move at a time, and the selection is determ

me user-defined rules. In our implementation, all edges
must be segments in the spanning graph, and we always let an
ant move to a location according to a function which is
related to the trail intensity, the distance between the ant and
other ants, and the distance between the ant and the vertices
other ants have ever passed. Once a movement is executed,
the chosen edge becomes a branch of the sub-tree formed by
the corresponding ant. Each ant maintains its own tabu-list,

hich reco
them When ant A meets ant B, ant B d
the B
separated sub-trees will be connected together to form an
OASMT. One iteration is ended when there is only one ant
left, and the OASMT connecting all terminals is also obtained.
In our implementation, we set the number of iterations to be
50. From the experiment, it shows 50 is enough to obtain

w1
h2

O
h3

1

O3
v1

e

v2

(a)

e

(b)

3A-4

264

provement whereas causes a long runtime.

ization algorithm. The first
roblem is to find the initial location of the ant for each

-tr
uld be included in the tabu-list of each ant. We propose a

m

h ai

ent to replace this edge. For two vertices va and vb, a
ng from va to vb

is composed of a vertical sub-segment followed by a
horizontal sub-segment, and a horizontal-vertical L-shaped
segment is composed of a horizontal sub-segment followed
by a vertical sub-segment. If we consider all possible
combinations of L-shaped segments of all tree edges, it will
be too time consuming. Therefore we try to rectilinearize each
non-rectilinear edge using a greedy manner to determine
which kind of L-shaped segment we prefer when replacing

e
r

good solutions and the number of iterations more than 50 just
gets minor im

The major difference between [3] and ours is that in
An-OARSMan the ant is placed on each terminal, but in our
algorithm we put an ant for each sub-tree because there
already exists SST in the spanning graph. Given an ant mi for
sub-tree ti, the set of vertices on ti is called Vti. When we
apply the ant-colony optimization based algorithm, we
suppose Vti is already visited by its ant mi. However, if we put
all vertices in Vti in the tabu-list of mi, the ant-colony
approach would spend too much time on traversing the
tabu-list. Here we have to deal with two problems before
applying the ant-colony optim
p
sub ee, and the second one is to determine which vertices
sho
greedy method to solve these two problems. In the
partitioning step (Step 1), we remove the tree edges of the
MST which intersect obstacles so that we can partition the
MST into a set of sub-trees. Our greedy method is to take
these removed edges to determine the locations and tabu-lists
of ants. Given a removed edge erem and its two end points, vi

and vj with vi Vti and vj Vtj, ant mi adds vi to its tabu-list
and equally ant mj adds vj to its tabu-list. Each ant maintains a
variable called min-weight which records the minimu
weight among the removed edges each of which has at least
one end point belonging to the ant’s sub-tree. When an end
point of a removed edge has smaller weight than its
corresponding ant’s min-weight, we update the ant’s
min-weight and set the location of the ant to the end point.
This means that assuming the removed edge erem has weight d,
if d is smaller than ant mi’s min-weight, we update mi’s
min-weight to d and set mi’s location to end point vi. And ant
mj can do the same action if d is smaller than mj’s min-weight.
Fig. 8 is an example for the greedy method. Fig. 8(a) is an
MST after Step 1, and there exist three removed edges. Fig.
8(b) shows the locations of ants and their tabu-lists
determined by applying the greedy method. Taking ant1 for a
detailed explanation, end point v1 of the removed edge e1 and
end point v2 of the removed edge e2 both belong to the
sub-tree of ant1. Thus the tabu-list of ant1 has v1 and v2. For
determining the location of ant1, we compare the weights of
e1 and e2. Because the weight of e2 is smaller, we set the
location of ant1 to v2. Similarly we do the same processes to
ant2, ant3 and ant4. The tabu-list of ant2 has v3 and its
location is v3. The tabu-list of ant3 has v6 and v7, and its
location is v7. The tabu-list of ant4 has v8, and its location is
v8.

Fig. 8. (a) An MST and dashed lines represent removed edges. (b)
The locations of ants and their tabu-lists determined by the greedy
method.

 Our greedy method can be done as follows. For each edge
removed from the MST, we insert the end points of the edge
into the tabu-lists of the corresponding ants and update the
locations of the corresponding ants if needed. Thus the time
complexity of the greedy method is linear to the number of
the removed edges.

After determining the initial location and tabu-list of each
ant, we apply the ant colony optimization based algorithm to
find an OASMT. In the basic ant colony approach when an
ant visits a vertex, the ant adds the vertex to its tabu-list, but
our algorithm as a constr nt for this. Take Fig. 8(b) as an
example. Although ant2 visits v4 via a path in the spanning
graph, the constraint does not allow ant2 to add v4 to its
tabu-list because v4 already belongs to the sub-tree of ant2.
The size of the tabu-list of each ant would be smaller with the
constraint than without the constraint. Therefore it can save
runtime on the ant colony optimization based algorithm. From
our experimental results, it shows good wirelength
performance though the constraint may lose some solution
space.

D. Rectilinearization and Refinement

 Our goal here is to find an OARSMT. After applying the
ant colony optimization based algorithm to find an OASMT, a
rectilinearization process is needed to modify all tree edges
into either horizontal or vertical segments. We propose a
greedy method to rectilinearize these edges. The idea is to
share as many segments as possible when generating the
rectilinear segments so that the total wirelength will be
smaller.
 First of all, we choose a 1-degree terminal vs as the start
point and use breadth first search (BFS) to traverse the whole
OASMT. Once a non-rectilinear tree edge is traversed, we use
either a vertical-horizontal or horizontal-vertical L-shaped
segm

ctivertical-horizontal L-shaped segment conne

each edge. In the beginning of BFS, the first traversed edg
(vs, vi) arbitrarily chooses a vertical-horizontal o
horizontal-vertical L-shaped segment to do the
rectilinearization when edge (vs, vi) is neither a horizontal or
vertical edge. For each neighboring vertex vj of vi, if the
L-shaped segment connecting from vs to vi is a
horizontal-vertical one, we try to rectilinearize (vi, vj) using a
vertical-horizontal L-shaped segment. Otherwise a
horizontal-vertical L-shaped segment is used. However if the
chosen L-shaped segment causes an illegal L-shaped segment
which intersects obstacles, then we try the other L-shaped
segment (notice that we can easily prove that the other
L-shaped segment will not intersect any obstacle).

We use an example to describe the details of the

(b)
ant1 ant2

ant4
ant3v1

v2 v3

v4

v5

v8v6

20

10

8

(a)

e1

e2

e3
v7

3A-4

265

tal-vertical one to connect v1 to v2 or v3. This is
ecause we want to share segments with the existing

1, v2) is reconnected
 a vertical-horizontal L-shaped segment which shares a

t OARSMT as an initial RSMT (IOARSMT).

 represent
ed

m by

e great increases. Although [3]

its run airs of
terminals.
 [6] is the only algorithm which large
cases efficiently. However, as the size of a c , the
wirelength performance of it gets wo with [6],
we can achieve 22.18% wirelength im erage
and 54.37% improvement at most with ntime.
Although [6] can produce the routing ficiently,
there is still much prove its wirelength
performance. On th our algorithm can keep both

ficiency and good wirelength performance no matter the
size of a case is large or small, which makes our algorithm
very practical.
 Fig. 10 shows the routing solution obtained from our
algorithm for the test case with 500 terminals and 100

rectilinearization. In Fig. 9(a), an OASMT is going to be
rectilinearized. Assuming vs is the start point to do BFS, we
arbitrarily choose an L-shaped segment to reconnect (vs, v1) as
shown in Fig. 9(b). Then (v1, v2) and (v1, v3) are to be
considered. Because the L-shaped segment connecting from
vs to v1 is a horizontal-vertical one, we prefer to use a
vertical-horizontal L-shaped segment rather than a
horizon
b
segments. It is shown in Fig. 9(c) that (v
with
segment with the existing one. However, in the case where
the chosen L-shaped segment we prefer intersects any
obstacle, we choose the other one. In Fig. 9(c), the
vertical-horizontal L-shaped segment connecting from v1 to v3

which is marked by ‘x’ intersects the obstacle, so we have to
choose the other one. Fig. 9(d) shows the final result. Because
a refinement step will follow after rectilinearization, we call
the curren
 Now we already have a legal OARSMT solution. Because
our rectilinearization method is a greedy one, some
“redundant segment” may exist. As a result, we apply a
refinement procedure on the IOARSMT to further improve
the wirelength. Our idea is to eliminate the ‘U’ shape
connections in the IOARSMT. Fig. 6 is an example after
applying refinement on the IOARSMT in Fig. 5. Notice that
vertices v1, v2, v3 and v4 form a U-shaped connection in Fig. 5.
Therefore we can move the horizontal segment (v2, v3) to the
position v1, and then remove the redundant non-terminal leaf
v3 and the segment connecting to it. By removing all U-
shaped connections in the IOARSMT, we can get our final
resultant FOARSMT in Fig. 6.
 Our rectilinearization method only needs to traverse the
OASMT once. Similarly, the refinement method only needs to
traverse the IOARSMT once. Therefore the total time
complexity in the rectilinearization and refinement step is
linear to the sum of the sizes of the OASMT and IOARSMT.

Fig. 9. The process of the rectilinearization. Solid lines

ef

obstacles.

ges in OASMT, and dashed lines represent segments of
IOARSMT.

V. EXPERIMENTAL RESULTS

 We have implemented our algorithm in C language and
performed it on a Sun Blade2000 workstation with 1200MHz
CPU and 8GB memory. We collect the test cases used in [6]
and three additional industry test cases, and then compare our
results with several state-of-the-art works.
 Table 1 and Table 2 show the comparison results of
wirelength and runtime with An-OARSMan [3], CDCTree [4],
2-OASMT [6] and the spanning graph based algorithm [5]. In

both tables, the first two columns give the numbers of
terminals and obstacles in our test cases. The first three cases
are from the industry, and the other are the cases used in [6].
 The results of [3] and [6] are quoted from the experimental
results reported in [6]. And the results of [4] are provided by
an author of CDCTree. Because we cannot get the test cases
and the program of [5], we implement their algorith
ourselves and run it in the same platform mentioned above.
But we do not get the result for the last test case (i.e., the
largest one with 1000 terminals and 10000 obstacles.)
because it executes more than 9 hours without termination1.
[3] and [6] are performed in a Sun V880 fire workstation with
755MHz CPU and 4GB memory, and [4] is performed on a
Unix workstation with 2.66G CPU and 1G memory.
 From Table 1 we can see that our algorithm achieves the
best wirelength results in most of the test cases. The
wirelength improvement ratios of our algorithm over [3], [4]
and [5] are 5.4%, 3.38% and 1.87% on average, respectively.
Besides, when the size of the problem becomes lager, the
runtimes of [3], [4], and [5] hav
and [4] do not run at the same platform as ours, their trends in
runtime increase are obviously greater than ours. The long
runtime of [5] is because it needs to construct a complete
graph among terminals when calculating the shortest paths
between all pairs of terminals. As a result, the bottleneck of

time is finding the shortest paths between all p

 is able to deal with
ase increases

rse. Compared
provement on av
 a little more ru

 result very ef
 room to im

e contrary,

Fig. 10. A routing solution.

1 [5] cannot get the result for the largest test case because for easy
implementation we use a less efficient data structure to implement the
Dijkstra algorithm for finding shortest paths. But we believe that [5] still runs

v1

v2

v4

v3

vs

(d)

v1

v2

v4

v3

vs

(c)(b)

v1

v2

v4

v3

vs

(a)

v1

v2

v4

v3

vs

slower than our algorithm even it is implemented in a more efficient way.

3A-4

266

Wirelength Term# obs#
[3] [4] [6] [5] Ours Improve

over
ment ratio

 [3] (%)
Improvement ratio

over [4] (%)
Improvement ratio

over [6] (%)
Improvement ratio

over [5] (%)
10 32 - - - 644 626 - - - 2.80
74 625 - - - 1731 1640 - - - 5.26
115 1024 - - - 3011 2872 - - - 4.62
10 10 27840 26970 30410 29320 27250 2.12 -1.04 10.39 7.06
30 10 43090 41700 45640 43400 43220 -0.30 -3.65 5.30 0.41
50 10 63250 62380 58570 57020 56500 10.67 9.43 3.53 0.91
70 10 66310 66560 63340 61910 61090 7.87 8.22 3.55 1.32

100 10 82320 80010 83150 78240 76870 6.62 3.92 7.55 1.75
100 500 - - 149750 86770 84327 - - 43.69 2.82
200 500 - - 181470 118169 115461 - - 36.37 2.29
200 800 - - 202741 123360 122574 - - 39.54 0.64
200 1000 - - 214850 120567 120017 - - 44.14 0.46
500 100 - - 198010 174420 172490 - - 12.89 1.11
1000 100 - - 250570 242840 238377 - - 4.87 1.84
1000 10000 - - 1723990 N/A 786731 - - 54.37 -

average 5.40 3.38 22.18 1.87
Table 1. Comparison on wirelength. ‘-‘ represents that the result is not available.

Run time (s) Term# obs#
[3] [4] [6] [5] Ours

10 32 - - - <0.01 <0.01
74 625 - - - 14.17 0.1
115 1024 - - - 60.69 0.21
10 10 0.164 0.485 0.002 <0.01 <0.01
30 10 1.075 1.034 0.003 <0.01 <0.01
50 10 3.504 8.79 0.004 0.01 <0.01
70 10 10.552 67.62 0.004 0.01 <0.01
100 10 26.974 595.1 0.004 0.02 <0.01
100 500 - - 0.057 12.49 0.31
200 500 - - 0.062 28.15 0.36
200 800 - - 0.095 72.66 1.53
200 1000 - - 0.129 112.29 1.8
500 100 - - 0.026 4.14 0.27

1000 100 - - 0.037 35.34 0.81
1000 10000 - - 2.823 - 4.2

Table 2. Comparison on runtime.

VI. CONCLUSIONS

 In this paper, we present a fast and stable approach for
obstacle-avoiding rectilinear Steiner minimal tree
construction. We use a partitioning based method to partition
an MST into some sub-trees. Then we apply an ant-colony
optimization based algorithm on the spanning graph to
connect the sub-trees into an obstacle-avoiding Steiner
minimal tree. Finally we rectilinearize the OASMT and use a
refinement method to further improve th wirelength
performance. Com -art works, our
approach has the best wirelength performance in most of the
cases and the runtime is very small even for large cases. The
high efficiency and good solution quality of our approach
makes it extremely practical in the routing process.

Steiner Tree Problem is NP-complete,” SIAM Journal
on Applied Mathematics, 32, 1977.

[2] Y. Hu, Z. Feng, T. Jing, X. Hong, Y. Yang, G. Yu, X. Hu,
and G. Yan, “A 3-Step Heuristic for Obstacle-Avoiding
Rectilinear Steiner Minimum Tree Construction,” in
Proc. of ISC&I, 2004.

[3] Y. Hu, T. Jing, X. Hong, Z. Feng, X. Hu, and G. Yan,
“An-OARSMan: Obstacle-Avoiding Routing Tree
Construction with Good Length Performance,” in Proc.
of ASP-DAC, 2005.

[4] Y. Shi, T. Jing, L. He, Z. Feng, and X. Hong, “CDCTree:
Novel Obstacle-Avoiding Routing Tree Construction
based on Current Driven Circuit Model,” in Proc. of
ASP-DAC, 2006.

[5] Z. Shen, C. C.N. Chu, and Y. Li, “Efficient Rectilinear
Steiner Tree Construction with Rectilinear Blockages,”
in Proc. of ICCD, 2005.

[6] Z. Feng, Y. Hu, T. Jing, X. Hong, X. Hu, and G. Yan,
“An O(nlogn) Algorithm for Obstacle-Avoiding
Routing Tree Construction in the

e
pared with state-of-the

VII. REFERENCES

[1] M. R. Garey and D. S. Johnson, “The Rectilinear

-Geometry Plane,”
in Proc. of ISPD, 2006.

[7] Y. F. Wu, P. Widmayer, M. D. F. Schlag, and C. K.
Wong, “Rectilinear Shortest Paths and Minimum
Spanning Trees in the Presence of Rectilinear
Obstacles,” IEEE Trans on Computers, 1987.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein, Introduction to Algorithms 2nd Edition, The MIT
Press, 2001.

[9] H. Zhou, N. Shenoy, and W. Nicholls, “Efficient
Spanning Tree Construction Without Delaney
Triangulation,” Information Processing Letter, 2002.

[10] S. Das, S. V. Gosavi, W. H. Hsu, and S. A. Vaze, “An
Ant Colony Approach for the Steiner Tree Problem,”
Proc. of GECCO, 2002.

3A-4

267

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

