
A Fast and Stable Algorithm for Obstacle-Avoiding Rectilinear Steiner Minimal Tree 
Construction *

Pei-Ci Wu, Jhih-Rong Gao, and Ting-Chi Wang 

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan 
g944310@oz.nthu.edu.tw, g944309@oz.nthu.edu.tw, tcwang@cs.nthu.edu.tw

ABSTRACT - In routing, finding a rectilinear Steiner minimal 
tree (RSMT) is a fundamental problem. Today’s design often 
contains rectilinear obstacles, like macro cells, IP blocks, and 
pre-routed nets. Therefore obstacle-avoiding RSMT (OARSMT) 
construction becomes a very practical problem. In this paper we 
present a fast and stable algorithm for this problem. We use a 
partitioning based method and an ant colony optimization based 
method to construct obstacle-avoiding Steiner minimal tree 
(OASMT). Besides, two heuristics are proposed to do the 
rectilinearization and refinement to further improve wirelegnth. 
The experimental results show our algorithm achieves the best 
wirelength results in most of the test cases and the runtime is 
very small even for the larger cases each of which has both the 
number of terminals and the number of obstacles more than 100. 

I. INTRODUCTION 

Routing plays an important role in the physical design 
stage of very/ultra large scale integrated circuits (VLSI/ULSI). 
Routing a net, i.e., finding a rectilinear Steiner minimal tree 
(RSMT) is a fundamental problem. In fact, today’s design 
often contains rectilinear obstacles, like macro cells, IP blocks, 
and pre-routed nets. Therefore by taking obstacles into 
consideration, obstacle-avoiding RSMT (OARSMT) 
construction becomes a very practical problem. 
  It has been proved that the RSMT problem is NP-complete 
[1] and taking obstacles into account even increases the 
complexity of the problem. Thus there exists no efficient 
optimal algorithm for finding an OARSMT. 
  There are many recent works focusing on the OARSMT 
problem. FORst [2] is a 3-step heuristic which can tackle 
large-scale problems efficiently. An-OARSMan [3], using ant 
colony optimization [10] on the track graph [7], can achieve 
shorter wirelength than FORst when the number of terminals 
is less than 100. CDCTree [4], based on a current driven 
circuit model, can achieve shorter wirelength than 
An-OARSMan when the number of terminals is less than 50. 
Zion et al. [5] propose an effective approach which constructs 
an OARSMT from a connection graph called spanning graph. 
Although [3-5] can find an OARSMT with good length 
performance, they tend to have a long runtime on finding a 
good solution when the number of terminals is large. 

  In the experiment of [5], there is an industrial test case 
where the total number of nets is 47730 has 0.3% nets whose  
number of terminals is more than 100. Besides, in detailed 
routing or ECO routing, it is possible that the number of 
obstacles in a routing region is more than 100 or even more. 
Therefore in practice, there exist cases which have more than 
100 terminals and 100 obstacles. Thus how to find an 
OARSMT efficiently for a large case having many terminals 
and obstacles becomes a practical and useful problem. An 
O(nlogn) algorithm is proposed in [6] where n is the sum of 
the number of terminals and the number of obstacles. Because 
of its lower time complexity, [6] has very small runtime in 
large cases which have many terminals and obstacles. Since 
there are no other recent works which are able to deal with 
such large cases, [6] cannot tell whether its performance is 
good enough. From our experimental results (to be shown in 
section V), we see that for large cases reported in [6], they 
still have much room to improve wirelength. 
  To the best of our knowledge, all existing heuristics for 
OARSMT construction cannot achieve both small wirelength 
and small runtime for large cases. Therefore an algorithm 
which can get the best wirelength and efficiency is needed. In 
this paper, we present a fast and stable algorithm for 
constructing OARSMTs. Given a complete graph formed by 
terminals, our algorithm first applies a partitioning method, 
which is to find a minimum spanning tree (MST) on the graph, 
and remove the segments intersecting obstacles. Thus the 
MST will be partitioned into sub-trees. Our algorithm then 
uses an ant colony optimization based approach, which is 
different from the one proposed in An-OARSMan [3], to 
connect the sub-trees into a single tree and get an 
obstacle-avoiding Steiner minimal tree (OASMT). Notice that 
An-OARSMan [3], a connection graph based approach, is 
applied on track graphs, and we find that if the numbers of 
terminals and obstacles are large, the size of the track graph 
becomes huge and significantly increases the runtime. Instead 
our ant colony optimization based method works on spanning 
graphs. As indicated in [5], a spanning graph is an efficient 
and effective connection graph. Although for large cases a 
spanning graph may lose some information, we show that it 
can produce an OASMT with good wirelength performance 
from our experiments. After obtaining an OASMT, our 
algorithm continues to use a rectilinearization heuristic to 
generate an OARSMT, and apply a refinement method on it 
for further improvement and get the final OARSMT. 

* This work was partially supported by National Science Council 
under Grant No. NSC-95-2220-E-007-037, and Ministry of 
Economic Affairs under Grant No. MOEA-95-EC-17-A-01-S1-031.   The experimental results indicate that our algorithm obtains 

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3A-4

262



the best wirelength results for most of the test cases when 
compared with the recent works [2-6]. The runtime is just a 
little worse than [6], and much better than the others [2-5]. 
For the largest test case which has 1000 terminals and 10000 
obstacles, our algorithm only spends 4.2 seconds and reduces 
54.37% wirelength as compared with [6], an O(nlogn)
algorithm whose runtime is 2.8 seconds. As a result, our 
algorithm is very fast and stable. 
  We organize the rest of the paper as follows. In section II, 
we formally define the problem. In section III, the overview 
of our algorithm is introduced. Section IV describes the 
details of our algorithm. Section V presents the experimental 
results and we conclude the paper in Section VI.  

IV. DETAIL OF OUR ALGORITHM 

A. Partitioning Terminals into a Set of Sub-trees 

The goal of the partitioning method is to obtain a set of 
sub-trees, SST. Our algorithm only needs to merge them into 
a Steiner tree in a later step, and the SST will be the partial 

II. PROBLEM FORMULATION 

Given a set of terminals, T = {t1, t2,…, tn}, and a set of 
rectangular obstacles, O = {o1,o2,…,om}, the 
obstacle-avoiding rectilinear Steiner minimal tree (OARSMT) 
problem is to find a rectilinear Steiner minimum tree (RSMT) 
which connects all terminals together but does not intersect 
any obstacle, and the wirelength of the RSMT should be as 
small as possible. Note that if all boundaries of a 
non-rectangular obstacle are either horizontal or vertical, we 
can dissect it into a set of rectangular obstacles. For simplicity, 
we assume all obstacles in our problem to be rectangular in 
the rest of the paper.  

III. OVERVIEW OF OUR ALGORITHM 

Our algorithm contains four steps, which are overviewed as 
follows: 

Step 1: We construct a complete weighted graph formed by all 
pairs of terminals, and then we construct a minimum spanning 
tree (MST) connecting all the terminals (see Fig. 1 where 
grey rectangles represent obstacles, and black points represent 
terminals). The weight between two terminals is the 
Manhattan distance between them plus an obstacle penalty 
which will be defined in section IV-A. After constructing an 
MST, there might be some edges whose L-shaped segments 
(including upper and lower L-shaped segments) intersect 
obstacles. For example, in Fig. 1 there is no L-shaped 
segment that can connect terminals v1 and v2 without 
intersecting any obstacle. Therefore we remove those 
intersecting segments from the MST so that the MST can be 
partitioned into a set of sub-trees, SST (see Fig. 2). 

Step 2: A spanning graph of all terminals and obstacles is 
generated using the idea proposed in [5] (see Fig. 3). This 
graph will be used in Step 3.

Step 3: We merge the sub-trees of SST obtained in Step 1
using an ant-colony optimization based algorithm modified 
from [3] to find the connections between sub-trees and 
transform SST into an obstacle-avoiding Steiner minimal tree 
(OASMT). In order to reduce the runtime, the ant colony 
optimization based algorithm is running on a spanning graph 
rather than a track graph, which means that a path connecting 

two sub-trees must be a set of edges on the spanning graph 
(see Fig. 4 where the bold lines represent the path connecting 
two sub-trees on the spanning graph after using the ant colony 
optimization based algorithm). 

Step 4: After finding the OASMT connecting all terminals, a 
rectilinearization procedure is applied on the tree to generate 
an initial OARSMT, called IOARSMT (see Fig. 5). Then we 
use a refinement method to further improve the wirelength of 
IOARSMT by removing redundant segments which will be 
defined in section IV-D. Finally we can get the final 
OARSMT, called FOARSMT (see Fig. 6). 

Fig. 6. FOARSMT after 
refinement.

Fig. 5. IOARSMT after 
rectilinearization.

v1
v4

v2 v3

Fig. 4. Merge. Fig. 3. Spanning graph. 

Fig. 2. Partition MST into  
sub-trees.

Fig. 1. MST. 

v1

v2
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part of the Steiner tree. Therefore doing partitioning first can 
save a lot of runtime but it may cause worse wirelength 
because of losing some solution space. 

Our partitioning method is based on an MST. We first 
construct a complete weighted graph Gc = (Vc, Ec), where Vc

is the set T of terminals, and Ec is the set of edges connecting 
all pairs of terminals. In Ec, the weight of an edge e
connecting vi and vj is defined below: 

weight(e) = Manhattan distance(e) + obstacle penalty(e)
Manhattan distance(e) = | xi – xj | + | yi – yj | where vi has 

coordinate (xi, yi) and vj has coo dinate (xj, yj).

Obstacle penalty (OP) is the estimation of additional 
distance if both L-shaped segments of an edge intersect 
obstacles. An edge connecting two terminals has two 
L-shaped segments (including upper and lower L-shaped 
segments). If an L-shaped segment intersects obstacles, OP is 
the sum of the lengths of the intersecting boundaries of the 
obstacles, otherwise it is zero. But we do not check all 
obstacles to find intersections with respect to an edge because 
it is too time consuming. We just check the nearest obstacles 
from a terminal in the four directions (top, down, left, right). 
Because an edge may have two OPs corresponding to two 
L-shaped segments of the edge, we choose the smaller of 
these two as the OP of the edge. We take Fig. 7 as an example 
to describe the definition of OP in detail. In Fig. 7(a), the 
upper L-shaped segment of edge e intersects two obstacles, 
obstacle o1 from vertex v1 in the top direction and obstacle o2

from vertex v2 in the left direction. The OP of the upper 
L-shaped segment is w1+h2. Similarly, the OP of the lower 
L-shaped segment is h3. Then the OP of the edge e is h3 which 
is the smaller one. In Fig. 7(b), because the upper L-shaped 
segment of edge e does not intersect any obstacle, the OP of 
edge e is 0. 

o the SST helps to keep 
go

2

 the number of 
edges in the complete graph Gc. Because the number of edges, 

m

relative geometrical relationship between vertices 
in e plane using O(n) edges. Moreover, by using an O(n log 

uction of a spanning graph 

  Das et al [10] proposed an for 
constructing a Steiner tree in a gi de 
some improvements and change h, 
An-OARSMan [3] c  on the track gr h. 

e further modify the ant-colony optimization based 
al

ined by 
so

w rds the vertices already visited to avoid revisiting 
. ies, and the vertices in 
’s tabu-list are added into A’s. By the movement, the 

O2

r

Fig. 7. Obstacle penalty. 

We use the Kruskal method [8] to find an MST on the 
complete graph Gc, and then traverse each tree edge on the 
MST to check whether both L-shaped segments of an edge 
intersect obstacles. If both L-shaped segments of an edge 
intersect obstacles, we remove the edge from the MST. After 
traversing all segments of the MST, the MST can be 
partitioned into a set of sub-trees, SST. These sub-trees are 
the partial part of the MST, and we observe that the MST is a 
good initial solution for an OASMT. S

od wirelength performance of the final OARSMT. 
Constructing the complete weighted graph Gc needs O(n )

time where n is the number of terminals. The time complexity 
of he Kruskal method is O(mlogm) where m ist

, in the complete graph is O(n2), the time complexity of the 
Kruskal method is O(n2logn). And checking if an edge in the 
MST intersects obstacles can be done in linear time. 
Therefore the partitioning step can be done in O(n2logn) time. 

B. Constructing a Spanning Graph 

In [3], the ant colony optimization based algorithm runs on a 
track graph [7]. The size of a track graph is O(r2), where r is 
the number of the rectilinear boundaries of all obstacles. 
Therefore it takes a long time to get a solution. In order to 
reduce the runtime when running the ant colony optimization 
based algorithm, we choose spanning graph as our connection 
graph. 
  In a spanning graph, every vertex (including terminals and 
four corners of each rectangular obstacle) is connected to the 
nearest vertices in its four directions, upper-right, upper-left, 
lower-right, and lower-left. Fig. 3 is an example of a spanning 
graph. Considering all given vertices, the connections will 
form a spanning graph of cardinality O(n) where n is the total 
number of vertices. In other words, spanning graph is able to 
describe the 

 th
n) sweep line algorithm, the constr
can be done in O(n log n) time. 

C. Merge: Ant-Colony Optimization Based Algorithm 

 ant-colony approach 
ven graph. Having ma

s on the basic approac
aponstructs an OARSMT

W
gorithm used in An-OARSMan and then apply it on the 

spanning graph to merge the sub-trees in SST into an OASMT. 
In this section, we will briefly explain the ant-colony 
approach and focus on the difference between [3] and ours. 
  The basic ant-colony approach consists of multiple 
iterations. In each iteration, an ant is to be placed on each 
terminal which needs to be connected, and then one ant is 
randomly chosen each time to execute a movement, leaving 
behind a pheromone trail for others to follow. The ant selects 
an edge to move at a time, and the selection is determ

me user-defined rules. In our implementation, all edges 
must be segments in the spanning graph, and we always let an 
ant move to a location according to a function which is 
related to the trail intensity, the distance between the ant and 
other ants, and the distance between the ant and the vertices 
other ants have ever passed. Once a movement is executed, 
the chosen edge becomes a branch of the sub-tree formed by 
the corresponding ant. Each ant maintains its own tabu-list,

hich reco
them  When ant A meets ant B, ant B d
the B
separated sub-trees will be connected together to form an 
OASMT. One iteration is ended when there is only one ant 
left, and the OASMT connecting all terminals is also obtained. 
In our implementation, we set the number of iterations to be 
50. From the experiment, it shows 50 is enough to obtain 

w1
h2

O
h3

1

O3
v1

e

v2

(a)

e

(b)
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provement whereas causes a long runtime. 

ization algorithm. The first 
roblem is to find the initial location of the ant for each 

-tr
uld be included in the tabu-list of each ant. We propose a 

m 

h ai

ent to replace this edge. For two vertices va and vb, a 
ng from va to vb

is composed of a vertical sub-segment followed by a 
horizontal sub-segment, and a horizontal-vertical L-shaped 
segment is composed of a horizontal sub-segment followed 
by a vertical sub-segment. If we consider all possible 
combinations of L-shaped segments of all tree edges, it will 
be too time consuming. Therefore we try to rectilinearize each 
non-rectilinear edge using a greedy manner to determine 
which kind of L-shaped segment we prefer when replacing 

e 
r 

good solutions and the number of iterations more than 50 just 
gets minor im

The major difference between [3] and ours is that in 
An-OARSMan the ant is placed on each terminal, but in our 
algorithm we put an ant for each sub-tree because there 
already exists SST in the spanning graph. Given an ant mi for 
sub-tree ti, the set of vertices on ti is called Vti. When we 
apply the ant-colony optimization based algorithm, we 
suppose Vti is already visited by its ant mi. However, if we put 
all vertices in Vti in the tabu-list of mi, the ant-colony 
approach would spend too much time on traversing the 
tabu-list. Here we have to deal with two problems before 
applying the ant-colony optim
p
sub ee, and the second one is to determine which vertices 
sho
greedy method to solve these two problems. In the 
partitioning step (Step 1), we remove the tree edges of the 
MST which intersect obstacles so that we can partition the 
MST into a set of sub-trees. Our greedy method is to take 
these removed edges to determine the locations and tabu-lists
of ants. Given a removed edge erem and its two end points, vi

and vj with vi Vti and vj Vtj, ant mi adds vi to its tabu-list
and equally ant mj adds vj to its tabu-list. Each ant maintains a 
variable called min-weight which records the minimu
weight among the removed edges each of which has at least 
one end point belonging to the ant’s sub-tree. When an end 
point of a removed edge has smaller weight than its 
corresponding ant’s min-weight, we update the ant’s 
min-weight and set the location of the ant to the end point. 
This means that assuming the removed edge erem has weight d,
if d is smaller than ant mi’s min-weight, we update mi’s 
min-weight to d and set mi’s location to end point vi. And ant 
mj can do the same action if d is smaller than mj’s min-weight.
Fig. 8 is an example for the greedy method. Fig. 8(a) is an 
MST after Step 1, and there exist three removed edges. Fig. 
8(b) shows the locations of ants and their tabu-lists
determined by applying the greedy method. Taking ant1 for a 
detailed explanation, end point v1 of the removed edge e1 and 
end point v2 of the removed edge e2 both belong to the 
sub-tree of ant1. Thus the tabu-list of ant1 has v1 and v2. For 
determining the location of ant1, we compare the weights of 
e1 and e2. Because the weight of e2 is smaller, we set the 
location of ant1 to v2. Similarly we do the same processes to 
ant2, ant3 and ant4. The tabu-list of ant2 has v3 and its 
location is v3. The tabu-list of ant3 has v6 and v7, and its 
location is v7. The tabu-list of ant4 has v8, and its location is 
v8.

Fig. 8. (a) An MST and dashed lines represent removed edges. (b) 
The locations of ants and their tabu-lists determined by the greedy 
method.

  Our greedy method can be done as follows. For each edge 
removed from the MST, we insert the end points of the edge 
into the tabu-lists of the corresponding ants and update the 
locations of the corresponding ants if needed. Thus the time 
complexity of the greedy method is linear to the number of 
the removed edges. 

After determining the initial location and tabu-list of each 
ant, we apply the ant colony optimization based algorithm to 
find an OASMT. In the basic ant colony approach when an 
ant visits a vertex, the ant adds the vertex to its tabu-list, but 
our algorithm as a constr nt for this. Take Fig. 8(b) as an 
example. Although ant2 visits v4 via a path in the spanning 
graph, the constraint does not allow ant2 to add v4 to its 
tabu-list because v4 already belongs to the sub-tree of ant2.
The size of the tabu-list of each ant would be smaller with the 
constraint than without the constraint. Therefore it can save 
runtime on the ant colony optimization based algorithm. From 
our experimental results, it shows good wirelength 
performance though the constraint may lose some solution 
space.

D. Rectilinearization and Refinement

  Our goal here is to find an OARSMT. After applying the 
ant colony optimization based algorithm to find an OASMT, a 
rectilinearization process is needed to modify all tree edges 
into either horizontal or vertical segments. We propose a 
greedy method to rectilinearize these edges. The idea is to 
share as many segments as possible when generating the 
rectilinear segments so that the total wirelength will be 
smaller. 
  First of all, we choose a 1-degree terminal vs as the start 
point and use breadth first search (BFS) to traverse the whole 
OASMT. Once a non-rectilinear tree edge is traversed, we use 
either a vertical-horizontal or horizontal-vertical L-shaped 
segm

ctivertical-horizontal L-shaped segment conne

each edge. In the beginning of BFS, the first traversed edg
(vs, vi) arbitrarily chooses a vertical-horizontal o
horizontal-vertical L-shaped segment to do the 
rectilinearization when edge (vs, vi) is neither a horizontal or 
vertical edge. For each neighboring vertex vj of vi, if the 
L-shaped segment connecting from vs to vi is a 
horizontal-vertical one, we try to rectilinearize (vi, vj) using a 
vertical-horizontal L-shaped segment. Otherwise a 
horizontal-vertical L-shaped segment is used. However if the 
chosen L-shaped segment causes an illegal L-shaped segment 
which intersects obstacles, then we try the other L-shaped 
segment (notice that we can easily prove that the other 
L-shaped segment will not intersect any obstacle).  

We use an example to describe the details of the 

(b)
ant1 ant2

ant4
ant3v1

v2 v3

v4

v5

v8v6

20

10

8
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e2
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tal-vertical one to connect v1 to v2 or v3. This is 
ecause we want to share segments with the existing 

1, v2) is reconnected 
 a vertical-horizontal L-shaped segment which shares a 

t OARSMT as an initial RSMT (IOARSMT). 

 represent 
ed

m by 

  

e great increases. Although [3] 

its run airs of 
terminals. 
  [6] is the only algorithm which  large 
cases efficiently. However, as the size of a c , the 
wirelength performance of it gets wo with [6], 
we can achieve 22.18% wirelength im erage 
and 54.37% improvement at most with ntime. 
Although [6] can produce the routing ficiently, 
there is still much prove its wirelength 
performance. On th our algorithm can keep both 

ficiency and good wirelength performance no matter the 
size of a case is large or small, which makes our algorithm 
very practical. 
  Fig. 10 shows the routing solution obtained from our 
algorithm for the test case with 500 terminals and 100 

rectilinearization. In Fig. 9(a), an OASMT is going to be 
rectilinearized. Assuming vs is the start point to do BFS, we 
arbitrarily choose an L-shaped segment to reconnect (vs, v1) as 
shown in Fig. 9(b). Then (v1, v2) and (v1, v3) are to be 
considered. Because the L-shaped segment connecting from 
vs to v1 is a horizontal-vertical one, we prefer to use a 
vertical-horizontal L-shaped segment rather than a 
horizon
b
segments. It is shown in Fig. 9(c) that (v
with
segment with the existing one. However, in the case where 
the chosen L-shaped segment we prefer intersects any 
obstacle, we choose the other one. In Fig. 9(c), the 
vertical-horizontal L-shaped segment connecting from v1 to v3

which is marked by ‘x’ intersects the obstacle, so we have to 
choose the other one. Fig. 9(d) shows the final result. Because 
a refinement step will follow after rectilinearization, we call 
the curren
  Now we already have a legal OARSMT solution. Because 
our rectilinearization method is a greedy one, some 
“redundant segment” may exist. As a result, we apply a 
refinement procedure on the IOARSMT to further improve 
the wirelength. Our idea is to eliminate the ‘U’ shape 
connections in the IOARSMT. Fig. 6 is an example after 
applying refinement on the IOARSMT in Fig. 5. Notice that 
vertices v1, v2, v3 and v4 form a U-shaped connection in Fig. 5. 
Therefore we can move the horizontal segment (v2, v3) to the 
position v1, and then remove the redundant non-terminal leaf 
v3 and the segment connecting to it. By removing all U- 
shaped connections in the IOARSMT, we can get our final 
resultant FOARSMT in Fig. 6. 
  Our rectilinearization method only needs to traverse the 
OASMT once. Similarly, the refinement method only needs to 
traverse the IOARSMT once. Therefore the total time 
complexity in the rectilinearization and refinement step is 
linear to the sum of the sizes of the OASMT and IOARSMT. 

Fig. 9. The process of the rectilinearization. Solid lines

ef

obstacles.

ges in OASMT, and dashed lines represent segments of 
IOARSMT. 

V. EXPERIMENTAL RESULTS 

  We have implemented our algorithm in C language and 
performed it on a Sun Blade2000 workstation with 1200MHz 
CPU and 8GB memory. We collect the test cases used in [6] 
and three additional industry test cases, and then compare our 
results with several state-of-the-art works.  
  Table 1 and Table 2 show the comparison results of 
wirelength and runtime with An-OARSMan [3], CDCTree [4], 
2-OASMT [6] and the spanning graph based algorithm [5]. In 

both tables, the first two columns give the numbers of 
terminals and obstacles in our test cases. The first three cases 
are from the industry, and the other are the cases used in [6].  
  The results of [3] and [6] are quoted from the experimental 
results reported in [6]. And the results of [4] are provided by 
an author of CDCTree. Because we cannot get the test cases 
and the program of [5], we implement their algorith
ourselves and run it in the same platform mentioned above. 
But we do not get the result for the last test case (i.e., the 
largest one with 1000 terminals and 10000 obstacles.)  
because it executes more than 9 hours without termination1.
[3] and [6] are performed in a Sun V880 fire workstation with 
755MHz CPU and 4GB memory, and [4] is performed on a 
Unix workstation with 2.66G CPU and 1G memory. 
  From Table 1 we can see that our algorithm achieves the 
best wirelength results in most of the test cases. The 
wirelength improvement ratios of our algorithm over [3], [4] 
and [5] are 5.4%, 3.38% and 1.87% on average, respectively. 
Besides, when the size of the problem becomes lager, the 
runtimes of [3], [4], and [5] hav
and [4] do not run at the same platform as ours, their trends in 
runtime increase are obviously greater than ours. The long 
runtime of [5] is because it needs to construct a complete 
graph among terminals when calculating the shortest paths 
between all pairs of terminals. As a result, the bottleneck of

time is finding the shortest paths between all p

 is able to deal with
ase increases

rse. Compared 
provement on av
 a little more ru

 result very ef
 room to im

e contrary, 

Fig. 10. A routing solution. 

1 [5] cannot get the result for the largest test case because for easy 
implementation we use a less efficient data structure to implement the 
Dijkstra algorithm for finding shortest paths. But we believe that [5] still runs 
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slower than our algorithm even it is implemented in a more efficient way. 
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Wirelength Term# obs# 
[3] [4] [6] [5] Ours Improve

over
ment ratio

 [3] (%) 
Improvement ratio

over [4] (%) 
Improvement ratio 

over [6] (%) 
Improvement ratio

over [5] (%) 
10 32 - - - 644 626 - - - 2.80
74 625 - - - 1731 1640 - - - 5.26
115 1024 - - - 3011 2872 - - - 4.62
10 10 27840 26970 30410 29320 27250 2.12 -1.04 10.39 7.06 
30 10 43090 41700 45640 43400 43220 -0.30 -3.65 5.30 0.41 
50 10 63250 62380 58570 57020 56500 10.67 9.43 3.53 0.91 
70 10 66310 66560 63340 61910 61090 7.87 8.22 3.55 1.32 

100 10 82320 80010 83150 78240 76870 6.62 3.92 7.55 1.75 
100 500 - - 149750 86770 84327 - - 43.69 2.82 
200 500 - - 181470 118169 115461 - - 36.37 2.29 
200 800 - - 202741 123360 122574 - - 39.54 0.64 
200 1000 - - 214850 120567 120017 - - 44.14 0.46
500 100 - - 198010 174420 172490 - - 12.89 1.11 
1000 100 - - 250570 242840 238377 - - 4.87 1.84
1000 10000 - - 1723990 N/A 786731 - - 54.37 - 

average      5.40 3.38 22.18 1.87 
Table 1. Comparison on wirelength. ‘-‘ represents that the result is not available. 

Run time (s) Term# obs#
[3] [4] [6] [5] Ours

10 32 - - - <0.01 <0.01
74 625 - - - 14.17 0.1
115 1024 - - - 60.69 0.21
10 10 0.164 0.485 0.002 <0.01 <0.01
30 10 1.075 1.034 0.003 <0.01 <0.01
50 10 3.504 8.79 0.004 0.01 <0.01
70 10 10.552 67.62 0.004 0.01 <0.01
100 10 26.974 595.1 0.004 0.02 <0.01
100 500 - - 0.057 12.49 0.31
200 500 - - 0.062 28.15 0.36
200 800 - - 0.095 72.66 1.53
200 1000 - - 0.129 112.29 1.8
500 100 - - 0.026 4.14 0.27

1000 100 - - 0.037 35.34 0.81
1000 10000 - - 2.823 - 4.2

Table 2. Comparison on runtime. 

VI. CONCLUSIONS 

  In this paper, we present a fast and stable approach for 
obstacle-avoiding rectilinear Steiner minimal tree 
construction. We use a partitioning based method to partition 
an MST into some sub-trees. Then we apply an ant-colony 
optimization based algorithm on the spanning graph to 
connect the sub-trees into an obstacle-avoiding Steiner 
minimal tree. Finally we rectilinearize the OASMT and use a 
refinement method to further improve th wirelength 
performance. Com -art works, our 
approach has the best wirelength performance in most of the 
cases and the runtime is very small even for large cases. The 
high efficiency and good solution quality of our approach 
makes it extremely practical in the routing process. 
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