
Structured Placement
with Topological Regularity Evaluation

Shigetoshi NAKATAKE
Department of Information and Media Sciences, University of Kitakyushu

1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan

Email: nakatake@env.kitakyu-u.ac.jp

Abstract— This paper introduces a new concept of floorplan-
ning and block placement, called structured placement. Regular-
ity is a key criterion of structured placement so that placement
can make progress beyond constraint-driven approaches. This
paper formulates the topological regularity that is extractable
from a sequence-pair. Regular structures like arrays and rows
are defined on a single-sequence that is a kind of standard
representation of a sequence-pair. We extract regular structures
from a single-sequence in O(n), and then evaluate the structures
by quantifying the regularity as an objective function. Besides, we
propose a new simulated annealing (SA) framework, called dual
SA, where we convey a constructive feature to an SA framework,
so that it attains a placement balancing the size of regular
structures against the area efficiency. In experiments, we apply
our structured placement to analog block designs, and reveal
the definite advantage that our placements contain many regular
structures such as rows and arrays without increasing the chip
area and the wire length, compared to the existing placement.

I. INTRODUCTION

Physical designs of recent analog mixed signal LSIs are

facing difficulties due to increasing complexities and request

for signal integrity and substrate noise issues. Among them,

floorplanning and placement are key technologies in their

design flows. In floorplanning, many studies have been re-

ported so far, but especially in recent years, methods based on

rectangle packing are widely used such as BSG, Sequence-

Pair, O-tree, B*-tree, and TCG-S [2], [3], [4], [5], [7], [12],

[14]. Each of them introduces a unique topological system

to represent a placement, which is applicable to a stochastic

search, for example, simulated annealing. In their experiments,

better results along with highly compacted placements have

been reported.

However, the consideration of regularity lacks in their

results, while human designers usually put regular structures

into rows and arrays. Actually, such regularity is crucial

for analog block placement, since it is believed that this

property serves high routability and suppression of variation on

performances. In analog placement, the most useful approach

is constraint-driven [10], [11]. It is possible that this approach

yields a good placement to satisfy the design specification

if an appropriate constraint is given. However, because it

is requested to generate the constraint from both the circuit

performance and the layout area efficiency, it is necessary to

do these trade-offs in the balance while designing the layout.

If the constraint is too severe, the layout area efficiency might

be deteriorated. Oppositely, if the constraint is insufficient, the

circuit performance might be degraded. Since no efficient gen-

eration of such an appropriate constraint has been established

yet, the generation process of the constraint is still manual and

time-consuming.

In this paper, we pay attention to the influence of the regu-

larity of placement on the circuit performance, and propose

a technique for improving the circuit performance by less

constraint.

We formulate topological regularity that is extractable from

a sequence-pair, and evaluate the regularity during optimiza-

tion of the placement. In a sense, this concept is constraint-
less. We refer this concept as structured placement, and this

is the first paper based on this concept. Also, this paper

contributes to extraction and evaluation of topological regular

structures. This paper copes with two topological regular

structures of arrays and rows. The regular structures are

defined on a single-sequence, which is a kind of standard

representation of a sequence-pair. A single-sequence does not

need any block label but represents just a topological structure

of a placement. First, we introduce an algorithm to extract

regular structures from a single-sequence in linear time with

respect to the number of blocks.

Next, we evaluate the structures by quantifying the regular-

ity as an objective function. There is no limitation in usage of

our extraction and evaluation in ordinary simulated annealing,

because the regular structure evaluation can be incorporated

into typical objectives such as the area and the wire-length.

Thus, our optimization is based on not a constructive approach

but a stochastic searching. However, we notice that, in some

cases, a constructive approach is successful to explicitly con-

trol the structure of the placement. Accordingly, we attempt

to take into consideration a constructive feature in a simulated

annealing framework by observing our objectives.

Our objectives consists of two properties in the contrast

to each other. One is for the topology quality, the other is for

quality with respect to physical dimension. Aiming to optimize

both properties efficiently, we propose a particular framework

of simulated annealing called dual simulated annealing. It

optimizes topological and physical properties separately and

alternately at a step of each temperature, so that its searching

converges on a solution of the high regularity as well as of

the high compactness.

In experiments, we applied our method to industrial ex-

amples for analog block designs. It attained the placements

1-4244-0630-7/07/$20.00 ©2007 IEEE.

2C-5

215

array row slice objectroom

Fig. 1. Structures of placement

array arrayrow row

row

row

Typical analog placement Structure of placement

Fig. 2. An image of analog placement and its structure

with a good trade-off in the balance to the regularity and

the area efficiency that contained as many rows and arrays as

possible without increasing the chip area, compared to those

by the existing method. We notice it is likely to be able to use

it by combining with the existing constraint-driven approach

because there are constraints that must be always satisfied.

The rest of this paper is organized as follows. Section II

describes structures of a placement, sequence-pair and single-

sequence. Section III and Section IV introduce how to extract

regular structures from a single-sequence and how to evaluate

the structures, respectively. Section V shows the experimental

results. Section VII concludes contributions and future works.

II. PRELIMINARY

A. Regular Structure in Floorplan

Generally speaking, structures of placement can be classi-

fied into array, row, slice, room-base, and object-base. An

image of each structure is shown in Fig. 1. Array- and row-

structure are often used in gate array and standard cell place-

ment. Slice-structure is seen in [1], called slicing floorplan.

Q-sequence [9] and Corner-Block-List [6] stand for room-

base-structure that is rectangle dissection of a chip. Rectangle

packing based placement such as Sequence-Pair [2] and B*-

tree [5] has object-base-structure.

Among these structures, strong or weak relation with respect

to the regularity is as array > row > slice > room >
object. (A > B means A has a stronger regularity than B.)

On the contrary, with respect to the flexibility of the area

efficiency, the relation is as array < row < slice < room <
object. Regularity often contributes to suppression of variation

of characteristics of same devices, while flexibility does to

yield smaller chip area by handling blocks of arbitrary shapes.

In a typical placement, strong regularity appears in the local.

An image of analog placement and its structure are shown in

Fig. 2.

B. Sequence-Pair

Sequence-Pair is introduced in [2]. It is excellent that

it defines horizontal and vertical relations independently of

b d a c a c db a

b

c

db

a

d

c

gamma+ gamma-

Fig. 3. A sequence-pair representation

each other. In the following, we give a brief introduction of

Sequence-Pair.

Given a set of blocks, B = {b1, b2, . . . , bn}, a sequence-pair

represents topological relations among blocks over a block

placement. A sequence-pair is an ordered pair of Γ+ and Γ−,

where each of Γ+ and Γ− is a permutation of names of the

given n blocks. For example, (Γ+,Γ−) = (a, b, c, d; b, d, a, c)
is a sequence-pair of block set {a, b, c, d}. If block x is the

i-th in Γ+, we denote Γ+(i) = x, as well as Γ−1
+ (x) = i.

Similar notation is also used for Γ−.

For every block pair (a, b), a is the left of b (equivalently,

b is the right of a) if Γ−1
+ (a) < Γ−1

+ (b) and Γ−1
− (a) <

Γ−1
− (b). Analogously, a is below b (equivalently, is above a)

if Γ−1
+ (a) > Γ−1

+ (b) and Γ−1
− (a) < Γ−1

− (b).
An example of a sequence-pair and its corresponding place-

ment are shown in Fig. 3.

C. Single-Sequence

In this paper, we focus on a topology of a block placement.

The topology can be represented without specifying block’s

name by using a single-sequence [8], [13]. A single-sequence

is denoted by S = (s1, s2, . . . , sn) | sk ∈ {1, 2, . . . , n}. It is

defined as sk = Γ−1
+ (Γ−(k)), that is, S is the same as Γ−

when each block is renamed as Γ+ = (1, 2, . . . , n). For ex-

ample, given a sequence-pair, (Γ+,Γ−) = (b, d, a, c; a, b, c, d),
the corresponding single-sequence is S = (3, 1, 4, 2).

III. EXTRACTION OF TOPOLOGICAL REGULAR

STRUCTURE

We introduce an extraction algorithm of array- and row-

structures. Consider a subsequence X of S with two or

more numbers. Let the minimum and maximum numbers

in X be mX and MX , respectively. If MX − mX + 1 =
|X|, X is referred as a rectangular extractable subsequence.

For example, given S = (3, 1, 6, 4, 5, 8, 7, 2) subsequences

(4, 5), (6, 4, 5), (6, 4, 5, 8, 7), and (3, 1, 6, 4, 5, 8, 7, 2) are rect-

angular extractable.

We introduce horizontal and vertical single rows as fol-

lows; A rectangular extractable X such that sk+1 − sk =
1 (sk+1, sk ∈ X) is a horizontal single row. Similarly, X
such that sk+1 − sk = −1 is a vertical single row.

If a rectangular extractable subsequence X is composed

of only two or more horizontal single rows that are stacked

vertically, X represents the topology of horizontal multi-row.

Analogously, vertical multi-row is defined.

2C-5

216

Furthermore, in a multi-row subsequence X , each of rows

has the same length, X composes a topology of an array.

Theorem 3.1: (Row and Array Extraction) Given a

sequence-pair, all multi-rows and arrays with the maximal

length that are included in the sequence-pair can be extracted

in time complexity O(n), where n is the number of blocks.

Proof: We can convert a sequence-pair to a single-

sequence S in time complexity O(n). We prove the theorem

by providing a procedure to extract rows and arrays from S
followed by an example. First, we describe an extraction of

horizontal multi-rows.

1) Divide S into subsequences S1/S2/ · · · /Si/ · · · /Sl

such that sk − sk+1 = 1 where sk, sk+1 ∈ Si. For

example, given S = (1, 2, 7, 8, 9, 5, 6, 3, 4, 10), the sub-

sequences are (1, 2)/(7, 8, 9)/(5, 6)/(3, 4)/(10).
2) For each subsequence Si, let the minimum

and maximum numbers be mSi
and MSi

,

respectively. In the example, {(m,M)} =
{(1, 2), (7, 9), (5, 6), (3, 4), (10, 10)}.

3) For each adjacent pair of subsequences, Si and Si+1,

we say they are vertical stackable if mSi
−MSi+1 = 1.

Extract all vertical stackable pairs. The vertical stack-

able pairs in the example are ((7, 8, 9), (5, 6)) and

((5, 6), (3, 4)).
4) Concatenate two or more stackable pairs if they have

a common subsequence. As the result, the concatenated

subsequence corresponds to a horizontal multi-row. In

the example, ((7, 8, 9), (5, 6), (3, 4)) forms a multi-row.

Note that if the multi-row has the same length of each

single-row, it corresponds to an array.

In step 1), we obtain a set of horizontal single-rows. In

step 3), since mSi
− MSi+1 = 1, mSi

> MSi+1 . This means

∀su ∈ Si > ∀sv ∈ Si+1. Then, all blocks in Si+1 are placed

on all in Si.

Let Si and Si+1 be (a, a+1, a+2, . . . , a+p) and (b, b+1, b+
2, . . . , b + q), respectively. Because mSi

= a and MSi+1 =
b+q, mSi

−MSi+1 = a−(b+q) = 1, that is, a = (b+q)+1. It

is proved that (Si, Si+1) is rectangular extractable as follows;
max(MSi

,MSi+1) − min(mSi
,mSi+1) + 1

= max(a + p, b + q) − min(a, b) + 1
= (a + p) − b + 1 = ((b + q) + 1) + p − b + 1
= p + 1 + q + 1 = |Si| + |Si+1|.

Therefore, Si and Si+1 compose double horizontal single-rows

stacked vertically, and their stacked structure is rectangular

extractable, that is, a multi-row.

Next, consider a concatenation of a multi-row X =
X1/X2/ · · · /Xk and a subsequence Si. X and Si are adjacent

in S as shown in · · · /X1/X2/ · · · /Xk/Si/ · · ·. Note that,

since X is a multi-row, MX1 ≥ mX1 > MX2 ≥ mX2 >
. . . > MXk

≥ mXk
.

From the condition in step 3), since mXk
− MSi

= 1,

mXk
> MSi

, that is, MX ≥ mX > MSi
≥ mSi

. Hence,

all blocks in Si is placed on all in X .

More, MX−mX+1 = |X| and mXk
−MSi

= mX−MSi
=

1. By the similar discussion as the above,

1
2

10

3
4

5
6

7
8

9
1

2
7

8
9

5
6

3
4

10
1 2

3 4

5 6

7 8 9

10

single-row

multi-row

Fig. 4. An example of extraction of row structures

max(MX ,MSi
) − min(mX ,mSi

) + 1
= MX − mSi

+ 1 = (|X| + mX − 1) − mSi
+ 1

= |X| + (MSi
+ 1) − mSi

= |X| + |Si|.
Therefore, X and Si are stacked vertically, and their stacked

structure is rectangular extractable.

Oppositely, assume that a multi-row X = {Si} with

the maximal length is given, where Si is a horizontal

single-row. Si+1 is stacked on Si vertically. Then,

MSi
≥ mSi

> MSi+1 ≥ mSi+1 .

max(MSi
,MSi+1) − min(mSi

,mSi+1) + 1 = |Si| + |Si+1|.
MSi

− mSi+1 + 1 = (MSi
− mSi

+ 1) + (MSi+1 − mSi+1 + 1).
mSi

− MSi+1 = 1.
This is why the above procedure attains the multi-row of

the maximal length.

Analogously, vertical multi-rows can be obtained. In an ex-

traction of vertical multi-rows, we divide S into subsequences

such that sk − sk+1 = −1 in step 1). Besides, in step 3), we

extract horizontal stackable pairs such that MSi
−mSi+1 = 1

for Si and Si+1.

Obviously, each step needs the time complexity that is linear

to the number of blocks. Then the theorem is proved.

An illustration of the example used in the proof is shown

in Fig. 4.

IV. EVALUATION OF REGULARITY

Once we extract multi-rows and arrays as described in the

previous section, we evaluate their structures as follows.

A. Topological Structure Value

We introduce a topological structure value, denoted by Vtop,

which is measured in terms of sizes and shapes of structures.

Let sets of arrays and multi-rows be A and R, respectively.

If a multi-row r (∈ R) has k×l structure, the aspect is figured

out by σ(r) = min(k, l)/max(k, l). Analogously, we figure

out the aspect σ(a) of an array a (∈ A).
We define the topological structure value Vtop as follows;

Vtop = α ∗
∑

r∈R

σ(r) + β ∗
∑

a∈A

σ(a),

where α and β are coefficients to balance a trade-off among

structure values.

2C-5

217

B. Physical Dimension Cost

We also introduce a physical dimension cost, denoted by

Cphy , which consists of local compactness and local unifor-
mity. Note that we can calculate the cost before a compaction

process of sequence-pair decoding.

In a multi-row r, a block assigned to the slot of the i-th
row and the j-th column is denoted by ri,j . Also, the width,

the height and the area of ri,j are denoted by w(ri,j), h(ri,j),
and a(ri,j), respectively.

In the following, we describe the definition of the local

compactness and the local uniformity as for a multi-row. These

costs for arrays can be analogously defined, but it is omitted

here for the space.

1) Local compactness of a multi-row r, Ccmp(r): If r is

composed of horizontal single rows,

Ccmp(r) = max
i

∑

j

(w(ri,j))∗
∑

i

max
j

(h(ri,j))−
∑

i,j

a(ri,j).

Otherwise,

Ccmp(r) =
∑

j

max
i

(w(ri,j))∗max
j

∑

i

(h(ri,j))−
∑

i,j

a(ri,j).

2) Local uniformity of a multi-row r, Cuni(r): If r is

composed of horizontal single rows,

Cuni(r) =
∑

i

max
j

w(ri,j) − min
j

w(ri,j).

Otherwise,

Cuni(r) =
∑

j

max
i

h(ri,j) − min
i

h(ri,j).

Finally, we define physical dimension cost Cphy as follows;

Cphy = α′ ∗ ∑
a∈A(Ccmp(a) + Cuni(a))

+β′ ∗ ∑
r∈R(Ccmp(r) + Cuni(r))

where α′ and β′ are coefficients to balance a trade-off among

costs.

V. DUAL SIMULATED ANNEALING

There is no limitation in usage of our extraction and

evaluation in an ordinary simulated annealing as long as Vtop

and Cphy are incorporated into the objective such as area and

wire-length. However, sometimes, we may need somewhat

constructive features to successfully control structures of a

placement. In this section, we convey a constructive feature

to a simulated annealing framework.

A. Framework

Our original objectives are Vtop and Cphy , that is, one is for

the topology, the other is for the physical dimension. Aiming to

optimize both objectives efficiently, we propose dual simulated
annealing. It optimizes topological and physical objectives

separately and alternately at a step of each temperature. The

framework is as follows.

1: SP := GenerateInitialSP();
2: P := GeneratePlacement(SP);
3: for (Temperature decreasing) do

4: E := Etop(P);
/* topological optimization */

5: for (Topological structure searching) do
6: SP1:= MoveTopologicalStructure(SP);
7: P := GeneratePlacement(SP1);
8: E1 := Etop(P);
9: if IsAccept(temp, E, E1) then

10: SP := SP1;
11: E := E1;
12: end if
13: end for
14: P := GeneratePlacement(SP);
15: E := Ephy(P);

/* physical optimization */
16: for (Physical structure searching) do
17: SP1:= MovePhysicalStructure(SP);
18: P := GeneratePlacement(SP1);
19: E1 := Ephy(P);
20: if IsAccept(temp, E, E1) then
21: SP := SP1;
22: E := E1;
23: KeepBestSoFar(SP, E);
24: end if
25: end for
26: end for

B. Cost Function

In the above framework, we use two cost functions, Etop

and Ephy . Given a placement P along with its sequence-pair,

we calculate the primary objective such as the chip area or

the wire length. We describe about the primary objective in

experiments, but it is denoted by F (P). Then, both functions,

Etop and Ephy , are calculated as follows;

Etop(P) =
F (P)

g(Vtop)
, Ephy(P) = F (P) ∗ g(Cphy).

g is a conversion that maps an input value to another value

within [1.0, 1.1), and it is defined as;

g(x) = 1.0 + 0.1 exp(
−xm log(0.5)

x + ε
),

where xm is an average value of {x} and ε is a small value

enough to ignore. The meaning of the function g is to be likely

to degrade F (P) by 10% to obtain better topological structure

value or less physical dimension cost.

C. Move

In the above framework, the topology is optimized between

line 5-13, while the physical dimension is done between line

16-25. We apply different moves to the different optimization,

MoveTopologicalStructure and MovePhysicalStructure.

1) MoveTopologicalStructure: We use HalfExchange of a

sequence-pair to generate another sequence-pair, which is

introduced in [2]. This move is a pair-exchange of blocks on

either Γ+ or Γ−.

2) MovePhysicalStructure: We apply FullExchange and

HalfExchangeKeepingStructure to a sequence-pair. The former

is the same as in [2]. The latter is designed to keep the

topologies of multi-rows and arrays. Since a multi-row and

an array are both rectangular extractable, each of structures

2C-5

218

corresponds to a subsequence of the sequence-pair. Then, we

apply a subsequence-exchange keeping block orders in the

subsequences.

VI. EXPERIMENTS

We implemented our structured placement that is composed

of the topology regularity extraction, the regularity evaluation,

and the optimization by dual simulated annealing.

A. Analog Block Designs

We tested our placement tool for analog block designs. We

prepared 13 instances of analog block sets from industries.

The number of blocks and that of nets of each data are shown

in Table I.

To make our contribution distinct, we also implemented a

normal block placement based on sequence-pair. This place-

ment optimizes the primary objective described later by a

standard simulated annealing. The same annealing schedule

was used for the both placements. And then, we compared to

each other with respect to the chip area, the wire length, and

the structure coverage. The structure coverage is the ratio to

the total number of blocks of the number of blocks composing

topological arrays or rows.

First, we set the primary objective as the chip area. The

numerical data of the results is shown in Table I. For all

instances, the area ratio that is to the area by the normal

placement of that by our structured placement is less than

5%, while the structure coverage of the normal placement and

that of our structured placement are quite different 7.9% and

78.3% on the average, respectively. The resultant placements

of data A, B, and C by both tools are shown in Fig. 5.

Second, we set the primary objective as the product of the

chip area and the wire length. The numerical data of the results

is shown in Table II. Compared the results by our placement

to those by normal placement, the ratio on the product of the

chip area and the wire length is 0.978 on the average. Besides,

the structure coverages are 9.6% and 73.5% on the average,

respectively. The resultant placements of data I and L by both

tools are shown in Fig. 6.

It is observed that our placement is successful for the

primary objective while the cost function is designed to contain

a factor to degrade the primary objective. The reason can be

guessed that pair-exchanging of structures in dual SA enable a

solution to escape from a local minima. An observation of the

similar kind is seen in the cluster-constraint-driven approach.

However, notice that our structured placement did not use

any cluster constraint. Actually, we are convinced that it is

necessary to combine the constraint-driven method with our

structured placement to develop a more practical tool.

VII. CONCLUSION

We introduced a new concept, structured placement, which

makes use of the regularity of topological structure as a key

criterion. The regularity is formulated in terms of topological

arrays and rows. We provided the extraction of the regular

structures from a single-sequence in O(n), as well as the way

BLK[0]

BLK[1]

BLK[2]

BLK[3]

BLK[4]

BLK[5]

BLK[6]

BLK[7]

BLK[8]

BLK[9]

BLK[10]BLK[11]

BLK[12]

BLK[13]

BLK[14]

BLK[15]BLK[16]

BLK[17]

BLK[18]

BLK[19]

BLK[20]

BLK[21]

BLK[22]

BLK[0]

BLK[1]BLK[2]

BLK[3]

BLK[4]

BLK[5] BLK[6]

BLK[7]

BLK[8]

BLK[9]

BLK[10]

BLK[11]BLK[12]

BLK[13]

BLK[14]

BLK[15] BLK[16]

BLK[17]

BLK[18]

BLK[19]

BLK[20]

BLK[21]BLK[22]

data A: normal data A: struct

BLK[79]BLK[98]

BLK[0]BLK[1]

BLK[2]

BLK[3]

BLK[4]

BLK[5]

BLK[6]

BLK[7]

BLK[8]

BLK[9]

BLK[10]

BLK[11]

BLK[12] BLK[13]

BLK[14]

BLK[15]

BLK[16] BLK[17]

BLK[18]

BLK[19]

BLK[20]

BLK[21]

BLK[22]

BLK[23]

BLK[24]

BLK[25]

BLK[26]

BLK[27]

BLK[28]

BLK[29]

BLK[30]

BLK[31]

BLK[32]

BLK[33]

BLK[34]

BLK[35]BLK[36]

BLK[37]

BLK[38]

BLK[39]

BLK[40]

BLK[41]

BLK[42]

BLK[43]

BLK[44]

BLK[45]

BLK[46]

BLK[47]

BLK[48]

BLK[49]

BLK[50] BLK[51]

BLK[52]BLK[53]BLK[54] BLK[55]

BLK[56]

BLK[57]

BLK[58] BLK[59]

BLK[60]

BLK[61]

BLK[62]

BLK[63] BLK[64]

BLK[65]

BLK[66]

BLK[67]

BLK[68]

BLK[69]

BLK[70]

BLK[71]

BLK[72]

BLK[73]BLK[74]

BLK[75]

BLK[76] BLK[77]

BLK[78]

BLK[79]

BLK[80]

BLK[81]

BLK[82]

BLK[83]

BLK[84]

BLK[85]

BLK[86] BLK[87]

BLK[88]

BLK[89]

BLK[90]

BLK[91]

BLK[92]

BLK[93]

BLK[94]

BLK[95]

BLK[96]

BLK[97]

BLK[98]

BLK[99]BLK[100]

BLK[101]BLK[102] BLK[103] BLK[104]

BLK[105]

BLK[106]

BLK[107]

BLK[108]

BLK[109]

BLK[110]BLK[111]

BLK[112]

BLK[113]

BLK[114]

BLK[115]

BLK[116]

BLK[117]

BLK[118]

BLK[119]

BLK[120]

BLK[121]

BLK[0]

BLK[1]

BLK[2] BLK[3]

BLK[4]

BLK[5]

BLK[6]

BLK[7]

BLK[8]

BLK[9]

BLK[10]

BLK[11]

BLK[12]

BLK[13]

BLK[14]

BLK[15]

BLK[16]

BLK[17]

BLK[18]

BLK[19]

BLK[20]

BLK[21]

BLK[22]

BLK[23]

BLK[24]

BLK[25]BLK[26]

BLK[27]

BLK[28]

BLK[29]

BLK[30]

BLK[31]

BLK[32]
BLK[33]BLK[34]

BLK[35]

BLK[36]

BLK[37]

BLK[38]

BLK[39]

BLK[40]

BLK[41]

BLK[42]

BLK[43]

BLK[44]

BLK[45]

BLK[46]

BLK[47]

BLK[48]

BLK[49]

BLK[50]

BLK[51]

BLK[52]

BLK[53] BLK[54]

BLK[55]

BLK[56]

BLK[57]

BLK[58]

BLK[59]

BLK[60]

BLK[61]

BLK[62]

BLK[63]

BLK[64]

BLK[65]

BLK[66]

BLK[67]

BLK[68]

BLK[69]

BLK[70]

BLK[71]

BLK[72] BLK[73] BLK[74]

BLK[75]

BLK[76]

BLK[77]

BLK[78]

BLK[79]

BLK[80]

BLK[81]

BLK[82]

BLK[83]

BLK[84]

BLK[85]

BLK[86]

BLK[87]

BLK[88]

BLK[89]

BLK[90]

BLK[91]

BLK[92]

BLK[93]

BLK[94]

BLK[95]

BLK[96]

BLK[97]

BLK[98]

BLK[99]

BLK[100]

BLK[101]BLK[102]BLK[103]

BLK[104]

BLK[105]

BLK[106]

BLK[107]

BLK[108]

BLK[109]

BLK[110]

BLK[111]

BLK[112]

BLK[113]

BLK[114]

BLK[115]

BLK[116]

BLK[117]

BLK[118]

BLK[119] BLK[120]

BLK[121]

data C: normal data C: struct

BLK[0]

BLK[1]

BLK[2]

BLK[3]

BLK[4]

BLK[5]

BLK[6]

BLK[7]

BLK[8]

BLK[9]

BLK[10]

BLK[11]

BLK[12]

BLK[13]

BLK[14]

BLK[15]

BLK[16]

BLK[17]

BLK[18]

BLK[19]

BLK[20]

BLK[21]

BLK[22]

BLK[23]

BLK[24]

BLK[25]

BLK[26]

BLK[27]

BLK[28]

BLK[29]

BLK[30]

BLK[31]

BLK[32]

BLK[33]

BLK[34]

BLK[35]

BLK[36]

BLK[37]

BLK[38]

BLK[39]

BLK[40]

BLK[41]

BLK[42]

BLK[43]

BLK[44]

BLK[45]

BLK[46]

BLK[47]

BLK[48]

BLK[49]

BLK[50]

BLK[51]

BLK[52]

BLK[0] BLK[1]BLK[2] BLK[3]

BLK[4]BLK[5]

BLK[6]BLK[7]

BLK[8] BLK[9]

BLK[10] BLK[11]

BLK[12]BLK[13]

BLK[14]

BLK[15]

BLK[16]

BLK[17]

BLK[18]

BLK[19]

BLK[20]

BLK[21]

BLK[22] BLK[23]

BLK[24]

BLK[25] BLK[26]

BLK[27]

BLK[28]BLK[29]

BLK[30]

BLK[31]

BLK[32]

BLK[33]

BLK[34]

BLK[35]

BLK[36]

BLK[37]

BLK[38]BLK[39] BLK[40]

BLK[41]

BLK[42]

BLK[43]

BLK[44]

BLK[45] BLK[46]

BLK[47]

BLK[48]

BLK[49] BLK[50]

BLK[51]

BLK[52]

data B: normal data B: struct

Fig. 5. Resultant placements of data A, B, and C, where the primary
objective is the chip area: “normal” and “struct” are normal placement and
our structured placement, respectively

BLK[0]

BLK[1]

BLK[2]

BLK[3]
BLK[4]

BLK[5]

BLK[6]

BLK[7]

BLK[8]

BLK[9]

BLK[10]

BLK[11]

BLK[12]

BLK[13]

BLK[14]

BLK[15]

BLK[16] BLK[17]

BLK[18]

BLK[19]

BLK[20]

BLK[21]

BLK[22]

BLK[23]

BLK[24]

BLK[25]

BLK[26]

BLK[27]

BLK[28]

BLK[29]

BLK[30] BLK[31]

BLK[32]

BLK[33]

BLK[34]

BLK[35]

BLK[36]

BLK[37]

BLK[38]

BLK[39]

BLK[40]

BLK[41]

BLK[42]

BLK[43]

BLK[44]

BLK[45]

BLK[46]

BLK[47]

BLK[48]

BLK[49]

BLK[50]

BLK[51]

BLK[52]

BLK[53] BLK[54]

BLK[55]

BLK[56]

BLK[57]

BLK[58]

BLK[59]

BLK[0]

BLK[1]

BLK[2]

BLK[3]

BLK[4]

BLK[5]

BLK[6]

BLK[7] BLK[8]

BLK[9] BLK[10]

BLK[11]

BLK[12] BLK[13]BLK[14] BLK[15]BLK[16]

BLK[17]

BLK[18]

BLK[19]

BLK[20]BLK[21]

BLK[22]

BLK[23]BLK[24]

BLK[25]

BLK[26]

BLK[27]BLK[28]

BLK[29]

BLK[30]

BLK[31]

BLK[32]

BLK[33]

BLK[34]

BLK[35]

BLK[36]

BLK[37]

BLK[38]

BLK[39]

BLK[40]

BLK[41]

BLK[42]

BLK[43]

BLK[44]

BLK[45]

BLK[46]

BLK[47]BLK[48]

BLK[49]

BLK[50]

BLK[51]

BLK[52]

BLK[53]

BLK[54]

BLK[55]

BLK[56]

BLK[57]

BLK[58]

BLK[59]

data I: normal data I: struct

BLK[0]

BLK[1]

BLK[2]

BLK[3]

BLK[4]

BLK[5]

BLK[6]

BLK[7]

BLK[8]

BLK[9]

BLK[10]

BLK[11]

BLK[12]

BLK[13]

BLK[14]

BLK[15]

BLK[16]BLK[17]

BLK[18]

BLK[19]

BLK[20]

BLK[21]

BLK[22]

BLK[23]

BLK[24]

BLK[25]

BLK[26]

BLK[27]

BLK[28]

BLK[29]

BLK[30]

BLK[31]

BLK[32]

BLK[33]

BLK[34]

BLK[35]

BLK[36]

BLK[37]

BLK[38]

BLK[39]

BLK[40]

BLK[41]

BLK[42]

BLK[43]

BLK[44]

BLK[45]

BLK[46]

BLK[47]

BLK[48]

BLK[49]

BLK[50]

BLK[51]

BLK[52]

BLK[53]

BLK[54]

BLK[55]

BLK[56]

BLK[57]

BLK[58]

BLK[59]

BLK[60]

BLK[61]

BLK[62]

BLK[63]

BLK[0]

BLK[1]

BLK[2]

BLK[3]
BLK[4]

BLK[5]

BLK[6]

BLK[7]

BLK[8]

BLK[9]

BLK[10] BLK[11]

BLK[12]

BLK[13]

BLK[14]

BLK[15]

BLK[16]

BLK[17]

BLK[18]

BLK[19]

BLK[20]

BLK[21]

BLK[22]

BLK[23]

BLK[24]

BLK[25]BLK[26]

BLK[27]

BLK[28]

BLK[29]

BLK[30]

BLK[31]

BLK[32]

BLK[33]

BLK[34]

BLK[35]

BLK[36]

BLK[37]

BLK[38]

BLK[39]

BLK[40]

BLK[41]

BLK[42]

BLK[43]

BLK[44]

BLK[45]

BLK[46]

BLK[47]

BLK[48]

BLK[49]

BLK[50]

BLK[51]

BLK[52]

BLK[53]

BLK[54]

BLK[55]

BLK[56]

BLK[57]

BLK[58]

BLK[59]

BLK[60]

BLK[61]

BLK[62]

BLK[63]

data L: normal data L: struct

Fig. 6. Resultant placements of data I and L, where the primary objective
is the product of the chip area and the wire length

2C-5

219

TABLE I

NUMERICAL DATA AND RESULTS OF ANALOG BLOCK DESIGNS, WHERE THE PRIMARY OBJECTIVE IS THE CHIP AREA: “NORMAL” AND “STRUCT” ARE

NORMAL PLACEMENT AND OUR STRUCTURED PLACEMENT, RESPECTIVELY. “STR-COVER” IS THE RATIO TO THE TOTAL NUMBER OF BLOCKS OF THE

NUMBER OF BLOCKS COMPOSING TOPOLOGICAL ARRAYS OR ROWS. “AREA RATIO” IS THE RATIO TO THE AREA BY “NORMAL” OF THAT BY “STRUCT”.

data # blocks # nets normal struct area ratio

area (µm2) str-cover (%) area (µm2) str-cover (%) struct/normal

A 23 44 432,876 9 (%) 432,595 96 (%) 1.00

B 53 90 848,114 0 (%) 857,419 96 (%) 1.01

C 122 91 98,868 5 (%) 93,720 72 (%) 0.95

D 60 46 75,078 17 (%) 75,594 87 (%) 1.01

E 113 80 238,392 4 (%) 235,128 68 (%) 0.99

F 32 22 65,367 19 (%) 68,150 69 (%) 1.04

G 54 49 63,248 15 (%) 64,904 72 (%) 1.03

H 90 58 87,870 9 (%) 88,960 77 (%) 1.01

I 60 36 10,265 3 (%) 10,192 82 (%) 0.99

J 101 78 39,619 5 (%) 40,591 84 (%) 1.02

K 66 29 168,866 12 (%) 170,990 79 (%) 1.01

L 64 49 53,710 0 (%) 54,108 88 (%) 1.01

M 166 105 72,945 5 (%) 71,714 49 (%) 0.98

TABLE II

NUMERICAL RESULTS OF ANALOG BLOCK DESIGNS, WHERE THE PRIMARY OBJECTIVE IS THE PRODUCT OF THE CHIP AREA AND THE WIRE LENGTH:

“WIRE-LEN” IS THE WIRE LENGTH. “AREA*WIRE-LEN RATIO” IS THE RATIO TO THE AREA*WIRE-LEN BY “NORMAL” OF THAT BY “STRUCT”

data normal struct area*wire-len ratio

area (µm2) wire-len (µm) str-cover (%) area (µm2) wire-len (µm) str-cover (%) struct/normal

A 444,566 14,488 26 (%) 463,810 15,717 87 (%) 1.13

B 970,759 43,554 11 (%) 973,116 44,693 71 (%) 1.03

C 104,895 9,326 5 (%) 99,231 10,612 64 (%) 1.08

D 81,073 5,794 17 (%) 79,605 6,250 62 (%) 1.06

E 261,332 19,926 7 (%) 296,800 13,985 73 (%) 0.80

F 67,680 2,632 13 (%) 72,380 2,491 91 (%) 1.01

G 72,192 3,750 15 (%) 68,906 3,241 87 (%) 0.82

H 97,280 9,412 9 (%) 89,694 9,249 66 (%) 0.91

I 10,779 2,413 7 (%) 10,554 2,205 78 (%) 0.89

J 41,800 3,695 2 (%) 40,460 3,779 71 (%) 0.99

K 173,870 3,529 3 (%) 173,040 3,620 64 (%) 1.02

L 58,629 5,603 9 (%) 57,002 5,361 83 (%) 0.93

M 77,451 12,997 1 (%) 80,575 13,126 58 (%) 1.05

to evaluate the regular structures. Also, we proposed a new SA

framework, called dual SA, where we convey a constructive

feature to an SA framework. In experiments in analog block

designs, the results by our structured placement are arranged

in an orderly manner, that is, it is composed of many regular

structures, without increasing the chip area and the wire length,

compared to the existing placement.

We are convinced that there is no limitation in usage of our

structured placement in general placement and floorplanning

framework. In future works, we will apply the structured

placement to analog floorplanning along with further practical

extensions.

REFERENCES

[1] D. F. Wong and C. L. Liu, A new algorithm for floorplan design, Proc.
23rd DAC, pp.101–107, 1986.

[2] H. Murata, S. Nakatake, K. Fujiyoshi, and Y. Kajitani, VLSI module
placement based on rectangle-packing by Sequence-Pair, IEEE Trans.
on CAD, Vol.15, No.12, pp.1518-1524, 1996.

[3] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, Module packing
based on the BSG-structure and IC layout applications, IEEE Trans. on
CAD, Vol.17, No.6, pp.519–530, 1998.

[4] P. N. Guo, C. K. Cheng, and T. Yoshimura, An O-tree representation of
non-slicing floorplan and its applications, Proc. 36th DAC, pp.268–273,
1999.

[5] Y-C. Chang, Y-W. Chang, and G-M. Wu, B*-trees: A new representation
for non-slicing floorplan, Proc. 37th DAC, pp.458–463, 2000.

[6] X. Hong, S. Dong, Y. Ma, Y. Cai, C. K. Cheng, and J. Gu, Corner Block
List: An efficient topological representation of non-slicing floorplan, Proc.
ICCAD 2000, pp.8-12, 2000.

[7] J. Lin and Y. Young, TCG-S: Orthogonal coupling of P*-admissible
representations for general flooplans, Proc. 39th DAC, pp.842–847, 2002.

[8] C. Kodama and K. Fujiyoshi, Selected Sequence-Pair: An efficient de-
codable packing representation in linear time using Sequence-Pair, Proc.
ASP-DAC 2003, pp.331–337, 2003.

[9] K. Sakanushi, Y. Kajitani, and Dinesh Mehta, The quarter-state sequence
floorplan representation, IEEE Trans. on CAS-I, Vol.50, No.3, pp.376–
386, 2003.

[10] T. Nojima, X. Zhu, Y. Takashima, S. Nakatake, and Y. Kajitani, Multi-
level placement with circuit schema based clustering, Proc. ASP-DAC
2004, pp.406–411, 2004.

[11] T. Nojima, Y. Takashima, S. Nakatake, and Y. Kajitani, A device-level
placement with multi-directional convex clustering, Proc. GLSVLSI 2004,
pp.196–201, 2004.

[12] J. M. Lin and Y. W. Chang, TCG-S: Orthogonal coupling of P*-
admissible representations for general floorplans, IEEE Trans. on CAD,
Vol.24, No.6, pp.968–980, 2004.

[13] X. Zhang and Y. Kajitani, Thoery of T-junction floorplans in terms of
single-sequence, Proc. ISCAS 2004, pp.341–344, 2004.

[14] J.-M. Lin and Y.-W. Chang, A transitive closure graph based representa-
tion for general floorplans, IEEE Trans. on VLSI Systems, Vol.13, No.2,
pp.288–292, 2005.

2C-5

220

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

