
Fast Buffer Insertion for Yield Optimization Under Process
Variations∗

Ruiming Chen and Hai Zhou
Electrical Engineering and Computer Science
Northwestern University, Evanston, IL 60208

ABSTRACT
With the emerging process variations in fabrication, the
traditional corner-based timing optimization techniques be-
come prohibitive. Buffer insertion is a very useful technique
for timing optimization. In this paper, we propose a buffer
insertion algorithm with the consideration of process varia-
tions. We use the solutions from the deterministic buffering
that sets all the random variables at their nominal values
to guide the statistical buffering algorithm. Our algorithm
keeps the solution lists short, and always achieves higher
yield than the deterministic buffering. The experimental re-
sults demonstrate that the exiting approaches cannot handle
large cases efficiently or effectively, while our algorithm han-
dles large cases very efficiently, and improves the yield more
than 12% on average.

1. INTRODUCTION
With shrinking geometries in deep sub-micron technology,

process variation becomes a prominent phenomenon in fabri-
cation. With process variations, the traditional corner-based
analysis and optimization techniques become prohibitive.
Recently, there emerged many statistical static timing anal-
ysis (SSTA) approaches [1, 2], which greatly speed up the
analysis by propagating the distributions instead of single
values. Based on those, some statistical optimization tech-
niques on gate sizing, buffer insertion [3–6] also emerged.
For the buffer insertion problem, Saxena et al. [7] predicted
synthesis blocks to have 70% of their cell count dedicated to
interconnect buffers within a few process generations. With
this huge number of buffers, there is an increasing demand
to maximize the timing yield under process variations. The
timing yield in this paper is defined as the probability that
the maximal required arrival time at the root of a RC-tree
that can be achieved by buffering satisfies a given timing
constraint.

In this paper, we consider the timing yield optimization
problem of buffer insertion under process variations. Since
the number of non-inferior statistical solutions is very large,
a main challenge in the statistical buffering is how to prune
the solutions such that the number of solutions and the sac-
rifice of the yield are both minimized. There are some work
that considered the buffering problem under process varia-
tions [3–6,8]. Khandelwal et al. [3] considered only the wire
length variation, and the pruning approaches are expensive.
Davoodi et al. [5] considered the correlations between the

∗This work was partially supported by NSF under CCR-
0238484 and a grant from Intel.

delay and the downstream capacitance, but the pruning ap-
proach is still prohibitive. Both techniques use a two-phase
scheme for the merge of solution lists: the solutions are gen-
erated in the first phase, and pruned in the second phase.
Then for the merge procedure that merges two solution lists
with m solutions and n solutions respectively, these tech-
niques run in at least O(m2n2) time (the number of solu-
tions before pruning is O(mn), and the prune techniques
compute the relation between each pair of solutions), which
is prohibitive for large m and n. Xiong et al. [4] proposed
to compute the joint probability density function (JPDF) of
solutions numerically, which is demonstrated to be very in-
efficient [6]. Xiong and He [6] ignored correlations between
the delay and the downstream capacitance, tried to propose
a transitive closure technique for probabilistic buffering, and
claimed that a direct extension of the deterministic buffer-
ing algorithms as in [9, 10] can be used in the statistical
situation. But the ordering property1 is not generally true,
and as shown in our experimental result part, the quality of
buffering solutions from [6] is not good compared with the
deterministic buffering that assumes that all the random
variables have the nominal values. Deng et al. [8] claimed
that the consideration of process variations is not necessary
for the buffering of two-pin nets. But the conclusion does
not hold for nets with multi pins according to the results in
the other existing statistical buffering work.

Table 1: Yield comparison between nominal (Nom)
and worst (Wor) scenarios.

p1 p2 r1 r2 r3 r4 r5
Wor 63.31 73.37 49.00 62.14 69.20 75.62 71.20
Nom 62.88 79.21 62.60 67.03 81.30 78.56 70.65

In this paper, we use the solutions generated by determin-
istic buffering to guide the statistical pruning. We observed
that the deterministic buffering fixing all the random vari-
ables at their nominal values (µ) achieves higher yield than
the buffering using the worst values (µ + 3σ). We use the
van Ginneken’s algorithm [9] to compute the solutions for
these two scenarios respectively. The solution with the min-
imal delay in the solution list at the root is selected, and
the yield of this solution is computed by Monte Carlo simu-
lation. Table 1 shows the comparison results between these
two scenarios. All these nets have more than two pins. The
results indicate that the solutions from the nominal scenario

1For any two random variable A and B with Gaussian dis-
tributions, either Pr(A ≥ B) ≥ γ or Pr(B ≥ A) ≥ γ, where
γ is a given constant number in (0.5, 1].

1-4244-0630-7/07/$20.00 ©2007 IEEE.

1A-4

19

are much better than those from the worst scenario for most
cases. For example, the solution in nominal scenario gains
13.60% more yield for case “r1”. This result is reasonable
because since all the random variables are assumed to have
Gaussian distributions, the buffering in the worst scenario
tends to optimize the costs for the extreme cases, while the
buffering in the nominal scenario optimizes the costs for the
cases that have much greater probabilities to occur in the
samplings. This is also consistent with the analysis in [8],
where it is proved that the buffering in the nominal scenario
achieves good yield for two-pin nets.

During the merge of the solution lists, we select at most
two times the number of the solutions in the deterministic
buffering for each solution list, so our algorithm is very effi-
cient. In this paper, we use Elmore delay model to compute
the delays of wires and gates, but our buffering framework
can also be used when more complex model is used if the
following two conditions are satisfied. The first condition
is that the nominal samples have large probabilities to oc-
cur in the samplings. If this is not the case, we need to
select another scenario where the samples have the biggest
probabilities to occur as the base of our approach. If the
random variables are approximated to have Gaussian distri-
bution, this condition is always satisfied. The second condi-
tion is that van Ginneken’s algorithm can be used with that
model in deterministic situation. This is satisfied by most
of the current delay models, since the variants of the van
Ginneken’s algorithm are still widely used in the industry.

The rest of this paper is organized as follows. Section 2
briefly reviews the existing buffer insertion algorithms for
the deterministic scenario. Section 3 presents our buffering
algorithm with the consideration of the process variations.
In Section 4, the experimental results demonstrate that our
algorithm is very efficient, and achieves more than 12% im-
provement on the yield on average. Finally, the conclusions
are drawn in Section 5.

2. PRELIMINARY

R,C

R

C/2C/2

(a) Wire model

+
−Cb

Rb

Cb

(b) Buffer model

+
−

+
−c1

rR1
1

2
3

1 3D1,3

D1,3/R1

(c) Gate model (from pin 1 to pin 3)

Figure 1: Delay models of wires, buffers and gates.

For simplicity, we use the Elmore delay model to com-
pute the delays of wires, modules and buffers as shown in
Fig. 1. Given a routing tree as a distributed RC network,
the classic van Ginneken’s algorithm [9] for buffer insertion
computes non-inferior solutions bottom-up from the sinks
to the root. The objective is to insert buffers such that the

maximal delay Droot from the root to sinks is minimized.
Each solution (Dv, Cv) at a node v represents a buffering of
the subtree rooted at v having Dv as the maximal delay to
the sinks and Cv as the loading capacitance. When a tree at
u is composed of a wire (u, v) and a subtree at v, its solution
(Du, Cu) can be computed as follows.

Du = Dv + r(u, v)(Cv + c(u, v)/2), Cu = Cv + c(u, v),

where r(u, v) and c(u, v) are the resistance and capacitance
of wire (u, v), respectively. When a buffer is inserted at the
node v, a new solution (D′

v, C′
v) can be computed similarly:

D′
v = Dv + db + rbCv, C′

v = cb,

where db, rb and cb are the internal delay, output resistance
and gate capacitance of the buffer, respectively. When a
node has two branches, assuming that (Dm, Cm) is a solu-
tion in one branch and (Dn, Cn) in the other, the combined
solution is given as follows.

D = max(Dm, Dn), C = Cm + Cn.

The optimal structure of dynamic programming requires
that there are no solutions (D1, C1) and (D2, C2) such that
D1 ≤ D2 and C1 ≤ C2 for the same subtree.

The van Ginneken’s algorithm traverses the routing tree
from the sinks to the root, and at each vertex, it computes
the solutions according to the above description, and prunes
the inferior solutions using the optimality condition.

3. CORRELATION-AWARE BUFFERING
With the consideration of the process variations, the de-

lay and capacitance parts of each solution become random
variables. Here, we assume that all the random variables
(r(u, v), c(u, v), db, rb, cb, Dv and Cv) have the Gaussian
distribution. Each random variable X is represented in a
canonical first-order form:

x0 +

m∑
i=1

xiεi + xm+1Rx,

where εi’s are independent random variables with the stan-
dard Gaussian distribution, x0 is the mean value of X, xi’s
are coefficients, and Rx is an independent random variable
with the standard Gaussian distribution. Here, Rx rep-
resents the independent variation. This canonical form is
available through principal component analysis (PCA) [1,
11].

When a wire w(u, v) is attached to a node v, the com-
putation of the maximal delay involves the multiplication
between the random variables (r(u, v)Cv and r(u, v)c(u, v)).
Keeping all the random variables in a first-order form as

x0 +

m∑
i=1

xiεi,

Xiong and He [6] used the moment-matching approach to
compute the multiplication between the Gaussian random
variables. If many random variables have their independent
variations, the number of non-zero coefficients may become
larger and larger during the computation. Thus, we prefer
the canonical form that models independent randomness.
We need to keep that canonical form during the buffering.

1A-4

20

Let

Cv = Cv0 +

m∑
i=1

αiεi + αm+1RCv ,

Dv = Dv0 +

m∑
i=1

βiεi + βm+1RDv .

Also suppose

r(u, v) = r0 +

m∑
i=1

γiεi + γm+1Rr,

c(u, v) = c0 +

m∑
i=1

ζiεi + ζm+1Rc.

Then the solution after attaching a wire (u, v) to v has

Cu = Cv0 + c0 + (αT + ζT)Υ + αm+1RCv + ζm+1Rc(1)

where Υ represents the column vector (ε1, ..εm)T (α, β, γ
and ζ also represent the corresponding column vectors), For
Cu, we get

σ2(Cu) =

m∑
i=1

(αi + ζi)
2 + α2

m+1 + ζ2
m+1.

By moment matching, we get

Cu = (Cv0 + c0) + (αT + ζT)Υ +
√

α2
m+1 + ζ2

m+1RCu ,

where RCu is an independent random variable representing
the local variance. For Du,

Du = K + PΥ + ΥT QΥ + R,

where

K = Dv0 + r0Cv0 + r0c0/2 (2)

P = βT + Cv0γ
T + r0α

T + 0.5c0γ
T + 0.5r0ζ

T (3)

Q = γαT + 0.5γζT (4)

R = r0αm+1RCv + Cv0γm+1Rr + αT Υγm+1Rr

+γT Υαm+1RCv + γm+1Rrαm+1RCv

+0.5(r0ζm+1Rc + c0γm+1Rr + ζT Υγm+1Rr

+γT Υζm+1Rc + γm+1ζm+1RrRc) + βm+1RDv .(5)

Then

E(Du) = K + tr(Q). (6)

E(D2
u) = K2 + PP T + 2tr(Q2) + tr(Q)2

+β2
m+1 + γ2

m+1tr(ααT) + α2
m+1tr(γγT)

+C2
v0γ

2
m+1 + γ2

m+1α
2
m+1 + r2

0α2
m+1

+0.25r2
0ζ2

m+1 + 0.25γ2
m+1ζ

2
m+1

+0.25ζ2
m+1tr(γγT) + 0.25c2

0γ
2
m+1

+0.25γ2
m+1tr(ζζT) + γ2

m+1tr(ζαT)

+Cv0c0γ
2
m+1 + 2Ktr(Q). (7)

Thus, we can compute σ2(Du) according to

σ2(Du) = E(D2
u) − E(Du)2. (8)

And

cov(Du, εi) = E(Duεi)

= Pi. (9)

Similar as in [2],

Du = (K + tr(Q)) +

m∑
i=1

Piεi + MRDu (10)

where M =
√

σ2(Du) − PP T .
Suppose

rb = rb0 +

m∑
i=1

ξiεi + ξm+1Rrb,

cb = cb0 +

m∑
i=1

θiεi + θm+1Rcb,

db = db0 +

m∑
i=1

λiεi + λm+1Rdb.

When a buffer is attached to node v, the new solution has

C′
v = cb0 +

m∑
i=1

θiεi + θm+1Rcb, (11)

D′
v = L + JΥ + ΥT ξαT Υ + H (12)

where

J = βT + λT + rb0α
T + Cv0ξ

T (13)

L = Dv0 + db0 + rb0Cv0 (14)

H = βm+1RDv + λm+1Rdb + rb0αm+1RCv

+ξT Υαm+1RCv + ξm+1RrbCv0

+ξm+1Rrbα
T Υ + ξm+1Rrbαm+1Rcv. (15)

Then, similarly, we get

E(D′
v) = L + ξT α (16)

σ2(D′
v) = JJT + β2

m+1 + λ2
m+1 + r2

b0α
2
m+1

+α2
m+1ξ

T ξ + C2
v0ξ

2
m+1 + ξ2

m+1α
T α

+ξ2
m+1α

2
m+1 + 2tr((ξαT)2). (17)

cov(D′
v, εi) = Ji. (18)

Similar as in [2],

D′
v = (L + ξT α) +

m∑
i=1

Jiεi + NRD′
v
, (19)

where N =
√

σ2(D′
v) − JJT .

The merge of solutions involves the “Max” operation be-
tween random variables. The approach in [2] is used to
handle this.

Now comes our correlation aware buffering algorithm. A
main challenge in buffering is how to prune inferior solutions.
In deterministic scenario, if D1 ≤ D2 and C1 ≤ C2, the
solution (D2, C2) is inferior. In statistical scenario, D and
C are random variables, thus, if

Pr(D1 ≤ D2, C1 ≤ C2) = 1,

(D2, C2) is inferior. It can be easily proved that no two
random variables with Gaussian distributions satisfy this
condition unless one of them is equal to the sum of a constant
and the other one. Thus, we need to relax this condition to
prune more solutions. It becomes

Definition 1 (Prune rule). For (D1, C1) and (D2, C2),
if

Pr(D1 ≤ D2, C1 ≤ C2) ≥ η,

1A-4

21

where η is a given probability, (D2, C2) is pruned.

We use the approach in [12] to evaluate the bivariate prob-
abilities in this prune rule.

Algorithm FSBI(u)

� Phase 1: deterministic buffering
1 if u is the root
2 then
3 VanGinneken(u)

� Phase 2: statistical buffering
4 List lst ← φ
5 if u is a sink (with delay Du and capacitance Cu)
6 then
7 return {(Du, Cu)}
8 for each child node v of u
9 do lstv ← FSBI(v)

10 for each solution (Dv, Cv) in S
11 do
12 update the (Dv, Cv) by attaching

the wire (u, v)
13 if u is a buffering location
14 then
15 find the solution with the minimal

mean value of D among the new
solutions generated by attaching
a buffer near u

16 insert this solution into lstv in the
increasing order of the mean value
of C

17 prune lstv according to the prune rule
18 lst ← merge all the lstv’s
19 return lst

Figure 2: FSBI algorithm

450 500 550 600 650 700 750 800
0

1

2

3

4

5

6

7

8

9

10

mean value of delay

of

 s
ol

ut
io

ns

Statistical
Norminal

Figure 3: The distributions of the mean delays of
the solutions in different scenarios for “r2”.

The general flow of our algorithm, called FSBI, is shown
in Fig. 2. The input of this algorithm is the root of the
routing tree. Without loss of the generality, we assume that
there is only one type of buffer in the library. FSBI has two
stages: the first stage is the deterministic buffering, and the
second is the statistical buffering.

In the first stage, all the random variables have the nom-
inal values, and FSBI uses the van Ginneken’s algorithm to
compute the non-inferior solution list at each node.

In the second stage, all the random variables have their
distributions, and the solutions in a solution list are sorted

in the increasing order of the mean value of the downstream
capacitance (C). When a buffer is attached to a node, we
only generate one solution: the solution with the minimal
mean delay. This can keep the number of solutions small,
and does not greatly affect the yield in practice.

The merge of two solution lists with m solutions and n
solutions respectively generates O(mn) solutions, so if the
number of merge operations is large, the algorithm becomes
prohibitive. As shown in Fig. 3, even after the pruning with
the previously introduced rule, the number of statistical so-
lutions is still too large. We observed that the downstream
capacitance computation in the van Ginneken’s algorithm
does not involve any non-linear operations (actually all the
operations are additions), thus the mean value of the down-
stream capacitance is always a linear function of the mean
value of the operands. For example, if a wire (u, v) is at-
tached to node u,

µCu = µCv + µc(u,v).

Thus, for each deterministic solution, we can always find
statistical solutions that have the same mean C values in
the statistical solution space. Now suppose (D′, C′) is the
statistical representation of a deterministic solution (D, C),
then we have µ(C′) = C. In addition, the D of a solution
depends on the C of the downstream solutions, while the
C does not depend on the D of the downstream solutions.
Therefore, for each deterministic solution (D, C), if we al-
ways pick one statistical solution (D′′, C′′) that satisfies

(µ(D′′) < µ(D′)) ∧ (µ(C′′) ≤ µ(C′) = C),

the yield is expected to be higher than the yield computed by
the deterministic buffering in nominal scenario. The number
of statistical solutions is reduced to the number of determin-
istic solutions, so the algorithm is efficient.

We use a one-phase merge procedure in FSBI. The pseudo-
code of the merge procedure is shown in Fig. 4. Without
loss of generality, we assume that each node has at most
two branches. In the first stage of FSBI, the deterministic
solutions from the left branch and the right branch are put
into the leftlist and rightlist fields of each node, respec-
tively, in the increasing order of C. The input of the merge
is the current node t, and the statistical solution lists llst
and rlst from t’s branches. First, the merge calls the func-
tion computeDensity, which for each interval composed
by the C parts of two consecutive deterministic solutions in
the recorded solution list, computes the number of statis-
tical solutions whose C’s have the mean values located in
the interval. This can be done in linear time. compute-
Density returns an array storing the number of solutions
in each interval.

In order to improve the yield, we need to keep many sta-
tistical solutions at the beginning such that we can find a
solution that has a small mean D value in each interval dur-
ing the merge of big solution lists. Thus, the merge checks
if the number of solutions is much larger than the number
of solutions in the deterministic solution lists. If not, we
do not need to further prune any solutions, otherwise, we
pick one statistical solution from each interval. The subrou-
tine PickOneSolution(lst, count) accomplishes this. It
picks the solution having the minimal mean value of D in
the current interval, and returns the distance from the last
picked solution to current picked solution. In summary, the
merge sub-routine keeps all the non-inferior solutions when

1A-4

22

Algorithm merge(t, llst, rlst)

� lst is a list in the increasing order of the
mean value of C

1 lst ← φ
2 count1 ← computeDensity(t.leftlist, llst)
3 count2 ← computeDensity(t.rightlist, rlst)
4 i ← 0
5 while (i < length(llst))
6 do
7 if length(llst) ≤ 2 × length(t.leftlist)
8 then
9 sol1 ← llst[i]

10 i ← i + 1
11 else
12 sol1 ← llst[i]
13 p ← PickOneSolution(llst, count1)
14 i ← i + p
15 j ← 0
16 while (j < length(rlst))
17 do
18 if length(rlst) ≤ 2 × length(t.rightlist)
19 then
20 sol2 ← rlst[j]
21 j ← j + 1
22 else
23 sol2 ← rlst[j]
24 p ← PickOneSolution(rlst,

count2)
25 j ← j + p
26 (max(sol1.d, sol2.d), sol1.c + sol2.c) is

inserted into the lst
27 return lst

Figure 4: Merge sub-routine

the size of the current statistical solution list is comparable
with the size of the solution list of the deterministic buffer-
ing, or picks only a small number of the solutions when the
current solution list becomes much larger. Using this ap-
proach, we have µ(D′′) ≤ µ(D′) and µ(C′′) ≤ C. Thus, the
yield is expected to be at least not worse.

The insertion of one merged solution into the list also
checks if this solution is inferior or there exists a solution in
the list that is inferior to this solution according to the prune
rule. After this checking, if this solution is not inferior, we
insert the solution into the list in the increasing order of
the mean value of C. Actually, many of the solutions are
inferior in practice, so the size of the solution list is always
much less than mn. Therefore, this simultaneous merge and
prune procedure also greatly improves the efficiency.

4. EXPERIMENTAL RESULTS
The FSBI algorithm is implemented in C++. We use

the heuristic II that is claimed to be the best in the three
heuristics in [3], and the approach in [6] for comparison. [5]
also uses an expensive two-phase merge strategy, and the
algorithm in [4] is shown to be very slow in [6], so we do not
compare them with ours.

FSBI is tested on all the test cases from [13]. The char-
acteristics of these test cases are shown in Table 2. For the
nets with small number of sinks (e.g., the data nets), the ex-
isting approaches can be used. So we test our approach on
only those nets with big number of sinks. Since the original

test cases in [13] do not have the statistical information (e.g.,
deviation, correlation), we generate the statistical informa-
tion by ourselves. For each random variable representing the
db, the resistance, or the capacitance, we randomly generate
the coefficients of the εi’s in the canonical form, and enforce
that each random variable has 10% deviation from its nom-
inal value. Note that although the test cases in [6] are also
derived from the test cases in [13], since we cannot get those
test cases with statistical information from [6], our test cases
are different from those in [6]. η = 0.90 in the prune rule.
All the experiments were run on a Linux PC with 2.4 GHz
Xeon CPU and 2.0 GB memory.

Table 2: The characteristics of the test cases
name # sinks # nodes # buffer locations

p1 269 537 268
p2 603 1205 602
r1 267 533 266
r2 598 1195 597
r3 862 1723 861
r4 1903 3805 1902
r5 3101 6201 3100

The heuristic II in [3] completes the merge procedure as
follows. First, it merges each pair of solutions from left
branch and right branch respectively, and then computes the
prune probability between each pair of solutions in the new
solution lists. A graph with the vertices representing the
solutions and the edges representing the pruning relations
between solutions is constructed. Then the vertex with the
maximal out-degree is iteratively selected into the set that
stores the vertices representing non-inferior solutions, and
all the vertices that have edges from the selected vertex are
deleted from the graph.

The comparison results of FSBI, [3], [6] and the deter-
ministic buffering in nominal scenario are shown in Table 3.
The solution with the minimal mean value of D (if tied, the
solution with the minimal variance) is selected as the final
solution. The timing constraints are randomly selected such
that our algorithm and the other algorithms have the yields
in the reasonable range [60%, 100%]. The approximation of
the multiplication of Gaussian variables as a Gaussian vari-
able may have 10% errors on the PDF [6], so we use Monte
Carlo simulation to compute the yield for the selected so-
lution. Column 2 shows the timing constraints, Column 3
and 4 show the number of buffers and the yield, respectively,
computed by the van Ginneken’s algorithm in nominal sce-
nario, Column 5 and 6 show the running time and the yield,
respectively, computed by [3], and Column 7 shows the yield
computed by [6]. Column 8, 9 and 10 show the number of
buffers, the running time and the yield from FSBI, respec-
tively. Column 11 shows the yield improvement of FSBI
compared with the deterministic buffering. The “N/A” in
the table means that the algorithm cannot finish the test
case because of the memory constraint (2GB) or time limit
(3 hours).

On average, FSBI achieves 12.34% improvement on the
yield compared with the deterministic buffering. The yields
from FSBI are always higher than those from the determin-
istic buffering for all these cases. For example, the FSBI
achieves 16.78% yield gain for test case “r1”. We also im-
plemented an approach that prunes the solutions according
to only the prune rule, so this approach keeps all the “non-

1A-4

23

Table 3: Comparison results of FSBI, [3], [6] and deterministic buffering.
Nets Van-Ginneken (Nominal) [3] [6] FSBI Gain

Name D constr # Buffer Yield (%) Time (s) Yield (%) Yield (%) # Buffer Time (s) Yield (%) (%)
p1 805 162 62.88 N/A N/A 63.88 158 10.22 75.28 12.40
p2 2030 268 79.21 N/A N/A 73.60 268 27.92 94.37 15.16
r1 335 166 62.60 198.75 77.81 59.10 169 5.26 79.38 16.78
r2 454 358 67.03 N/A N/A 62.90 363 17.53 79.49 12.46
r3 620 517 81.30 N/A N/A 79.30 523 14.20 92.48 11.18
r4 900 1187 78.56 N/A N/A 79.26 1192 52.67 87.26 8.70
r5 1080 1893 70.65 N/A N/A 71.03 1918 76.63 80.36 9.71

ave 12.34

inferior” solutions, and thus gives us a good estimation of
the optimal yield. It can finish only the case “r1” because
of the limitation of the memory. The computed yield of
“r1” is 79.47%, which is quite close to the yield from FSBI.
So the yield is not sacrificed much in FSBI. The results
demonstrate that the statistical buffering is still needed for
multi-pin nets, and it can use the information provided by
the deterministic buffering to achieve higher yields. The
yields computed by [6] are higher than those computed by
the deterministic buffering that assumes the worst situa-
tion (these results are shown in Table 1), which is consistent
with the conclusion in [6]. But in general, they are not much
higher, sometimes even lower, than the yields computed by
the deterministic buffering that assumes the nominal situ-
ation. The FSBI always achieves much higher yields than
the approach in [6]. The results in Table 3 also indicate that
the FSBI is very efficient. It takes only 76.63 seconds for
FSBI to finish the largest case “r5”. While [3] cannot fin-
ish most of the test cases because of the memory constraint
(2GB) or time limit (3 hours). Although the approach in [6]
is efficient, we do not report its running time because of the
quality of its solutions.

420 430 440 450 460 470 480 490
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delay

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

FSBI
Norminal
Worst

Figure 5: Comparison of solutions for “r2”

Through Monte Carlo simulation, Fig. 5 shows the cumu-
lative distribution functions (CDF) of the maximal delays
from the root to sinks for the final solutions from those
algorithms. The “Nomina” curve and the “Worst” curve
represent the CDFs of the solutions from the deterministic
Van-Ginneken’s algorithm that assumes all the parameters
are at their nominal values or their µ + 3σ values, respec-
tively. The curve representing the distribution from FSBI
is obviously pushed to the left side, so FSBI gets a higher
yield.

5. CONCLUSIONS
In this paper, we proposed a buffer insertion algorithm

with the consideration of process variations. We use the so-
lutions from the deterministic buffering that fixes all the ran-
dom variables at the nominal values to guide our statistical
buffering algorithm. We keep all the non-inferior solutions
according to a correlation-aware prune rule when the size of
a solution list is comparable with the size of the determinis-
tic solution list, while if the size of the statistical solution list
becomes much larger, we pick only a small number of sta-
tistical solutions to merge. Our algorithm always achieves
higher yield than the deterministic buffering. The experi-
mental results demonstrate that our algorithm can handle
large cases very efficiently, and improves the yield more than
12% on average.

6. REFERENCES
[1] H. Chang and S. S. Sapatnekar. Statistical timing analysis

considering spatial correlations using a single pert-like
traversal. In ICCAD, pages 621–625, 2003.

[2] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker,
and S. Narayan. First-order incremental block-based
statistical timing analysis. In DAC, pages 331–336, 2004.

[3] V. Khandelwal, A. Davoodi, A. Nanavati, and
A. Srivastava. A probabilistic approach to buffer insertion.
In ICCAD, pages 560–567, 2003.

[4] J. Xiong, K. Tam, and L. He. Buffer insertion considering
process variation. In DATE, 2005.

[5] A. Davoodi and A. Srivastava. Variability-driven buffer
insertion considering correlations. In ICCD, 2005.

[6] J. Xiong and L. He. Fast buffer insertion considering
process variations. In ISPD, 2006.

[7] P. Saxena, N. Menezes, P. Cocchini, and Desmond A.
Kirkpatrick. The scaling challenge: Can
correct-by-construction design help? In ISPD, pages 51–58,
2003.

[8] L. Deng and M. D. Wong. Buffer insertion under process
variations for delay minimization. In ICCAD, pages
317–321, 2005.

[9] L. P. P. P. van Ginneken. Buffer placement in distributed
RC-tree networks for minimal Elmore delay. In ISCAS,
pages 865–868, 1990.

[10] W. Shi and Z. Li. An O(n log n) time algorithm for optimal
buffer insertion. In DAC, pages 580–585, 2003.

[11] W. J. Krzanowski. Principles of Multivariate Analysis.
Oxford University Press, 2000.

[12] D. B. Owen. Tables for computing bivariate normal
probabilities. The Annals of Mathematical Statistics,
27:1075–1090, 1956.

[13] Z. Li and W. Shi. Fbi: Fast buffer insertion for interconnect
optimization. http://dropzone.tamu.edu/∼zhuoli/GSRC/
fast buffer insertion.html.

1A-4

24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

