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Abstract— A new graph reduction approach to symbolic circuit analysis
is developed in this paper. A Binary Decision Diagram (BDD) mechanism
is formulated, together with a specially designed graph reduction process
and a recursive sign determination algorithm. A symbolic analog circuit
simulator is developed using a combination of these techniques. The
simulator is able to analyze large analog circuits in the frequency domain.
Experimental results are reported.

I. INTRODUCTION

Symbolic circuit analysis is concerned with finding a network
function (transfer function) from one signal to another expressed in
terms of the circuit element symbols. While many methods have
been studied starting from 1950’s, such as [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10] among others, few of them are actually in
use today. As pointed out in [11], most of the classical methods
are unable to deal with large-scale integrated circuits due to the
unscalable complexity in implementation. For a review on classical
and contemporary methods, refer to the monographs [12], [13], [14]
and the survey paper [15].

Recent research efforts on symbolic methods target at large net-
work blocks containing 20 to 40 transistors, typical for most analog
blocks. Analog designers tend to use approximately derived formulas
in design practice, but would like to justify their approximate analysis
by comparing with the analytical formulas derived from a symbolic
simulator. Except for numerical results, Spice-like simulators are
not able to provide analytical formulas such as gain and sensitivity
expressions. However, deriving analytical expressions for a network
consisting of about 20 transistors (with typical small-signal models)
is a daunting task for all symbolic simulators [16], [17].

Reduced Ordered Binary Decision Diagram (ROBDD) proposed
by Randal Bryant [18] opened a new door to many NP-hard prob-
lems in the design automation community. The idea of determinant
decision diagram (DDD) proposed by Shi and Tan [19] was the first
successful application of decision diagram to symbolic manipulation
of the explosive number of cofactors in the expansion of a network
determinant. However, since DDD is MNA based, its efficiency is
limited by the duplicated symbols and cancellation. Hence the size
of circuits DDD can analyze without using approximation is limited.

Another alternative approach is to construct a decision diagram
directly from the circuit topology, which is the subject of this paper.
By introducing a successive graph reduction and sign determination
scheme, one can construct a decision diagram efficiently by sharing
sub-networks.

This paper starts from introducing the basic idea and steps for
graph reduction using a simple RC example in section II. The general
graph reduction process is formulated in section III. Algorithms for

∗The work of G. Shi and W. Chen was supported by the National Natural
Science Foundation of China, Grant No. 60572028.

decision diagram construction and sign determination are presented in
section IV, followed by simulator construction and simulation results
in section V. This paper concludes in section VI. A theoretical foun-
dation of the graph reduction method is presented in the appendix.

II. PRELIMINARY

Two main approaches for systematic computerized symbolic analy-
sis are algebraic methods and topological methods. Signal flow graph
is a topological approach, but the SFG constructed may have less
resemblance to the original circuit. In fact, there is another topological
approach that solves a network function directly from the given circuit
topology, at most with slight modifications. This approach would be
beneficial to analog designers who usually are used to manipulation
of circuit topology. The symbolic analysis technique to be developed
in this paper follows the latter approach.

A. Review of the tree-pair idea

To help understand the basic idea of the current approach, we start
from the simple example shown on the left side in Fig. 1. For this
circuit, the transfer function from the voltage source Vs to the voltage
across the capacitor Vc is H(s) = 1/(1 + RCs). The reduction
approach proceeds as follows. First draw a graph resembling the
circuit (right side in Fig. 1), where an extra edge Vc is added across
the capacitor. This extra edge Vc and the edge Vs form a virtual
voltage controlled voltage source (VCVS) pair, denoted symbolically
as Vs = XVc. The transfer function is solved if the unknown X is
solved symbolically, i.e., H(s) = Vc/Vs = 1/X .

Fig. 1. An RC circuit and its graph (Example 1).

An idea of valid tree and tree-pair was proposed recently by Yin
et al [20], [21]. By valid it means that only those trees and tree-pairs
satisfying certain constraints are enumerated. In this sense it is more
appropriate to call such trees and tree-pairs admissible.

Admissible trees or tree-pairs are constructed according to certain
rules, which were stated in the papers [20], [21]. Deriving such rules
is a nontrivial task. Unfortunately, no derivation is available in [20],
[21] and rules were stated in very vague language. Nevertheless, the
basic idea there turns out to be valuable in that it can be improved
and reformulated to make the method practically applicable. In this
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paper we derive the constraints for all admissible trees and tree-
pairs from a rigorous algebraic treatment (see the appendix), based
on which some efficient algorithms are designed for implementation.
Before we get into the formality, we continue to articulate the basic
techniques using the working example.

For the preceding example, two admissible trees and one admis-
sible tree-pair are found in Fig. 2. Three signed terms are then
derived from the trees and tree-pair as R−1, Cs, and −XR−1,
respectively, according to certain rules. By summing them up to zero,
one solves that X = 1 + RCs, by which the transfer function is
H(s) = 1/(1 + RCs).

Vs

0

21 R

Cs

0

21

Vs

(a) (b)

Vc

0

21

0

21R R

Vs

(c)

Fig. 2. (a,b) Admissible trees. (c) Admissible tree-pair.

The valid tree and tree-pair idea proposed by Yin et al is not di-
rectly applicable to large circuits, because this method is enumeration
based, suffering from the exponentially increasing number of product
terms.

B. Improvement on the tree-pair enumeration

To get around the curse-of-dimensionality, we shall introduce a
creative idea by converting the tree-enumeration process into a graph
reduction process, meanwhile the reduction process is implemented
by a decision diagram (BDD) data structure which takes the advan-
tage of sub-graph sharing.

The graph reduction process is illustrated once again by our
working example. An admissible tree-pair consists of a left-tree (L-
tree) and a right-tree (R-tree). Since the graph edges allowed to be
tree edges of an admissible tree-pair are not all identical (see Fig.
2), it is convenient to crate at the beginning two subgraphs from
the original graph, with the left-graph (L-graph) containing all edges
allowed for all L-trees, while the right-graph (R-graph) containing all
edges allowed for all R-trees. For the current example, the L-graph
and R-graph constructed are shown in Fig. 3, where according to the
definition of admissible tree-pairs (see appendix), Vc is allowed on
the R-graph only.

Fig. 3. Left and right subgraphs.

The L-graph and R-graph are then reduced successively by fol-
lowing a set of graph reduction operations until no further reduction
is necessary. We leave the details of the reduction operations to the

next section, but just to illustrate the basics here. The graph reduction
process shown in Fig. 4 is explain as follows.

First we choose an order for the symbols, X < R < C, with
A < B meaning A precedes B. Attached to vertex X is the pair of
beginning L-graph and R-graph. Since X represents the dependent
VCVS pair (Vs, Vc), there are two operations available for it, one by
shortening Vs edge in L-graph (meanwhile removing Vs edge from
R-graph) and shortening Vc edge in R-graph (meanwhile removing
edge C from R-graph); the other by removing Vc edge from R-
graph first then shortening both Vs edges from L-graph and R-
graph. These two operations lead to the left vertex R and the right
vertex R in the decision diagram, respectively, with the two arrows
signed. The resulting reduced graphs are attached to the left and
right vertex R, respectively. Further operate on the reduced graphs
by shortening/opening the edge R and then the edge C, until no more
edges available. By tracing the decision diagram along a path from
the root to the leaf, if the number of shortened edges is equal to N−1,
where N is the total number of nodes in the original graph, the leaf
node is marked “1”, otherwise it is marked “0”. We note that the path
ending at “1” represents an admissible tree or an admissible tree-pair,
and the product of all signed weights (for the shortened edges) along
the path is the admissible term needed to form the sum-of-product
expression.

Fig. 4. Illustration of graph reduction.

III. FORMULATION OF GRAPH REDUCTION

The graph construction and reduction steps outlined above is
formalized now. We find the following assumption sufficient for
practical use.

Assumption 1 (Basic Assumption)

• The circuit is linear and can be modeled by elements of
impedances, admittances, the four types of dependent sources,
independent source, and nullators and norators.

• A dependent source pair involves only one controlling branch
and one controlled branch, and no self-controlling and mutual-
controlling exists.

A graph is created from the circuit network according to the
following rules.

Graph Construction Rules

(i) Controlling or controlled edges are directed; a voltage edge is
directed from + to −, and a current edge is directed along the
assigned current direction.

(ii) A controlling voltage is identified by an extra edge in parallel
to the circuit element that has that voltage. (Note that no current
flows through such an added edge.)
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(iii) A controlling current edge is identified by an extra edge in
series with the circuit element, through which the current flows.
(Note that no voltage drops across such an added edge.)

(iv) An ideal opamp is modeled by a nullor pair, consisting of a
nullator and a norator and represented respectively by an NU
(nullator) edge and an NO (norator) edge in the graph.

Throughout the paper, we shall be using shorthand such as CC
(current controlling), VC (voltage controlling), CS (current source),
and VS (voltage source) to refer to the edges involved in the VCVS,
CCCS, VCCS, and CCVS pairs, and NU and NO to refer to the edges
of nullors.

The definition of admissible tree-pair (Definition 1 in the Ap-
pendix) requires that certain edges be allowed only in one of the trees
in a tree-pair while other edges be allowed in both R-tree and L-tree.
To facilitate graph reduction, we adopt a graph splitting strategy,
i.e., to split the original graph into two subgraphs called L-graph
and R-graph, where each subgraph contains all the edges allowed
for it. (see Fig. 3). Listed in Table I are the detailed operations for
different types of the graph edges. The two columns labeled SHORT
and OPEN indicate the two generic types of decision to be taken at
each vertex of the decision diagram.

We remind that, since CC and V S edges are allowed in both L-
graph and R-graph, whenever CC or V S is shortened in one graph
as a pairing edge, it has to be removed from the other graph for
consistency.

TABLE I
OPERATIONS FOR GRAPH REDUCTION.

SHORT OPEN

Y or Z Short Y/Z Open Y/Z
E (VCVS) Short VC; Short VS Open VC; Short VS
F (CCCS) Short CC; Short CS Short CC; Open CS
G (VCCS) Short VC; Short CS Open CC; Open CS
H (CCVS) Short CC; Short VS Short CC; Short VS

(NU,NO) Short NU; Short NO Open NU; Open NO

The edge operations listed in Table I are derived directly from
the definition of admissible tree-pairs and Theorem 1 in the ap-
pendix. Suppose the graph nodes are numbered continuously from
0, 1, 2, · · · , N − 1 with the node 0 being the ground. We specify
that, when shortening an edge, the node resulting from collapsing
two nodes is relabeled by retaining the smaller node number.

IV. GRAPH REDUCTION ALGORITHMS

A. Graph Reduction Decision Diagram

A graph pair is reduced successively following a prespecified
symbol order. The reduction process is essentially a binary decision
process, at each decision point two generic operations SHORT and
OPEN are made, each leading to a sub-diagram. To avoid the
exponential growth of the diagram structure, binary decision diagram
(BDD) manages to take the advantage of subgraph sharing. In
fact, in the reduction process different reduction paths may end up
with isomorphic subgraph pairs in the sense of identical topology
but possibly different node labeling. A typical technique used in
implementation is hashing [22].

The decision diagram created in the process of graph reduction is
called a Graph Reduction Decision Diagram (GRDD). In a GRDD,
each diagram arrow is associated with a reduction operation together
with a sign, meanwhile each diagram vertex is associated with a

symbol. The two arrows originating from a vertex correspond to the
two operations for the symbol in the vertex.

Standard BDD terminologies are used in the algorithm description
below. The solid arrow in a GRDD is called the 1-edge, corresponding
to the operations listed under the column SHORT in Table I, while
the dashed arrow is called the 0-edge, corresponding to the operations
listed under the column OPEN in Table I. A path from the root to
the 1-terminal is called a 1-path. An admissible term is formed by
all the symbols issuing a solid arrow (i.e. 1-edge) along a 1-path.
The sign of an admissible term is the product of all the signs along
the 1-path.

At the end of graph reduction, the decision diagram obtained is
purely a BDD containing all circuit symbols and the necessary sign
information. (see Fig. 4.) Such a decision diagram is also called
a Symbol Decision Diagram (SDD), in which information on the
intermediate reduced graph pairs is immaterial. The SDD size is
determined by the number of vertices in the SDD (excluding the
terminal vertices “1” and “0”).

The following GRDD construction algorithm summarizes all the
graph reduction details described so far. To facilitate symbolic anal-
ysis, we always order the unknown symbol X first.

GRDD Construction Algorithm:
Step 1 Initialization: Create the L-graph and R-graph, each

containing all edges allowed.
Step 2 Process the edges in the order specified for the sym-

bols with the symbol for I/O goes first. Short or open
the appropriate edges associated with the symbol ac-
cording to the operations listed in Table I.

Step 3 Check the Termination Condition: If tree formed,
point the edge to the terminal node ”1”; then go to Step
6. If no tree possible, terminate the edge at the node
”0”; then go to Step 6. Otherwise, go to Step 4.

Step 4 Determine the signs for the SHORT-edge (1-edge) and
the OPEN-edge (0-edge), respectively, according to
the Sign Determination Algorithm (see next).

Step 5 Check subgraph isomorphism and hash the subgraph
pair pointed to by the current decision edge. If hashed,
connect the pointer and terminate the graph reduction
process following this decision edge.

Step 6 More symbols unprocessed?
If yes, goto Step 2. Otherwise, quit the algorithm.

B. Sign determination

Sign determination is a crucial part in the graph reduction process.
Let AL and AR be the two reduced incidence matrices of admissible
L-tree and R-tree, respectively, with their rows (labeled by node
numbers) in exactly the same order and their columns (labeled by
the edge names) aligned. The following proposition is well-known in
the literature.

Proposition 1 The sign for an admissible term determined by an
admissible tree-pair is the product of the determinants of AL and
AR, i.e., det |AL| · det |AR|. (Note that each determinant evaluates
to either +1 or −1.)

Next we introduce a recursive sign determination procedure that
can be integrated with the graph reduction and sharing process.

In implementation, two 2-dimensional arrays are used to represent
the edges in the L-graph and R-graph, respectively, where each edge
is identified by its two end-node numbers (Fig. 5). Let e(1) and
e(2) be the first (upper entry) and the second nodes (lower entry)

199

2C-2



of edge e, respectively. Assume all edges are directed from the node
e(1) toward e(2), including those Y or Z edges. Because of the
edge-merging operation and node relabeling, an edge identical in the
two subgraphs could have distinct end-node numbers but it does not
affect sign determination. In an edge-shortening operation, we always
merge the larger node number toward the smaller node number, while
keeping the smaller node number. The two edges (either common or
paired) are said in opposite direction if in one column e(1) < e(2),
while in the counterpart column e(1) > e(2). The sign determination
algorithm is summarized below.

Fig. 5. A subgraph represented in a 2D-array.

Sign Determination Algorithm
Step 0 Initialize: set sign := 1.
Step 1 If the edge is opened, remove the edge from the arrays

and keep the sign unchanged. If the edge (denoted
(v1, v2) with v1 < v2) is shortened, remove the edge
from the arrays and replace the larger node number
v2 by the smaller node number v1 for all the remaining
edges in the two arrays that are connected to v2. Count
the number of nodes in each array (excluding v1 and
v2) that are indexed smaller than v2. If the count is
odd, update the sign by −1. (Count the two arrays
separately.)

Step 2 If the two edges being shortened are in opposite direc-
tion, update the sign by −1.

Step 3 If the shortened edge is a VS and is not a common
edge, update the sign by −1.

Step 4 Attach the resulting sign to the corresponding SDD
edge.

The sign determination algorithm is a direct consequence of the
Gaussian elimination process of an incidence matrix. Its proof is
omitted.

V. SIMULATOR CONSTRUCTION

The Symbol Decision Diagram (SDD) constructed using the al-
gorithms presented serves as the symbolic analysis engine for our
symbolic simulator. The underlying principle is explained here. By
the main theorem in appendix (Theorem 1), the summation of all
signed admissible terms is equal to zero. For the designated input-
output of a circuit, the network transfer function is identified by a
virtual controlled source with the gain symbol X . The set of all
admissible terms can be divided into two subsets, one containing
the terms with symbol X while the other containing the rest.
Algebraically, we have the following expression

X

(
m1∑
i=1

ti

)
+

(
m2∑
j=1

Tj

)
= 0. (1)

where ti are those signed terms with X removed and Tj are the rest
of the signed terms without X . Then X can be solved as

X = −
∑m2

j=1 Tj∑m1
i=1 ti

. (2)

The decision diagram constructed, with the unknown symbol X as
the root vertex, is a symbolic representation of the network function,

from which other symbolic analyses can be done, such as plotting
frequency response curves, plotting poles-zeros, deriving approximate
gain functions and sensitivity function, etc. Note that in the SDD,
the partial sum

∑m1
i=1 ti is stored at the 1-edge of the vertex X ,

while the partial sum
∑m2

j=1 Tj is stored at the 0-edge of the vertex
X . The numerical value of each product term is the product of all
symbols substituted by their (complex) numerical values (with the
Z values inverted). At each specified frequency point, the two sub-
SDDs pointed to by vertex X are evaluated separately and then the
value for X is obtained from formula (2). The efficiency of numerical
evaluation is improved greatly by implementing hashing and cache
mechanism (see [23] for more details on implementation.)

Our symbolic simulator was implemented in C++ and run on Intel
Pentium 1.73GHz processor with 1G memory. A Spice-compatible
netlist grammar is used. The simulator starts from parsing a netlist,
creates an internal graph, then initiates a graph reduction process until
a decision diagram is created.

The performance of a symbolic simulator is measured by how
much time and memory it takes to build an internal representation
of the symbolic transfer function and how fast it is in the numerical
evaluation phase.

Our symbolic simulator has been used to analyze two typical
analog blocks, amplifier µA741 (24 transistors, Fig. 6) and µA725
(26 transistors, schematic omitted). The user is allowed to choose
(define) small signal models. For example, the one shown in Fig. 7
was used in our simulation.
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Fig. 6. Schematic of µA741.
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Fig. 7. BJT small signal model.

Table II shows the simulator performance collected for the µA741
circuit, where E is the number of edges in the graph, Elump is
the number of edges after the parallel edges are lumped, N is the
number of nodes in the graph, #term is the number of product
terms, #symb is the number of symbols in the circuit, |SDD|
denotes the size of SDD. The simulator performance for the µA725
circuit is shown in Table III. We note that these performance results
were collected under an appropriate ordering of the symbols in both
circuits. The ordering heuristics is also a subject of research, the more
details on which are to be reported elsewhere.

200

2C-2



TABLE II
SIMULATOR PERFORMANCE FOR CIRCUIT µA741.

E Elump N #term #symb |SDD| Time Memory
160 103 24 1.39e+14 81 57687 3.2s 59.6MB

TABLE III
SIMULATOR PERFORMANCE FOR CIRCUIT µA725.

E Elump N #term #symb |SDD| Time Memory
166 120 31 5.09e+17 98 53420 22.6s 358.7MB

VI. CONCLUDING REMARKS

We have developed an efficient symbolic analysis technique that
implements a graph reduction reduction process by using the decision
diagram mechanism. This technique has been used to construct an
efficient symbolic analysis engine for analyzing a linearized analog
integrated circuit in the frequency domain. Experimental results have
demonstrated the efficiency of the proposed theory and implemen-
tation. Future work includes efficient implementation on symbolic
poles/zeros analysis, sensitivity function extraction, and approximate
gain analysis, etc.

APPENDIX

A. Main Theorem

First admissible tree-pairs and trees are defined, followed by the
definition of admissible terms. The main theorem of this paper is
then stated with the main proof given.

Definition 1 (Admissible Tree-Pair) An admissible tree-pair con-
sists of an L-tree and an R-tree with the following conditions satisfied:

(i) All NU and NO edges in the original network must appear on
all admissible tree-pairs, with the NU edges in the R-tree and
the NO edges on the L-tree.

(ii) All Y and Z edges appearing in an admissible tree-pair are
common edges.

(iii) All CC and VS edges in the original network must appear on
the admissible tree-pair, but are allowed to appear either as
common edges or as pairing edges, exclusively. If appearing
in pair, the CC edges must be in the R-tree and and the VS
edges must be in the L-tree.

(iv) Any VC and CS edges may or may not appear on the admissible
trees. However, whenever they appear, they must appear as
pairing edges with the VC edge in the R-tree and the CS edge
in the L-tree.

When all edges are identical in the two trees of an admissible tree-
pair, the admissible tree-pair reduces to an admissible tree. Hence,
admissible tree is a special case of admissible tree-pair.

Definition 2 (Admissible Term) The signed product of all edge
weights from an admissible tree-pair or an admissible tree is called
an admissible term. The edge weights are defined as follows:

(i) Common edges: For Y edges the weights are Y ’s, for Z edges
the weights are Z−1, and for all common CC and VS edges
the weights are one.

(ii) Pairing edges: The following signed multipliers are used for
the weights of dependent pairs: −Ej,k for VCVS, +Fj,k for
CCCS, +Gj,k for VCCS, and −Hj,k for CCVS. Each nullor
pair is weighted one as well.

(iii) Term sign: Always positive for an admissible tree. For an
admissible tree-pair, the sign is determined by the Sign De-
termination Algorithm.

Remark 1 It should be noted that CC and VS edges (those edges
that must appear) would never form a loop; otherwise, the network
would be pathological, hence of no practical importance.

Theorem 1 (Main Theorem) Under Assumption 1, all admissible
terms defined by Definition 2 sum up to zero.

B. Proof of the Main Theorem
The proof is quite delicate. Only the key steps are sketched for the limited

space.
This proof follows an algebraic approach based on tableau formulation and

an application of the Binet-Cauchy Theorem [24]. Several new techniques are
introduced in the proof.

First an ε symbol is introduced in place of some zero elements in the tableau
matrix. The tableau matrix is formed by stamping all circuit elements together.
The ε symbol help use trace the symbols associated with the dependent
sources.

The second technique is element stamping. The branch equations of a
circuit (converted to a graph) can be written in matrix form

ZI + YU = 0, (3)

where I and U are the branch current and voltage vectors, respectively. Each
branch equation takes one of the following forms

Ui = ZiIi (Z edge)
Ii = YiUi (Y edge)
Ui = Ei,jUj , Ij = 0 (VCVS)
Ii = Fi,jIj , Uj = 0 (CCCS)
Ii = Gi,jUj , Ij = 0 (VCCS)
Ui = Hi,jIj , Uj = 0 (CCVS)
Uj = 0, Ij = 0 (NU edge).

(4)

Treating all Z (impedance) edges as Y (admittance) edges simplifies the
algebraic manipulation. Thus the branch equation for a Z edge in (4) will be
rewritten as Ii = Z−1

i Ui, i.e. all impedances are treated as admittance in the
graph.

The appearance of the preceding seven types of elements in the matrices
Z and Y can be described by the stamps listed below (only a few are listed
to save space):

Stamp in Z Stamp in Y⎡⎢⎢⎢⎣
. . .

1

. . .

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

. . .
−Yi

. . .

⎤⎥⎥⎥⎦ (Y )

⎡⎢⎣ε · · · Hi,j

. . .
...
ε

⎤⎥⎦
⎡⎢⎣−1

. . .
−1

⎤⎥⎦ (CCV S)

⎡⎢⎣ε

. . .
1

⎤⎥⎦
⎡⎢⎣0 · · · 1

. . .
...
0

⎤⎥⎦ (Nullor)

(5)

Note that we wrote the stamps for the dependent sources in upper triangular
form just for convenience. Also note that we have intentionally placed all the
minus signs to the diagonal elements of matrix Y and replaced all the zeros
on the diagonal of matrix Z by ε, making the matrix Z is nonsingular for
ε > 0. Eventually the original circuit equations will be recovered by taking
the limit ε → 0.

Matrix Z is diagonalized for easy manipulation later on. First, the nonzero
off-diagonals in matrix Z coming with the stamps for CCCS and CCVS can
be eliminated by row transformations. Note that the presence of ε symbols
makes this operation possible.

The key part of the proof is algebraic manipulation. Given a connected
network, after removing a spanning tree from the network, the remaining
branches form a subgraph called cotree. Let It (resp. Ut) and Ic (resp. Uc)
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be the vectors containing branch currents (resp. voltages) corresponding to
the edges on the tree and cotree, respectively. By tableau formulation, the
network equation can be written as⎡⎢⎣

At Ac

Bc Bt

Z(1) Y(2) Y(1) Z(2)

Z(3) Y(4) Y(3) Z(4)

⎤⎥⎦
⎡⎢⎣ It

Uc

Ut

Ic

⎤⎥⎦ = 0 (6)

where A :=
[
At Ac

]
is the reduced incidence matrix with At correspond-

ing to a preselected tree, and B :=
[
Bc Bt

]
is the fundamental loop matrix

with Bc corresponding to the cotree (see the textbook [12]). An empty block
in (6) indicates all-zero entries. Note that det |At| = ±1 and det |Bc| = ±1.

After some algebraic manipulation, the determinant of the coefficient matrix
of (6) becomes

det |M| = det |At| det |Bc| det |Ẑ(1)| det |Ẑ(4)|×

×

∣∣∣∣∣∣∣∣∣
I Q

I −QT

I Ẑ−1
(1)

Ỹ(2) Ẑ−1
(1)

Ỹ(1)

Ẑ−1
(4)

Ỹ(4) Ẑ−1
(4)

Ỹ(3) I

∣∣∣∣∣∣∣∣∣
, (7)

where Q = A−1
t Ac and B−1

c Bt = −QT (see Corollary 2.8 in [12]). Let
M1 be the matrix in the last determinant of (7). Applying some algebraic
identities, we obtain that

det |M1| =

∣∣∣∣∣[At Ac
] [

Ẑ−1
(1)

Ẑ−1
(4)

] [
Ỹ(1) Ỹ(2)

Ỹ(3) Ỹ(4)

] [
AT

t

AT
c

]∣∣∣∣∣ (8)

Since |At||Bc| = ±1, the identity of det |M| = 0 is equivalent to (by
(7))

det |Ẑ(1)| det |Ẑ(4)|det |M1| = 0.

Let

Ẑ = Ẑ(ε) :=

[
Ẑ(1)(ε)

Ẑ(4)(ε)

]
and

S =
∣∣∣Ẑ(ε)

∣∣∣ ∣∣∣AẐ
−1(ε)Ỹ(ε)AT

∣∣∣ . (9)

It is clear that det |M| = 0 is equivalent to S = 0.
By Binet-Cauchy Theorem [24] and noticing that Ẑ is diagonal, we have

S =
∣∣∣Ẑ∣∣∣ ∑

j1,··· ,jn

[
AẐ

−1
] (

1 · · · n
j1 · · · jn

) [
ỸAT

] (
j1 · · · jn

1 · · · n

)

=
∣∣∣Ẑ∣∣∣ ∑

j1,··· ,jn
k1,··· ,kn

(
n∏

i=1

Ẑ−1
ji

)
A

(
1 · · ·n

j1 · · · jn

)
Ỹ

(
j1 · · · jn

k1 · · · kn

)
AT

(
k1 · · · kn

1 · · ·n
)

(10)

where n is the number of nodes in the network (excluding the ground node)

and the notation A

(
1 · · · n
j1 · · · jn

)
denotes the major of matrix A formed

by the rows {1, · · · , n} and the columns {j1, · · · , jn}. By default the index
set {j1, · · · , jn} for summation means the summation over all distinct indices
satisfying j1 < j2 < · · · < jn.

We observe from (10) that a nonzero term in the summand results from
the condition that all the three factors

A

(
1 · · · n
j1 · · · jn

)
, Ỹ

(
j1 · · · jn

k1 · · · kn

)
, AT

(
k1 · · · kn

1 · · · n

)
are nonzero. It is a well-known fact that a nonzero major of the reduced
incidence matrix corresponds to a tree. Since A is a reduced incidence
matrix, if the index sets {j1, · · · , jn} and {k1, · · · , kn} coincide, then the
corresponding term is determined by a tree with its edges identified by the
index set, while if the index sets are nonidentical, then the corresponding term
is determined by a tree-pair. Note that in the case of tree-pair, the row indices
of matrix Ỹ associated with the term are the edge numbers of the left-tree
(L-tree), while the column indices of matrix Ỹ associated with the term are
the edge numbers of the right-tree (R-tree).

However, given any spanning tree or tree-pair from the circuit graph,
the resulting term could be zero if the determinant represented by

Ỹ

(
j1 · · · jn

k1 · · · kn

)
vanishes. To prevent from enumerating trees or tree-

pairs that result in vanishing terms, one needs to identify constraints on the
tree edges that lead to admissible tree-pairs (or trees). The constraints are
actually defined by the structure of matrices Ỹ and Ẑ that determines whether
the resulting term vanishes.

Conditions stated in Definition 1 can be derived from analyzing the special
structure of matrices Ỹ and Ẑ, taking into account of the role of ε (which is
vanishing). The details of the rest of derivation is omitted.
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