1-4244-0630-7/07/$20.00 ©2007 IEEE.

2B-2

A Precise Bandwidth Control Arbitration Algorithm
for Hard Real-Time SoC Buses

Bu-Ching Lin, Geeng-Wei Lee, Juinn-Dar Huang and Jing-Yang Jou

Department of Electronics Engineering,

National Chiao Tung University, Hsinchu, Taiwan

{kurt,gwlee,jyjou}@eda.ee.nctu.edu.tw, jdhuang@mail.nctu.edu.tw

Abstract— On an SoC bus, contentions occur while
different IP cores request the bus access at the same
time. Hence an arbiter is mandatory to deal with
the contention issue on a shared bus system. In dif-
ferent applications, IPs may have real-time and/or
It is very difficult to de-

sign an arbitration algorithm to simultaneously meet

bandwidth requirements.

these two requirements. In this paper, we propose an
innovative arbitration algorithm, RB_lottery, to meet
both of the requirements. It can provide not only the
hard real-time guarantee but also the precise band-
width controllability. The experimental results show
that RB_lottery outperforms several well-known ex-
isting arbitration algorithms.

I. INTRODUCTION

In SoC systems, intellectual properties (IPs) need to
communicate with each other to accomplish certain func-
tions. For example, CPUs access data from the memory
or other I/O devices. Such communication is commonly
built by using shared buses which serve as the communi-
cation channels between IPs. There are two major compo-
nents, masters and slaves, in the shared bus architecture.
Those IPs who initiate requests to access the shared buses
are called masters. These requests could be either read
or write transactions. Unlike what masters do, those IPs
without bus controllability are called slaves.

Since masters on the same shared bus may initiate re-
quests at the same time, an arbiter is required to decide
which master is the current bus owner. The arbiter could
be implemented in a centralized or a distributed fashion.
Meanwhile, different arbitration algorithms may lead to
different bus performance. Therefore, the arbiter should
be designed carefully in high performance systems [1-4].

The major difficulty to design an arbiter is to meet
different requirements simultaneously. A master has the
bandwidth requirement if it requires at least a certain
amount of bus bandwidth. In addition, some masters
with the real-time requirement demand their requests ac-
complished within a fixed number of clock cycles. Most
arbitration algorithms target at either real-time require-
ments or bandwidth requirements, but few of them deal

with both requirements well. It is a tough challenge to
design an arbiter for a real-time system with bandwidth
requirements.

To deal with this issue, we propose an innovative ar-
bitration algorithm, RB_lottery. The main motivation
is to provide both hard real-time guarantee and precise
bandwidth control. RB_lottery is a three-level arbitration
algorithm. The first level satisfies all hard real-time re-
quirements. The following two levels cooperate together
to provide the precise bandwidth control with only 2%
error range. The experimental results also show that
RB_lottery outperforms several well-know existing arbi-
tration algorithms.

The remainder of this paper is organized as follows.
Several existing arbitration algorithms are briefly re-
viewed in Section II. Section III presents the details of the
proposed arbitration algorithm, RB_lottery. Experimen-
tal results are given in Section IV. Finally, we conclude
this paper in Section V.

II. PRELIMINARIES

In this section, we briefly introduce several existing ar-
bitration algorithms. The characteristics of each arbitra-
tion algorithm are also presented.

ITI.A. Priority-Based Algorithm

In this scheme, each master is assigned an unique value
as its priority, either statically or dynamically. Whenever
the contending requests come from different masters, the
arbiter grants the bus access to the highest-priority mas-
ter. Due to the simplicity and low hardware cost, the
static priority algorithm is still widely used today. How-
ever, the masters with lower priority could be severely
starved by higher parity ones.

A methodology for the design of dynamic priority al-
gorithm is proposed in [5]. An addition layer of circuitry,
called the Communication Architecture Tuner (CAT), is
used to enhance the ability to adapt the system require-
ments. However, the implementation details of each mas-
ter IP is required, it is not always possible to get such
information if the IP is reused in a black-box fashion.

165

2B-2

II.B. TDMA Algorithm

In the time division multiplexed access (TDMA) algo-
rithm, the execution time is divided into several time slots
and each slot is statically assigned to a particular mas-
ter. If the master associated with the current time slot
has a pending request, the arbiter grants the transaction
immediately and the time wheel is rotated to the next
slot. While there is no pending request for the current
slot owner, the slot is wasted. In order to alleviate the
wasted slots, a second level arbitration algorithm is usu-
ally adopted to permit the bus granted to the other re-
questing masters. Fig. 1 shows an example architecture
of the two-level TDMA.

Because every master is allocated a certain amount of
time slots, TDMA guarantees not only a minimum band-
width allocation but also the worse-case response latency.
However, it is difficult to design the time slot sequence
for an non-periodic system. Another drawback of TDMA
is that the time slot can not independently consider real-
time requirements and bandwidth allocation at the same
time.

II.C. Lottery Algorithm

Another communication architecture, LOTTERYBUS,
is proposed in [6]. The algorithm stochastically grants one
of the contending masters according to the ticket assign-
ment either statically or dynamically [7-9]. The lottery
tickets acted as the weight are accumulated through the
lottery manager while bus contentions occur. A master
is stochastically selected to get the bus access. In other
words, it is a weighted random arbitration mechanism.

However, the ticket assignment influences both the
bandwidth allocation and the average response latency.
Consider there are a set of bus masters, My, Ms, ..., My;
each of them holds t1, to, ..., t, tickets, respectively; and
all masters have similar traffic behavior. From the prob-
ability analysis, the allocated bandwidth of master M; is

z 7 and the average response latency of master M; is

j=1"
n

Lty
Jt;lj The bandwidth allocation ratio for each master

is exactly conformed to the ticket ratio, but the average
response latency ratio for each master is proportional to
the reciprocal of the ticket ratio.

T

M3 \ M2@ 2"-level
Arbitration
TDMA Wheel) Algorithm

Grant M1

%¢@

Fig. 1. An example architecture of the two-level TDMA.

From the previous discussions, the ticket assignment
determines not only the bandwidth allocation but also
the average response latency. The more lottery tickets
a master owns, the higher granted probability and the
more fraction of bandwidth allocation it gets. In addi-
tion, masters with more tickets would also have shorter
average response latency. That is, the bandwidth alloca-
tion and the average response latency cannot be indepen-
dently controlled by the ticket assignment. Furthermore,
it also assumes that all masters have similar traffic be-
havior. This assumption may be true for network switch
designs [6], however, it is unlikely to be true for many
other SoC applications.

II.D. RT lottery Algorithm

A lottery-based arbitration algorithm, RT _lottery, is
proposed in [8]. As shown in Fig. 2, it is a two-level
arbitration algorithm including a real-time handler and
a Lottery with tuned weight. The real-time handler
providing hard real-time guarantees governs all requests
with real-time requirements first. Then the Lottery with
tuned weight allocates the bandwidth according to the
fine tuned tickets to meet the bandwidth requirements.

A set of real-time counters in the real-time handler
record the interval from the current request to correspond-
ing deadlines for all masters with real-time requirements.
It decreases by one every cycle until the current request
is served. If there are still pending requests while the
real-time counter reaches zero, it is a real-time violation.
The real-time handler also uses a warning line mechanism
which considers the worst contending case to provide hard
real-time guarantee. If the request is still pending and the
real-time counter is less than the warning line, the real-
time handler assigns the highest priority to the master
and grants the bus access immediately.

Ticket assignment plays an important role in Lottery-
based algorithms. It should consider not only the band-
width requirement but also the traffic behavior at the
same time. A simulation-based ticket redistribution
mechanism, weight tuning, is used to decide the proper
ticket assignment. While the simulation result violates
the bandwidth requirements, the master with the most
over-allocated bandwidth than required gives part of its
tickets to the master with the most under-allocated band-
width than required.

Real-Time
Handler

_| Lottery with
Tuned Weight

for bandwidth
requirements

for real-time
requirements

Fig. 2. The architecture of RT lottery.

166

However, the weight tuning mechanism does not always
successfully fulfill the bandwidth requirements. For ex-
ample, there are three masters, M1, M2 and M3, each
requires at least 25% of total bandwidth. We define the
maximum bandwidth as the greatest possible bandwidth
that a master can get. The maximum bandwidth of M1,
M2 and M3 are 80%, 30% and 30%, respectively. As
shown in Table I, each master has 100 tickets at the
beginning in the second column. After several itera-
tions of weight tuning, M1 takes 53% of total bandwidth
even when it has only two tickets. M2 and M3 still get
not enough bandwidth though they own most of tickets.
Hence, a more powerful arbitration scheme is surely de-
manded.

III. PROPOSED ALGORITHM

This section describes our newly proposed arbitra-
tion algorithm, real-time bandwidth-regulating lottery
(RB_lottery). First, the architecture is introduced in de-
tail. Then we present the implementation to realize the
idea from the hardware point-of-view. Finally, the algo-
rithm flow is given.

IIT.A. The Architecture

In RB_lottery, the bandwidth regulator is added into
RT _lottery [8]. It monitors the bus communication behav-
ior and provides better controllability over the bandwidth
allocation.

As shown in Fig. 3, RB_lottery, based on RT lottery,
is a three-level arbitration algorithm. The real-time han-
dler and the Lottery with tuned weight are the same as
RT lottery. The real-time handler uses the warning line
mechanism which considers the worst contending case to
provide the hard real-time guarantee. A simulation-based
mechanism named weight tuning decides the proper ticket
assignment for the lottery manager to provide fair band-
width allocation. The additional circuitry, the bandwidth
regulator, is actually a traffic monitor with the controlla-
bility over bandwidth allocation according to the dynamic
bus communication behaviors. It constantly checks the al-
located bandwidth to each master and temporarily blocks
the masters that have been allocated the bandwidth they
require within a fixed period of time. The detailed imple-
mentation is described in the next section.

TABLE 1
FAILURE OF WEIGHT TUNING IN RT_LOTTERY

2B-2

Bandwidth
"| Regulator

Real-Time
Handler

| Lottery with
Tuned Weight

for bandwidth
requirements

for real-time
requirements

Fig. 3. The architecture of RB_lottery.

We use a simple example shown in Fig. 4 to demonstrate
how RB_lottery works. In the example, the four masters
M1, M2, M3 and M4 are assigned 1, 2, 3 and 4 tickets,
respectively. Assume that only M1, M3 and M4 issue
requests at some instance of time. At the first level of
real-time handler, no master gets granted because there
are no urgent requests. The bandwidth regulator at the
second level temporarily blocks requests from the over-
served M4 according to the monitored traffic. At the third
level, only one of M1 or M3 can be stochastically selected
by the lottery manager to access the bus. In this example,
M3 is the master that get granted finally.

II1.B. The Implementation

In order to record the communication behavior in a
fixed period of time, observation windows and a set of
bandwidth registers are used.

e observation window:
The time is divided into a sequence of fixed size
windows for observation. The size of an observa-
tion window is configurable. In each observation
window, all bus transactions are monitored to
obtain the current status of bandwidth alloca-
tion. Once a master has already got its required
bandwidth, the following requests from this master
are temporarily blocked until the next window starts.

e bandwidth register:
The bandwidth registers record the bandwidth al-
ready allocated to masters in the current observa-
tion window. When a master gets granted, the
corresponding bandwidth register accumulates the

Tickets Request Block

the ticket assignment of M1, M2 and M3

100:100:100 [60:120:120 [34:133:133 [16:142:142[2:149:149

M1 60% 58% 56% 55% 53%
M2 19% 20% 21% 22% 23%
M3 19% 20% 21% 22% 23%

(weight) map signals
T[0] =M1
1 Y T[1]=M3
——[M | T[2]=M3
2 N T[3]=M3|| Grant
‘Ra”d[o"”:z‘T[M:xx M3
3 Y L =
T[6] = XX
A T[7]=xx
T[8]=XX
T[9] = XX

Bandwidth
Regulator

Fig. 4. An example of the proposed arbitration architecture.

167

2B-2

amount of the current transaction. For example, if a
granted master initiates an 8-beat transaction, then
the corresponding bandwidth register is increased by
eight when the transaction is completed.

The bandwidth regulator utilizes the information stored
in the bandwidth registers to precisely control the overall
bandwidth allocation in an observation window.

II1.C. The Algorithm Flow

Fig. 5 shows the flow of RB_lottery algorithm. After
the system starts, the system is examined in a cycle-by-
cycle fashion. The flow is divided into three major blocks.
In Block 1, the time is checked to see if it has to proceed
to the next window. When the next window starts, all
the masters that are previously blocked are released. In
Block 2, the real-time handler detects whether there are
masters with urgent real-time requests and then grants
the most urgent master to avoid real-time violations. If
no master is granted by the real-time handler, the lottery
manager stochastically grants a request from the contend-
ing unblocked masters. In addition, if no unblocked mas-
ter initiates requests, the lottery manager can still grant
one of the pending blocked masters for higher bus utiliza-
tion. Then the transaction amount of the granted request
is accumulated into the bandwidth register belongs to the
corresponding master. In Block 3, if the granted master
has met its bandwidth requirement, its following requests
are temporarily blocked within the current observation
window.

IV. EXPERIMENTAL RESULTS

IV.A. Experiment Environment
IV.A.1 SystemC model

Our experiment environment is developed under SystemC
v2.1 with the transaction level model (TLM) library.
Fig. 6 shows an evaluation environment consisting N mas-
ters and one slave connected through TLM channels.

In the following experiments, five arbitration algo-
rithms, Static Priority, Lottery, TDMA + Lottery (the
first level arbitration is TDMA and the second level arbi-
tration is Lottery), RT lottery and RB_lottery, are evalu-
ated for comprehensive comparisons.

The high abstraction-level SystemC model is capable of
providing a fast simulation speed that can be up to one
million cycles per second. Therefore, we can efficiently
estimate the system performance and explore the proper
system design parameters in this environment.

IV.A.2 Traffic Models

In this work, we use the traffic models developed in [§]
to emulate the behaviors of different masters. For clarity,
the three models are briefly described as follows:

Proceed to the
next window?

Yes

Release all the
blocked masters

@

Block the request
of current
granted master

Lottery Manager

Record the
transaction amounts
of the current
granted master

Fig. 5. The flow of RB_lottery algorithm.

e D type(D for dependency):
A D type master has no real-time requirements and
issues a request at the time depending on the finish
time of the previous request.

e D_R type(D for dependency, R for real-time):
A DR type master behaves like a D type master
with the real-time requirement. Each request must
be completed before its deadline.

e ND_R type(ND for non-dependency, R for real-time):
An ND_R type master is another kind of master with
the real-time requirement. But the issue time of a
request from an ND_R type master is independent of
the finish time of its previous request.

IV.A.3 Traffic Behavior

In the following experiments, we set up a system with
eight masters. As shown in Table II, the second column
lists the master type. The third and fourth column give
the probabilities of the burst size and the interval time
between two successive requests initiated by a master.

request

1N\" D——{ tim_transport_channel
Master 1

@ :l——{ tim_transport_channel
Master 2

@ :l—-{ tim_transport_channel
Master N

response

s

o [

I

Slave

Arbiter

' A

4 4

! i
transport nb_put
nb_get

Fig. 6. An evaluation environment using TLM in SystemC.

168

TABLE II
THE BEHAVIOR OF EACH MASTER IN THE EXPERIMENTS

2B-2

TABLE III
THE NUMBER OF FAILED PATTERNS OF DIFFERENT

I [[type | beat/prob.] interval/prob. | ARBITRATION ALGORITHMS
M1 D 8/50 [16/50[6/10[7/20[8/40 | 9/20[10/10 Workload || Static TDMA + RT RB
M2 D 1/50 | 4/50 | 10/10|11/20| 12/40 [13/20|14/10 (%) Priority | Lottery | Lottery | lottery | _lottery
M3 D 8/50 [16/50| 6/10| 7/20| 8/40 | 9/20 [10/10 60 100 100 95 0 0
M4 D 1/50 | 4/50 |10/10]11/20| 12/40 | 13/20]14/10 65 100 100 98 0 0
M5 || DR | 8/50 | 16/50|10/10|11/20| 12/40 | 13/20]14/10 70 100 100 100 0 0
M6 || DR | 1/50 | 4/50|10/10|11/20] 12/40 | 13/20]14/10 75 100 100 100 10 0
M7 || NDR | 8/50 |16/50|65/10|66,/20| 67/40 | 68/20]69/10 30 100 100 100 18 0
M8 || ND_R | 1/50 | 4/50 |85/10|86/20| 87/40 | 88/20]89/10 85 100 100 100 37 1
90 100 100 100 55 12
heavy-traffic light-traffic 95 100 100 100 74 44

There are four D type masters, two D_R type mas-
ters and two ND_R type masters in the system. Besides
the bandwidth requirements, M5, M6, M7 and M8 also
have the real-time requirements. M1, M3, M5 and M7
are heavy-traffic masters while the others are light-traffic
masters. The heavy-traffic masters have larger burst
beats and shorter intervals than the light-traffic ones. In
other words, a heavy-traffic master generates a heavier
load to the shared bus than a light-traffic one does.

1V.B. Experiment 1

In Experiment 1, we compare the performance of dif-
ferent arbitration algorithms, Static Priority, Lottery,
TDMA + Lottery(the second level arbitration is Lot-
tery), RT lottery and RB_lottery. The level of difficulty
to meet both real-time and bandwidth requirements gen-
erally depends on the bus workload in terms of the per-
centage of bus bandwidth utilization. As a result, we
randomly generate patterns for different bus workloads
and compare the results. As shown in Table III, the first
column gives the bus workload varying from 60% to 95%.
For each bus workload, 100 random patterns of differ-
ent required bandwidth combinations for the eight mas-
ters are generated. And then we simulate the input pat-
terns with different arbitration algorithms. The results in
102400 simulation cycles are recorded and analyzed to see
if the arbitration algorithms can meet the real-time and
bandwidth requirements simultaneously. If the real-time
requirements are not all met or the allocated bandwidth
is less than the required bandwidth with 2% error range
during simulation, it is a failed pattern.

The parameters of arbitration algorithms are set as fol-
lows:

e Static Priority:
The priority of each master is assigned according to
the required bandwidth. The master with higher re-
quired bandwidth has a higher priority.

e Lottery:
The weight of each master is assigned according to
the required bandwidth. That is, the required band-
width ratio is regarded as the weight ratio.

e TDMA + Lottery:
15 level — TDMA: Masters with real-time require-
ments are allocated with time slots accordingly.
274 level — Lottery: The weight of each master is
assigned according to the required bandwidth. The
required bandwidth ratio is regarded as the weight
ratio.

e RT lottery:
The weight of each master is assigned according to
their bandwidth requirements and the traffic behav-
iors initially. To achieve better bandwidth allocation,
a weight tuning mechanism is used to redistribute
tickets among masters. More details can be found
in [8].

e RB._lottery:
The weight of each master is assigned and tuned as
the process of RT lottery. The size of observation
window is set to 256 cycles in the experiment.

As shown in Table III, since Static Priority and Lot-
tery do not consider the real-time requirements, they fail
in all 100 random patterns. TDMA + Lottery may sur-
vive in the cases of low bus workload. Compared to other
existing arbitration algorithms, RT lottery is remarkably
good. However, RB_lottery performs even better, which
reduces about 60% of the average number of failed pat-
tern. The first failed pattern in RB_lottery comes up when
the bus workload reaches 85%, which is an extremely high
traffic load.

The number of failed patterns stepwise increases while
the bus workload rises in all arbitration algorithms. How-
ever, the proposed algorithm, RB_lottery, still holds more
than 50% successful cases even when the bus workload
reaches 95%.

IV.C. Experiment 2

The size of observation window is crucial to the per-
formance of the RB_lottery algorithm. In Experiment 2,
the difference sizes of observation window are compared.
We set the size of observation window from 128 to infinite

169

2B-2

and observe the performance. Similar to Experiment 1,
100 random patterns with different required bandwidth
combinations for each bus workload are generated and
102400 cycles are simulated for each pattern.

As shown in Table IV, the number of failed pattern is
stepwise increased in the higher bus workload but stepwise
decreased in the larger size of observation window. Com-
pared to the size of 128 and 2048, the number of failed
patterns is reduced by 60%. As a result, a larger size of
observation window in RB_lottery can provide better re-
sults. However, larger observation window leads to the
higher hardware cost. Hence, there is a trade-off between
arbitration performance and hardware cost.

In summary, if the bus workload is not that high (less
than 70%), RT lottery, which requires less hardware cost,
provides fairly good outcomes. However, when the bus
workload is extremely high and the precise bandwidth
control is required, RB_lottery should be the best choice.

IV.D. Hardware Implementation

Five arbitration algorithms, Static Priority, TDMA,
Lottery, RT lottery and RB_lottery, are implemented for
hardware cost comparisons. All arbiters are designed
to handle eight masters. In Lottery, RT _lottery and
RB_lottery, the random numbers are generated by an 8-
bit LFSR and the tickets are statically assigned. In addi-
tion, the size of observation window of RB_lottery is set
to 256 cycles. All of the arbiters are synthesized using
Synopsys Design Compiler with UMC 0.18-um standard
cell library. The NAND2-equivalent gate counts of Static
Priority, TDMA, Lottery, RT lottery and RB_lottery af-
ter synthesis are 215, 1543, 4296, 5134 and 5814, respec-
tively. The hardware cost of Static Priority is the least as
expected and then TDMA. The lottery-based algorithms
require more logic gates because of the extra circuitry for
bandwidth control. Thought RT lottery and RB_lottery
require more logic compared to Lottery, they can provide
hard real-time guarantee. Meanwhile, RB_lottery can
provide even better bandwidth control than RT _lottery
with only slight hardware overhead.

TABLE IV
THE NUMBER OF FAILED PATTERNS UNDER DIFFERENT
WINDOW SIZES

Workload The observation windows size of RB_lottery
(%) 128 [256 [512 [1024 | 2048
85 4 1 0 0 0
87 11 1 0 0 0
89 25 11 4 2 0
91 37 25 10 7 7
93 42 31 24 20 14
95 57 44 33 32 28

V. CONCLUSIONS

A three-level arbitration algorithm, RB_lottery, is pro-
posed in this paper. It provides not only the hard real-
time guarantee but also the better capability of band-
width control. The bandwidth regulator is utilized to dy-
namically monitor the bus communication and thus can
precisely control the bandwidth allocation. Four existing
arbitration algorithms, Static Priority, Lottery, TDMA +
Lottery, and RT lottery, are compared with RB_lottery.
The experimental results show that RB_lottery has the
best performance among the five algorithms, but only re-
quires an acceptable hardware overhead compared to the
other two lottery-based algorithms. Hence, RB_lottery
can be a better choice for those SoC buses with both the
real-time and bandwidth constraints.

ACKNOWLEDGMENT

This work was supported in part by the National Sci-
ence council of Taiwan, R.O.C., under Grant NSC 94-
2220-E-009-029. The authors also want to thank the
anonymous reviewers for their valuable comments.

REFERENCES

[1] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly and L.
Todd, Surviving the SoC Revolution - A Guide to Platform-
Based Design, Kluwer Academic Publishers, 1999.

[2] C. H. Pyoun, C. H. Lin, H. S. Kim and J. W. Chong, “The
Efficient Bus Arbitration Scheme in SoC Environment,” In-
ternational Workshop on System-on-Chip for Real-Time Ap-
plications, 2003, Page(s): 311-315.

[3] M. Yang, S. Q. Zheng, Bhagyavati and S. Kurkovskyt,
“Programmable Weighted Arbiters for Constructing Switch
Schedulers,” Workshop on High Performance Switching and
Routing, 2004, Page(s): 203-206.

[4] F. Poletti, D. Bertozzi, L. Benini and A. Bogliolo, “Perfor-
mance Analysis of Arbitration Policies for SoC Communica-
tion Architectures,” Journal of Design Automation for Em-
bedded Systems, 2003, Page(s): 189-210.

[5] K. Lahiri, A. Raghunathan and S. Dey, “Design of High-
Performance System-On-Chips Using Communication Archi-
tecture Tuners,” Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2004, Page(s): 620-636.

[6] K. Lahiri, A. Raghunathan and G. Lakshminarayana,
“The LOTTERYBUS On-Chip Communication Architec-
ture,” Transactions on Very Large Scale Integration Sys-
tems, 2006, Page(s): 596-608.

[7] C. A. Waldspurger and W. E. Weih, “Lottery Scheduling:
Flexible Proportional-Share Resource Management,” Pro-
ceeding of the First Symposium on Operating Systems Design
and Implementation, 1994, Page(s): 1-11.

[8] C.-H. Chen, G.-W. Lee, J.-D. Huang and J.-Y. Jou, “A Real-
Time and Bandwidth Guaranteed Arbitration Algorithm for
SoC Bus Communication,” Asia South Pacific Design Au-
tomation Conference, 2006, Page(s): 600-605.

[9] Y. Zhang, “Architecture and Performance Comparison of A
Statistic-Based Lottery Arbiter for Shared Bus on Chip,”
Asia South Pacific Design Automation Conference, 2004,
Page(s): 1313-1316.

170

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

