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ABSTRACT

Many current integrated circuits designs, such as those re-
leased for the ISPD2005[14] placement contest, are extremely
large and can contain a great deal of white space. These new
placement problems are challenging; analytic placers perform
well, but can suffer from high run times. In this paper, we
present a new placement tool called Vaastu. Our approach com-
bines continuous and discrete optimization techniques. We uti-
lize network flows, which incorporate the more realistic half-
perimeter wire length objective, to facilitate module spreading
in conjunction with a log-sum-exponential function based ana-
lytic approach. Our approach obtains wire length results that
are competitive with the best known results, but with much
lower run times.

I. INTRODUCTION

Placement is one of the most critical stages during the de-
sign cycle of an integrated circuit. Modern integrated circuits
can contain millions of logic modules. Producing a physical
layout of these modules is an intimidating task. To ease the
process, designers often use Intellectual Property (IP) modules;
these may have fixed positions, and need to be treated as obsta-
cles during placement. In addition to the fixed obstacles, there
may also be movable macro blocks and millions of unplaced
standard cells.

Many of these modern designs contain a large amount of
white space, to support optimization for buffer insertion and
gate sizing. The ISPD2005 benchmarks display these charac-
teristics, with white space ranging from 27% to 57%. These
designs, which are representative of current circuits, are quite
challenging.

Various state-of-the-art placers exist today which can be cat-
egorized as below. We include placers with recently published
work.

1. Analytic placers : APlace [11], BonnPlace [4] , Fast-
Place [20], hATP [15], Kraftwerk [16], mFAR [9] and
mPL [5] are recent analytic placers. APlace and mPL6
are non-linear optimization approaches, where as, Bon-
nPlace, FastPlace, hATP, Kraftwerk, mFAR are quadratic
placers.

2. Partitioning based placers : Capo [18], Feng Shui [1] and
Ntuplace [6] are recursive bipartitioning based placement
approaches.

3. Pure simulated annealing based placers have become less
popular in recent years, due to high run times. While an-
nealing produces excellent results for small problems, it is
used sparingly for local optimization.

4. Hybrid placers : Dragon [19] and Ntuplace2 [10] fall into
this category. Dragon combines simulated annealing with
recursive bipartitioning where as, NTUPlace2 combines
analytic and bipartitioning based placement approaches.

Analytic placement tools have made significant advances re-
cently, and the approach is widely used by industry groups.
In particular, a patented method by Naylor[8] has received a
great deal of attention. The approach by Naylor uses a log-
sum-exponent function to represent wire length. In addition to
the objective function, an analytic approach must also integrate
constraints of some sort to avoid module overlap.

One of the best known implementations of [8] is APlace[11];
this tool has the best published results on the ISPD2005 bench-
marks. It optimizes a non-linear function that combines the
wire length and density objectives. It uses a smooth bell-shaped
density potential function. The potential of a module being
in its neighboring grids is high. As we move away from the
module’s current location, the potential fades smoothly. The
potential of each module in its neighboring bins is computed.
The potential for each grid is then transformed into a smooth
density penalty function. Basically, regions with high over-
lap will be influenced by the potential of many modules and
thus, will be penalized more. This penalty function is com-
bined with the log-sum-exponent wire length function, stated
in equation (1) later, and the overall objective is minimized.
The objective function is smooth, continuously differentiable
and hence easier to optimize. Iterative optimization of this ob-
jective leads to a placement that has relatively little overlap, al-
lowing easy placement legalization. The nature of the penalty
function slows convergence, however, resulting in extremely
high run times.

In this paper, we present a new global placement approach
for designs with large amounts of white space and fixed obsta-
cles. Our placement tool, which we refer to as Vaastu, is fast
and produces high quality results in terms of half perimeter
wire length. Our key contribution is an iterative global place-
ment algorithm resulting from the unification of continuous and
discrete optimization techniques. Module spreading is accom-
plished through additional forces suggested by network flow al-
gorithms, or a cut line shifting algorithm that is used in the last
few iterations. The network flow algorithms incorporate the
more realistic half-perimeter wire length based cost. Methods
for speeding up the network flow algorithms are also discussed.
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The rest of the paper is organized as follows: In section II we
briefly describe the analytic formulation used in our approach.
Section III includes the details of our approach. Experimental
results are presented in section IV. And finally, conclusions are
drawn in section V.

II. ANALYTIC FORMULATION

We use the log-sum-exponent function to represent wire
length in our analytic placer. This function is taken directly
from the patent in [8]. APlace [11] and mPL [5] also use
this function. To make this paper self-contained, we briefly
describe it in this section. This function more accurately rep-
resents the half perimeter wire length (HPWL) as compared to
the quadratic objective and therefore, was preferred in our ap-
proach.

Let, N denote the set of nets in the design, ν denote a net
in N , mi denote a module (cell/macro) in ν and (xν

i ,y
ν
i ) denote

the location of the pin of module mi corresponding to net ν.
The wire length for a placement P as approximated by the log-
sum-exponent function is given as follows:

wl(P) = α ∑
ν∈N

(log ∑
mi∈ν

e(xν
i /α) + log ∑

mi∈ν
e(−xν

i /α)+

log ∑
mi∈ν

e(yν
i /α) + log ∑

mi∈ν
e(−yν

i /α)) (1)

where, α is the smoothing parameter. Small values of α bring
the objective function value closer to the half-perimeter wire
length objective.

III. APPROACH

Like most current academic placers, our placement approach
is divided into 3 subcategories: (i) Global Placement, (ii) Le-
galization and (iii) Detailed Placement. This paper addresses
the global placement problem. The job of the global placer is
to find a uniform distribution of modules across the placement
area. There are numerous objectives, but in this paper, we will
concentrate on minimization of half-perimeter wire length as
the primary objective.

A. Motivation

While analytic formulations can represent the wire length
objectives of placement well, a traditional challenge has been
in addressing overlap. A trivial solution to an unconstrained
analytic formulation, in the absence of fixed obstacles, would
be to simply have all modules overlap. In the presence of fixed
obstacles, modules get attracted towards the obstacles, but the
placement generated by an unconstrained optimizer still con-
tains a nontrivial amount of overlap. Over the years, many
methods of overlap removal have been explored. Spreading
forces or fixed points are widely used. A goal of our work is
to develop methods to encourage placement spreading without
degrading wirelength or slowing convergence.

The main contribution of our work is to utilize discrete opti-
mization techniques to expedite the process of module spread-
ing. In our work, we have explored a network flow based ap-
proach to removing overlap from an analytic placement solu-
tion. Our motivation for using network flows is as follows.

Continuous
nonlinear
function
minimizer

Discrete
network flow

problem
solver

Minimized  objective
function; a placement
solution in a state
of equilibrium.

Additional forces for the 
function minimizer; 

to get a new state of 
equilibrium

Fig. 1. Interaction between the two main optimizers in our global placement
approach.

In designs with large amounts of white space, the solution
space of the problem is increased. Biasing an analytic ap-
proach towards an overlap-free placement must be done care-
fully to avoid degrading wire length, and the underlying algo-
rithm needs to be both robust and fast.

As with many analytic approaches, we add additional forces
to spread the placement. We wish to only add forces that can
guarantee that the direction in which the spreading is being
done has enough space to hold the modules being spread, but at
the same time, not affect the wire length. Network flow based
techniques seemed to meet these objectives. The main advan-
tage is that these algorithms can not only solve problems of
supply-demand nature but also incorporate cost in the formu-
lation. Indeed, a minimum cost flow algorithm that considers
half-perimeter wire length as cost is one of the strong points of
our approach.

B. Outline

Our approach incorporates continuous and discrete opti-
mization techniques, as sketched in figure 1. The two key ele-
ments are enumerated below:

1. A continuous nonlinear function minimizer, known as the
Analytic Solver (AS), that minimizes equation (1). In our
implementation, we use the L-BFGS-B solver[21].

2. A discrete Network Flow problem Solver (NFS).

The placement produced by the AS can be thought of as one
in a state of equilibrium. In order to spread the modules, we
need to disturb this equilibrium. This role is played by the
NFS. Its job is to supply additional forces to the AS so that
the equilibrium can be disturbed. The AS uses these additional
forces and finds a placement with a new state of equilibrium.

Figure 2 shows the flow chart of the algorithm. The presence
of a large number of movable modules makes it impractical to
solve the network flow instance extracted from a flat view of
the design. This necessitates the use of some clustering tech-
nique. Once clustering is done, the placement region is divided
into uniform sized bins and a network flow problem instance
is extracted and solved by the NFS. New forces are created for
modules using the solution found by the NFS. This information

2A-1

129



is supplied to the AS through a technique called Anchoring. We
start with a small number of clusters and increase the number
of clusters in each iteration i.e. decrease the cluster size in
each iteration. After a few iterations, the graph size increases
to a stage where it becomes impractical to run the NFS, as the
number of clusters and bins is too large. Rather than incurring
a high run time, we use a fast but effective technique, known
as cut line shifting [13], for spreading the modules at the later
stages of global placement.

C. Physical Clustering

Placement tools such as APlace and mPL use hypergraph
clustering techniques to reduce the problem size, where net-
connectivity is considered to form clusters. Unlike these ap-
proaches, we use only the physical location of modules ob-
tained from the AS to form clusters. Therefore, this step is
called Physical Clustering. Note that clustering is used in our
approach only to speed up the NFS. The AS is always run on
the flat view of the design.

Let Nclust be the desired number of clusters and M be the
set of all movable modules. Then, the desired area per cluster,
say dcarea, is equal to Marea

NClust
. Modules in M are sorted by either

their x or y coordinates depending on whether the bounding box
of M has greater width or height respectively. After sorting,
a vertical (for higher width) or horizontal (for higher height)
scan line is run across the placement and a split point is found
where the modules on each side have almost same total area,
but a multiple of dcarea. M is split into 2 parts, say M1 and
M2, at the split point. The process is then repeated on M1 and
M2 until we end up with a set of modules with area equal to or
less than dcarea. The set of modules at the bottom level of the
above process gives us the physical clusters.

The size of clusters is kept as close to uniform as possible.
By doing so, a one-to-one correspondence can be maintained
between clusters and bins. The main advantage of doing this
is that we can use efficient algorithms for solving the network
flow problem instances.

D. Network Flow Algorithms

Once the physical clusters are formed, the placement region
is divided into equal sized bins. The NFS extracts a network
flow problem instance from the placement and solves it. NFS
consists of two main network flow algorithms viz minimum
cost flow (MCF) and maximum flow (MF).

The minimum cost flow framework has been used in a va-
riety of placement tools, for tasks such as legalization[3],
detailed placement[7], or for partitioning space to remove
overlap[4].

D.1 Model

We create a transformed bipartite graph G = (V,E) between
the clusters and bins as follows. Let C and B denote the set of
clusters and bins.

• The node set V = C∪B∪{s,t} where s and t are super-
source and supersink nodes.

• The edge set E = (C×B)∪ ({s}×C)∪ (B×{t})

Run AS.Initialize 
cluster size and 
anchor weight

Create clusters 
and bins

Solve network flow
problem instance.

Perform Anchoring

Run weighted AS

Is
size of
clusters
small
?

Decrease cluster
size. Increase
anchor weight

Spread modules 
using CLS.

Perform anchoring

Run weighted AS

1st
time
?

WL
impro
ved
?

DONE
No

Yes

No

Yes

No

Yes

To (A) above

(A)

Fig. 2. Flow chart of the global placement approach.

• Each edge e ∈ E has the following variables associated
with it: (i) ue, the capacity or an upper bound on flow (ii)
fe, the actual flow through this edge (iii) we, the cost.

• For each edge e ∈ (C ×B), ue = ∞ and we is the cost of
assigning the corresponding cluster to the bin, which will
be discussed in section D.2. For each edge e∈ ({s}×C)∪
(B×{t}), ue = 1 and we = 0.

• The node s has a supply of |C| and the node t has a demand
of −|C|.

We need to find the minimum cost assignment of clusters to
bins. This problem is a special case of the minimum cost flow
problem and is known as weighted bipartite matching or the
transportation problem.

Various algorithms exist to solve this problem. We have used
the successive shortest path (SSP) algorithm in our approach
[2]. To make the algorithm efficient, we impose integrality con-
straints on all variables and a nonnegativity constraint on all the
cost variables. SSP utilizes a shortest path algorithm internally.
The nonnegativity constraint on cost variables lets us use an
efficient implementation of Dijkstra’s algorithm; the shortest
path can be found in O(|E|+ |V |log|V |) time using a priority
queue. Details of the SSP algorithm are not discussed here due
to space limitations. The algorithm has a time complexity of
O(|C|× (|E|+ |V |log|V |)).
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D.2 Assignment Cost

The cost we of an edge e = (c,b) ∈ (C × B) is the cost of
assigning the cluster c = {m1,m2, . . . ,mn} to bin b, where
m1,m2, . . . ,mn are the modules in cluster c. We model this cost
in terms of the gain (increase) in HPWL produced if each mod-
ule in c is relocated to the center of b as opposed to its original
location. Let N c denote the set of all nets belonging to cluster
c. Then the gain is computed as below:

gain(e) = gain(c,b) = ∑
ν∈N c

(HP(ν)−HPb(ν)) (2)

where, HP(ν) is the HPWL of net ν considering the initial lo-
cation of modules in ν and HPb(ν) is the HPWL of ν with
respect to bin b and is calculated as follows: if a module mi is
such that mi ∈ c and mi ∈ ν, then the location of mi is the center
of the bin b, otherwise the location of mi is its initial location.

We wish to maximize the gain stated in equation (2) for the
entire assignment. If the cost of assigning cluster c to bin b is
expressed as in equation (3), then minimizing the cost would
be the same as maximizing the gain. Thus, a MCF solution for
a graph with these costs suits our needs.

w(e) = w(c,b) = −gain(c,b) (3)

We mentioned in section D.1, that the costs of all edges
should be nonnegative. To respect this constraint, we calcu-
late the least cost of all edges in (C×B), say MIN(w(e)). The
cost of all edges in (C×B) are then normalized as follows:

w(e) = w(e)−MIN(w(e)), ∀e ∈ (C×B) (4)

D.3 Sliding window based improvement

After running MCF on the entire problem, we perform window
based optimization where we select a small number of bins and
readjust the clusters assigned to them by running MCF on the
smaller graph. The window is slid across the entire placement
region in this step. The modeling and cost function is the same
in this step as in the global problem.

The cost function described in the previous section bears
some degree of inaccuracy. Consider two clusters cA and cB

whose modules share common nets. While finding the assign-
ment cost for cA, cB is assumed to be stationary and vice versa.
However, after the assignment is done, both move to new loca-
tions. Thus, our prior assumption was wrong. The degree of
inaccuracy is very high in the initial iterations when the degree
of overlap is very high, as clusters encounter large displace-
ments. As modules are spread, the inaccuracy is reduced.

Since a good assignment is crucial to the success of our
placement algorithm, window based optimization plays a
greater role in our approach as opposed to when used during
detailed placement. It gives us huge improvements, especially
during the initial iterations. Since all the clusters outside the
window are fixed, the cost function has a higher degree of ac-
curacy as compared to the case where every cluster is mobile.

D.4 Speed Up : Radius

The number of edges in our graph (|E|) is (|C|+ |B|+ |C|×|B|).
Since (|B| ≥ |C|) is a necessary condition for a feasible assign-
ment, |E| is larger than |C|2, which can be roughly thought of as

a function of |V |2. If every cluster is modeled against every bin,
the MCF algorithm could be extremely time consuming, and
impractical after only a few iterations. The complexity of Di-
jkstra’s shortest path algorithm, in this case, would be O(|V |2).

We therefore propose the idea of radius, which is a small
predetermined constant. For example, if radius = k, then we
only try assigning a cluster c to the closest k bins. The dis-
tance is computed from the center of mass of modules in c to
the center of each bin. This approach, however, has a drawback
that no feasible flow might be present in the graph. Flow fea-
sibility can be checked by running a maximum flow algorithm
(which can be solved much more efficiently than MCF) on the
graph prior to running the MCF algorithm. As the modules are
spread, there is less dispute between clusters for access to the
same bins. So radius can be reduced in the final iterations. If
we hit a situation where no feasible flow exists, we increase the
radius and start the iteration afresh.

Bins outside of the radius of any cluster are not considered
by the minimum cost flow algorithm. Due to overlap, the clos-
est bin sets for many clusters intersect. As a result, the number
of bins in the graph (|B′|) is smaller than |B|. With a radius of
k, |E| is equal to (|C|+ |B′|+ |C| × k). This results in a con-
siderable improvement in the run time of the shortest path and
hence the MCF algorithm.

Note that the idea of radius is only used while solving the
global flow problem. The window based optimization is always
solved by mapping all clusters with all bins.

D.5 Speed Up : Maximum Flow

In the last few iterations, the run time for NFS starts increas-
ing, even with the idea of radius. To speed-up the placement
algorithm, we switch to using maximum flow (MF) instead of
MCF, to find an assignment.

Our graph comes under the special case of unit capacity bi-
partite networks. The MF problem can be solved very effi-
ciently for this special case.

Note that this assignment will no longer be a minimum cost
assignment. However, since each cluster is mapped with the
closest bins, this assignment is not completely absurd. More-
over, we can still run window based optimization considering
assignment costs to improve upon the solution found by MF.
Experiments show that this results in only a small loss in qual-
ity but considerable improvements in run times, especially for
the bigger designs.

E. Anchoring

The result of NFS is passed to AS using a technique we re-
fer to as anchoring; this is similar in spirit to the fixed points
used in tools such as mFar[9]. Once we find the cluster assign-
ment using MCF/MF, we create an anchor for each module at
the center of the bin to which its parent cluster is assigned. A
pseudonet is then created between each module and its anchor.
The job of anchors and pseudonets is to simply create addi-
tional constraints for the AS to facilitate spreading.

Pseudonets are 2-pin nets and carry less weight than the orig-
inal nets in the design. The reason for this is obvious; we do
not want to encourage the AS to optimize the pseudonets over
the original nets. Initially, the pseudonet weight is kept very
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low. Due to very high module overlap, the assignment found
by NFS is not very good. As the modules spread, NFS accuracy
increases and it is able to find good assignments. Since module
spreading is an objective as important as the wire length objec-
tive for us, we increase the weight of pseudonets, linearly, in
successive iterations, but always keep it less than the weight of
the original nets (which is 1 for all nets).

After anchoring, we have a different problem with additional
constraints, created by the pseudonets, for AS. The solver is
called again and a minima for the objective function is found
which gives us a new placement. NFS is called again until the
cluster size is very small (a few modules per cluster).

Note that in every iteration, the old anchors/pseudonets are
thrown away and fresh anchors are created. Since pseudonet
weight strictly increases in each iteration, the placement can
not collapse.

F. Parameters

In this section, we summarize the parameters in our global
placer and their variation with iterations. These values are de-
termined experimentally. The placer is not overly sensitive to
these values. Some modification in these values does not de-
grade the solution quality significantly.

1. Number of clusters: The desired cluster area is initialized
to 2000 times the average movable module area and de-
creased uniformly to 25 times the average movable mod-
ule area in the last iteration. Initially with bigger clusters,
modules are assigned to bigger bins. As we get smaller
clusters, modules slowly get an opportunity to seep into
the narrow regions in between obstacles.

2. Radius: Radius is kept at 100 bins per cluster in the initial
iterations and reduced to 50 bins per cluster during the last
few iterations.

3. Pseudonet weight: Pseudonet weight is increased uni-
formly from 0.1 to 0.5. The weight of original nets is
kept constant at 1.0 throughout. Variation in this range
produces slightly different results. However, increasing
the upper limit degrades the solution quality, as expected.
Reducing it does not spread the modules quickly.

4. Alpha: The smoothing parameter α for the AS is kept pro-
portional to the bin dimensions.

G. Cut line shifting

NFS algorithms run on clusters and give us anchors at the
center of the bins. The advantage of NFS algorithms is that
HPWL-based cost can be incorporated into the model. At the
lowest placement levels, however, other methods produce com-
parable results but have lower computational complexity.

At the bottom level, we use another technique, called cut
line shifting (CLS) to aid us in finding anchors. This was first
proposed in [13], and was used for white space distribution to
improve routability. Later on, it was used in [12] for incremen-
tal cell spreading after buffer insertion.

We use it in our approach for module spreading during the
last stage of our global placement algorithm. This technique

is completely geometric in nature and considers only module
locations. But this is not a concern to us. Most of the spreading
has been done using the NFS and we just need to have some
fine-grained control in the last stage. This technique, being
geometric in nature, is extremely fast, which is just what we
want towards the termination of our algorithm.

We briefly describe the algorithm here. A slicing tree is first
created by recursively partitioning the modules into 2 halves
by inserting vertical and horizontal cut lines, thus creating sep-
arate regions. Vertical/horizontal cut lines are inserted if the
regions at a level of the slicing tree are wide/tall respectively.
Another point to note here is that the partitioning is done solely
on the basis of module locations. Regions are partitioned until
they contain a small number of modules. Once this is done, the
area overflow in each region is measured. A region has over-
flow if the total module area is greater than the free space in
the region and underflow vice versa. The overflow/ underflow
is then propagated from the bottom level regions of the slicing
tree to the top level regions. We then start at the top 2 regions
and distrbute the available white space proportionally to each
region depending on its need. The white space is distributed
from the top level to the bottom level of the tree. Each time,
the cut line between regions is shifted left/right for a vertical
cut or down/up for a horizontal cut to adjust for the white space
allocated to the regions.

CLS increases the wire length of the placement; however
there is still some scope for wire length optimization. Until
now, we were spreading modules using center of bins as an-
chor locations. Thus, modules belonging to a cluster had the
same anchor locations. After spreading the modules using the
CLS algorithm, we again create anchors, but this time, at the
location suggested by CLS. Thus each module gets a different
anchor location. This location is more accurate for individual
modules, as compared to having a single anchor location for a
bunch of modules.

Due to increased flexibility in moving modules, wire length
after calling the AS decreases for a few iterations, before be-
coming stable. We therefore run a few iterations of AS and
CLS till be get a significant improvement in HPWL. Finally,
we call the CLS algorithm for one last time and terminate
the global placement. At this time, modules are spread well
enough and we are ready to call the legalizer and detailed
placer.

H. Legalization and Detailed Placement

After the global placement, we use the legalizer and detailed
placer published in [17] to gauge the amount of wire length
improvement we can get for legal placements and comparing
our work with other placers.

IV. EXPERIMENTAL RESULTS

We performed our experiments on the ISPD2005 placement
contest benchmarks [14]. Table IV shows the benchmark char-
acteristics. In all benchmarks, except bigblue3, macros are
fixed and standard cells are movable. Bigblue3 has 2485 mov-
able macros. The utilization ranges between 27% and 57% ap-
proximately. All our experiments were performed on an AMD
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Athlon Dual Core machine with 2.2/1 GHz processors. We
used the optimization software L-BFGS-B [21] in our analytic
solver to minimize the log-sum-exponent objective function.

Benchmark #movable #fixed #nets Util.(%)

adaptec1 211k 543 221k 57.34
adaptec2 254k 566 266k 44.32
adaptec3 451k 723 467k 33.52
adaptec4 495k 1329 516k 27.14
bigblue1 278k 560 284k 44.67
bigblue2 535k 23084 577k 37.78
bigblue3 1096k 1293 1123k 56.48
bigblue4 2169k 8170 2230k 44.29

TABLE I
BENCHMARK CHARACTERISTICS

We tried two different flows for our Vaastu global placer. In
flow (I), we used Minimum Cost Flow (MCF) until the bot-
tom level (where physical cluster size is roughly 50 times the
average area of a standard cell). In flow (II), we used Maxi-
mum Flow (MF) in the last few iterations instead of MCF. In
this flow, our bottom level physical cluster area was down to 25
times the average standard cell area. For flow (I), the numbers
for the design bigblue4 are not reported, as we did not have ac-
cess to a machine with enough memory to complete the design.

A. Wire length and run time break-ups

Table A shows the HPWL and run time break-ups. HPWL
is reported for the two flows after global placement (GP) and
after legalization and detailed placement (LDP). The run time
columns show the total run times (GP + LDP) for the two flows.
Placement run times scale almost linearly with the problem
size.

The loss in HPWL in flow (II) running (MCF + MF) is very
small. However, the savings in run time are large. This shows
the effectiveness of using MF and the sliding window MCF
technique.

The detailed placer is able to get about 3−4% improvements
over the global placement wire length in both cases. This is a
fair enough gain and shows that cells are spread well enough in
terms of both density and quality leaving enough scope for the
detailed placer to do a fast overlap removal and local optimiza-
tion.

B. Comparison with other placers

Table B shows the comparison of HPWL and run times of
our placer with other state-of-the-art placers. mPL6 results are
taken from [5]. All other results are taken from [11]. APlace
and Capo were run on a 1.6GHz machine as reported in [11].
So these run times are not directly comparable.

Our placer’s flow (II) needs less than 10 hours of run time
for all the benchmarks. On average, wire length is only 3.7%
larger than the best published results on these benchmarks.

BM HPWL (×e6) Run time (sec)
GP LDP GP LDP Total Total
(I) (I) (II) (II) (I) (II)

a1 84.11 81.61 85.73 81.53 1272 920
a2 93.19 89.92 96.70 92.97 1665 1204
a3 231.58 223.87 230.93 219.39 4359 2676
a4 195.42 190.15 199.48 192.06 4751 2330
b1 102.81 99.17 100.09 98.09 2089 1406
b2 157.11 151.22 156.79 153.43 5317 3288
b3 389.11 371.54 385.87 370.72 14295 6434
b4 - - 868.28 828.25 - 17011

Avg. 1.00 1.00 1.005 1.003 1.68 1.00

TABLE II
HPWL AND RUN TIME COMPARISON FOR 2 GLOBAL PLACEMENT (GP)

FLOWS; (I) (MCF), (II) (MCF + MF). COLUMNS 3/5 SHOW HPWL
AFTER RUNNING LEGALIZATION/DETAILED PLACEMENT (LDP) ON THE

PLACEMENTS IN COLUMNS 2/4. COLUMNS 6/7 SHOW THE TOTAL RUN

TIMES FOR (GP + LDP) IN FLOWS (I)/(II). AVERAGES IN LAST ROW ARE

COMPARED BETWEEN COLUMNS 2/4, 3/5 AND 6/7.

V. CONCLUSION

A fast and effective global placement approach for large de-
signs with fixed obstacles and abundant white space is pre-
sented. The approach incorporates a log-sum-exponent func-
tion based analytic solver. Module spreading is done iteratively
by treating the problem as discrete and then generating addi-
tional spreading forces for the analytic solver. Network Flow
algorithms, which incorporate the more realistic half-perimeter
wire length objective, are used to do this. Techniques for
speeding-up the network flow algorithms are suggested for fast
convergence. Our placer produces competitive results in terms
of wire length compared to state of the art academic placers,
while running much faster. We are currently integrating the
new Vaastu global placement approach with our existing feng
shui physical design tools. Binary versions of the tools will be
available through our research group web site.
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