
Functional modeling techniques for efficient SW code generation
of video codec applications

Sang-Il Han* ** Soo-Ik Chae* Ahmed. A. Jerraya**
*Department of Electrical Engineering,

 Seoul National Univ., Seoul, Korea
{sihan,chae}@sdgroup.snu.ac.kr

**SLS Group, TIMA Laboratory
Grenoble, France

{sang-il.han,ahmed.jerraya}@imag.fr

Abstract–Architectures with multiple programmable cores
are becoming more attractive for video codec applications
because they can provide highly concurrent computation and
support multiple video standards and a shorter
time-to-market. To find an efficient SW code for the multiple
core architecture for a video codec application, it is very
important to easily explore the design space by generating a
SW code automatically from its functional model.

We introduce Abstract Clock Synchronous Model (ACSM)
for functional modeling of video codec applications. The
ACSM can easily represent both parallelism and conditionals,
which are common in video codec applications. By applying
ACSM to an H.264 baseline decoder on single core
architecture, we reduced the execution time and the number
of external memory accesses by 32 % and 46 % respectively
compared to traditional dataflow model.

I. Introduction

Current video codec applications require a higher performance
architecture that can process more complex algorithms for higher
resolution images. To find an architecture that satisfies this
requirement with a limited resource, it is essential to use
functional modeling that can exploit deep pipelines and
parallelism and maximize re-use of the limited resource.
Furthermore, it is important to use a programmable architecture
that supports multiple video formats and newly emerging
standards. To improve the design productivity, both SW and HW
codes should be generated automatically if possible because the
time-to-market is getting shorter. Therefore, automatic SW code
generation from a functional model is one of the essential
technologies in system design. In this paper we focus on a
functional modeling method to generate an efficient SW code
from the functional model for a video codec application.

Four properties of the video codec applications should be
addressed in functional modeling [1].

1) Computation intensive operations, such as motion
compensation, sub-pel interpolation, and DCT transform, which
should be executed within timing constraints.

2) Massive data transfer operations, e.g. for motion
estimation and compensation.

3) Data dependent operations according to various image
modes and macroblock (MB) modes.

4) Iterative execution for sub-macroblock, macroblock, and
frame levels, which requires large memory buffers.

To generate an efficient SW code for the video codec
applications with these properties, functional model should
support the following requirements.

1) Parallelism and pipeline should be exploited using specific
parallel architectures in order to perform computation-intensive
operations within timing constraints. Therefore, a functional
model should enable to represent intra- and inter-iteration

dependencies explicitly to exploit parallelism and pipeline
respectively.

2) Communications should be expressed explicitly and the sizes
of data transfers should be predictable in the functional model in
order to efficiently use burst data transfers and data pre-fetches
that are essential for the video applications.

3) A functional model should support conditionals such as
if-then-else structure in order to efficiently represent conditional
computation and communication of video codec applications.

4) A functional model should represent communication buffers
explicitly in order to minimize a memory cost by allocating a
minimal size of memories and reusing the buffers.

In this paper, we propose Abstract Clock Synchronous Model
(ACSM), which is an extension of the Clocked Synchronous
Model for RTL modeling [2]. The ACSM employs a coarser
clock to compose functional blocks, which will be mapped onto
HW blocks or SW functions on a specific CPU core. By using the
coarser clock, the ACSM can represent parallelism and
conditionals of video codec applications while the existing
data-driven models and event-driven models have difficulty to
express conditionals and parallelism respectively. First we
explain the basics of ACSM for video applications. Then we
compare ACSM with previous functional modeling methods in
detail. We will show its efficiency by comparing it with
conventional dataflow methods on a single core architecture in
terms of performance, and communication bandwidth.

The rest of the paper is organized as follows. In Section II we
explain ACSM, a proposed solution suitable for modeling video
codec applications. In Section III ACSM is compared with other
functional models in detail. In Section IV we present several
experimental results to check the efficiency of ACSM, which is
followed by the conclusions in Section V.

II. Abstract Clock Synchronous Model

A. Assumptions

Fig. 1 shows the overall steps of automatic SW code
generation from functional model. Three key design steps are 1)
building a functional model of a target application, 2) mapping of
the functional model to a target architecture, and 3) generation
SW code automatically from the mapping result. The mapping
step is based on an evaluation function where the inputs are a
functional model and a target architecture and the outputs are
evaluation metrics such as performance, power and cost.
Therefore, to generate efficient SW code from a functional model,
the target architecture should be taken into consideration in
building a functional model.

In this paper we assume that a target architecture is composed
of processor (and HW) subsystems for image processing, global
memory subsystems for image store, and an interconnection for
communication between subsystems, as shown in Fig. 2. A
processor (or HW) subsystem is composed of a processor (or HW
IP), a local memory, an interconnection interface, and a local bus.

Target
Application

Target
Architecture

SW code on
system

Modeling

Functional Model

Mapping

Mixed
Algo./Arch. Model

SW code
generation

1

2

3

Fig. 1. The overall steps of automatic SW code generation.

HW0 Global
Mem0 Proc0... ...

Interconnection

processor

local
memI. I.

I. I. Interconnection interface

HW0 Global
Mem0 Proc0... ...

Interconnection

processor

local
memI. I.

processor

local
memI. I.

I. I. Interconnection interface

Fig. 2. Generic target architecture.

Basically, the target architecture is a loosely coupled
architecture, so that a processor (and HW) subsystem should
copy necessary image data from its global memory subsystems to
its local memory before processing it.

We limit the target applications of ACSM to
macroblock-based video codecs, such as, MPEG-2, H.263,
MPEG-4, and H.264 [1]. These video codecs combine
inter-picture prediction to exploit temporal redundancy with
transform-based codec of the prediction errors to exploit spatial
redundancy. Fig. 3 shows a block diagram of an H.264 decoder
that receives an encoded video bit stream from a network or a
storage device and produces a frame sequence. Each frame is
reconstructed by iterative executions of macroblock-level
functions such as entropy decoding, inverse zigzag scan, inverse
quantization, inverse transform, motion compensation, and
deblocking filter.

A frame = WxH macroblocks

Macroblock
VLD

Inverse Scan
Quantization

(IQ)

Inverse
Transform

(IT)
+

Deblocking
Filter
(DF)

Video Bit
Stream

Frame/Slice
VLD

Decoded
Frame Store

Spatial
Compensation
Process (SC)

Multiple
Previous

Frame Store

Motion
Compensation
Process (MC)

Current
Frame Store

Switch

Spatial Prediction Modes

Motion Vectors

Intra/
Inter MB

W

H

Image
Fetch (IF)

Fig. 3. Target application example: H.264 decoder block diagram.

In this paper, we focus on the functional modeling step for
efficient SW code generation of video codec application.

B. Abstract clock synchronous model

The Clocked Synchronous model (CSM), which has been used
in designing the hardware for clocked synchronous circuits, is

based on the clock synchrony hypothesis [2]: There is a global
clock signal controlling the start of each computation in the
system, and communication takes no time, and computation takes
one clock cycle. This assumption makes it possible to describe
the functionality of a circuit deterministically independent of the
detailed timing of the gates in the circuit by separating each
combinational logic block from others with clocked registers. In
other words, the CSM is used to exploit the orthogonalization
between functionality and timing in the synchronous design
methodology [4]. In this paper we extend the CSM to the ACSM
by using an abstract clock of larger granularity that is suitable for
system-level design.

+

/ *

D
el

ay

-

clk

F0

F1 F3

D
el

ay

F2

Abstract clock

NetworkNetwork

re
gi

st
er

clk

add

div mul

sub

Abstract clock

SR
A

M

IP1 IP3

F0 F2

16bit Carry Lookahead adder RISC processor

(b)(a)

(d)(c)

Fig. 4. Examples of (a) clocked synchronous model, (b) abstract
clock synchronous model and their implementations (c-d).

Fig. 4 (a) shows an example of CSM for RTL modeling with a
clock and Fig. 4 (b) shows an example of ACSM for functional
modeling with an abstract clock. A CSM is composed of a
network of combinational gates and delays. It is implemented by
low level hardware as shown in Fig. 4 (c). For example, an
addition and a delay in the CSM can be implemented by a 16bit
carry lookahead adder and a register respectively. However, an
ACSM is composed of a network of state-less functions and
delays. It may be implemented by a combination of hardware and
software as shown in Fig. 4 (d). For example, a function and a
delay in the ACSM can be implemented by a SW code on RISC
processor and an SRAM respectively. The major difference
between the two models is the granularity of the clock and the
components. Note that cyclic paths must contain at least one
delay in both models.

C. Tagged signal model of ACSM

In order to describe ACSM and compare it with the existing
functional modeling methods, we follow the tagged-signal model
introduced in [3]. Given a set of values V and a set of tags T, an
event e has a tag t and a value v, i.e. e = (t, v) ∈ T x V. A signal s
is a set of events. The tags are used to model time, precedence
relationships, and synchronization points. The values represent
the operands and results of computation.

In the ACSM, it is necessary to represent intra- and
inter-iteration dependencies explicitly in order to exploit
parallelism and pipeline as above mentioned. To do this, we use a
set of tags T ∈ ω x ω, where ω is the set of nonnegative integers
with the usual numerical order. The set of the first components of
all events is totally ordered. The first component is used to model
data precedence between operations across an abstract clock

boundary, i.e. inter-iteration dependencies. The set of the second
components of all events is partially ordered. The second
component is used to model data precedence between functions
within an abstract clock interval. The set of all event tags is
partially ordered because of the second component.

Let ei,j denote an event where the tag t is (i, j) and the value v
is ei,j. Given two events ei,j and en,m, ei,j < en,m if (i, j) < (n, m). Fig.
5 shows an example of precedence relationships between events
in an ACSM. F1 imposes a precedence constraint such that ei,j1 <
ei,j3. Delay imposes a precedence constraint such that ei,j5 < ei+1,j2.
But there is no precedence relationship between ei,j3 and ei,j4, and
ei,j1 and ei+1,j0. The partially ordered events give rise to parallel
and pipelined execution of functions in an ACSM
A data type D can be extended into a data type D⊥ by adding the
special value ⊥ to model the absence of a value at a certain tag.
Absent events are used to model the outputs of unselected
operations in if-then-else structures in the ACSM.

ei,j3F1

F2

D
el

ayei,j5

ei,j4

ei,j0

F3

D
el

ay

ei,j2

F0

ei,j1

Fig. 5. An example of ACSM with events.

D. Abstract clock for video codec application

In the ACSM, it is important to select an abstract clock
suitable for explicitly representing parallelism, communication,
and communication buffers for efficient design space exploration.
Video decoding (and encoding) processes are basically composed
of four hierarchical iterations: sub-macroblock level, macroblock
level, slice level, and image level. Each of these iteration indices
can be a candidate for the abstract clock. Two iteration indices of
slice and image levels are too coarse to represent parallelism, and
communication explicitly between the essential functions of
video codec applications such as motion estimation, motion
compensation and inverse transform. Using the iteration index of
4x4 sub-macroblock level requires representing irregular delays
due to the data dependencies among 4x4 blocks. For example, for
a QCIF image as shown in Fig. 6, the delay between block 5 and
its upper block is 166 delay units, but that between block 13 and
its upper block 7 is 6 delay units. Therefore, we use the
macroblock index as an abstract clock in an ACSM because the
granularity of the macroblocks is good enough to represent
parallelism, communication, and communication buffer explicitly
and the decoding order of macroblocks as shown in Fig. 6 (a) is
regular so that we can represent easily the data dependency.

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

UperMB

Pr
ev
M
B

12 …

… …

20 21

… …

78 …

89 …

86 87

97 98

11

…

77

88

1 … 9 100

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

UperMB

Pr
ev
M
B

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

UperMB

Pr
ev
M
B

12 …

… …

20 21

… …

78 …

89 …

86 87

97 98

11

…

77

88

1 … 9 100

12 …

… …

20 21

… …

78 …

89 …

86 87

97 98

11

…

77

88

1 … 9 100

6

166

(a) (b)

Fig. 6. Decoding orders of macroblock within an image (a), and
4x4 blocks within a macroblock (b).

E. Basic components and firing rules of ACSM

We decided to use Simulink [5] for a video codec application
because it provides simulation and modeling environment of
discrete-time systems that are sufficient to build an ACSM. It
also includes Real-Time Workshop (RTW) [6], which generates a
C code automatically from a Simulink model.

Fig. 7 shows basic components of ACSM that are expressed
easily in Simulink.

- Block (process): A block, as shown in Fig. 7 (a), maps n
input events on m output events: (o1, …, om) = F0(i1, …, in). It
corresponds to S-function or pre-defined block with inherent
sample rate in Simulink.

- Delay: A delay, as shown in Fig. 7 (b), represents that its
output is delayed from its input by k abstract clock cycles. It
corresponds to discrete delay in Simulink.

- Arc (edge): An arc carries events from one output port of a
block or a delay to one or more input ports of one or more blocks
and/or delays as shown in Fig. 7 (c). It corresponds to connecting
line in Simulink.

We also defined two kinds of subsystems that are composed of
blocks, delays, arcs, and other subsystems.

- If-action subsystem (IAS): An IAS, as shown in Fig. 7 (d),
represents an if-then-else structure. An IAS is enabled when its
control input port, which is connected to an if/else block, has a
present event, i.e. not absent. If an IAS is not enabled, its output
ports have absent events. All output ports must be connected to a
merge block and only one of them can have a present event at a
time. It corresponds to “If-action subsystem” in Simulink.

- For-iterator subsystem (FIS): A FIS, as shown in Fig. 7
(e), represents a for-loop structure. It is used to describe
sequential or parallel repeated executions of blocks where the
number of repetitions is known. It corresponds to “For-iterator
subsystem” in Simulink. A FIS usually includes Demuxs and
Muxs. A Demux divides an event into several (sub-)events. A Mux
integrates several (sub-)events into an event.

F0

i0

in

,,,

o0

om

,,,F0

i0

in

,,,

o0

om

,,, Z-K F0

F1

Z-K

(a) (b) (c)

(d)

F1

F2

F3

If/
else

…

F4 F5

…

M
er

ge

IAS1

IASi

0..3

D F0 M

(e)

FIS1

D

M

Demux

Mux

Data

Control

Fig. 7. Basic components in ACSM.

A block consumes one event from each input port and produces
one event to each output port. This action is called firing and
takes place under certain conditions called firing rules. A block
except merge blocks in Fig. 7 (d) is fired when all input events
are present. A merge block is fired when one of input events are
present. A block except if/else blocks in Fig. 7 (d) produces one
present event to each output port when fired. A if/else block
produces one present event to one of output ports when fired.

F. An example of ACSM

Fig. 8 shows a simplified ACSM in Simulink for an H.264

baseline profile decoder. It includes two paths. A path consists of
macroblock VLD (MB VLD), 8x8 sub-macroblock inverse
quantization (8x8 IQ), and inverse quantization (8x8 IT) to
compute a residual image from a video bit stream. The other path
consists of MB VLD, spatial compensation (SC) or motion
compensation (MC) from the current frame or previous frames. If
four neighbor 4x4 sub-macroblocks, e.g. 0, 1, 2, 3 blocks in Fig.
6(b), have the same motion vector, it is possible to fetch less
image data from previous frames (8x8 IF in IAS2) and
manipulate the image data more efficiently (8x8 MC in IAS2)
compared to 4x4 sub- macroblock based motion compensation
(4x4 IF and 4x4 MC in IAS3) by the elimination of common
computation and communication. The ACSM consists of 83
S-functions, 286 arcs, 21 if/else blocks, 43 IASs, 5 FISs, and 24
delay blocks.

+

Video Bit
Stream

Video
Out

Z-1

Z-W

Z-1

Z-W

Z-1

Z-W

Z-1

Z-W

Current
Frame

Previous
Frames

MB
VLD

Fr.
VLD

8x8
IQ

8x8
IT

8x8
DFM

0..3

Intra/
Inter MB

16MVs

0..3

4 MC
Types

8x8
SC

8x8
MC

4x4
MC

4x4
IF

8x8
IF

D

D

D

MD

FIS1

IAS3

If/
else

IAS2

IAS1

Intra/
Inter MB

16MVs

0..3

4 MC
Types

8x8
SC

8x8
MC

4x4
MC

4x4
IF

8x8
IF

D

D

D

MD

FIS1

IAS3

If/
else

IAS2

IAS1

FIS1

Fig. 8. A simplified ACSM of H.264 decoder in Simulink.

IV. Comparison with previous modeling styles

In order to obtain an efficient SW code from a functional
model, it is important to select an appropriate functional
modeling style according to the property of an application
domain. In the following subsections, we will compare ACSM
with the most popular previous modeling styles in respect of
building functional models of video codec applications. The
capabilities and the weakness of these models will be analyzed
with regards to the requirements stated in section I.

F4

Z-k

F1

If/else

F2

F3

Z-j

T4T1 T23

If(cond) {
in1.read(A,6); in2.read(B, 8);
F2(A,B,D);
out.write(D, 6); }
else {
in1.read(A,6);in3.read(C,10);
F4(A,C,D);
out.write(D, 6); }

in1

in3

in2

out

F6

Z-k

F1

If/else

F2

F3

Z-j

Fmux F4

Z-k

F1

If/else

F2

F3

Z-j

F4

Z-k

F1

If/else

F2

F3

Z-j

SW
IT

C
H

S
EL

EC
T

T

F F

T

(a) ACSM (b) KPN

(c) SDF (d) SDF+eCtrl (e) BDF

Fig. 9. Functional model examples of different styles.

A. Kahn Process networks

In the Kahn process networks [7], concurrent processes
communicate through one-way FIFO channels with unbounded
capacity. This means that writes to the channel always succeed
immediately, while reads block until there is sufficient data in the
channel to satisfy them. In particular, a process cannot test an
input channel for the availability of data and then branch
conditionally.

Fig. 9 (b) shows a KPN example corresponding to an ACSM
model as shown in Fig. 9 (b). A process in a KPN model has a
computation code mixed with a communication code. Therefore,
The KPN doesn’t support explicit and predictable communication
that is required to efficiently use burst data transfers and data
pre-fetchs. It also requires context switching to deal with blocked
processes. To reduce the overhead of context switching, it is
necessary to increase the granularity of process.

B. Synchronous Dataflow

In the Synchronous Dataflow (SDF) model [8], a process
(actor) is fired when it has sufficient tokens (events) on its input
ports. When an actor executes, it consumes a positive fixed
number of data tokens from each input port, and produces a
positive fixed number of tokens to each output port. If a SDF
model is consistent, it is possible to execute the SDF model in
bounded memory without context switching.

SDF cannot represent explicit conditional such as if-then-else
structure, which is required for video codecs, because it doesn’t
allow absent token. To express an if-then-else structure,
redundant computation and communication may be required as
shown in Fig. 9 (c). According to the result of “if/else” actor,
either F2 or F3 does not need to be executed because just only one
of the outputs is used. Similarly, either communication between
F2 and Z-j or that between F3 and Z-k is redundant.

Fig. 9 (d) shows an alternative to express an if-then-else
structure with embedded controls in a SDF model, where blocks
F2, F3, and an if-then-else structure are merged into a single block.
It can remove unnecessary execution of F2 or F3, but redundant
communication of F2 with Z-j or F3 with Z-k is still required.
Furthermore, mapping F2 and F3 onto two different processors or
HWs is not possible so that its design space is restricted.
Therefore, it does not support explicit conditional well.

C. Boolean Dataflow

Boolean Dataflow (BDF) [9] is an extension of SDF to
support conditionals. In the BDF model, an if-then-else structure
is modeled with two actors, SWITCH and SELECT. The
SWITCH actor reads one token from the control input port, and
depending on whether the value of the control token is true or
false, routes the input either to the output port marked T, or to the
output marked F. It also produces an absent token to the other
output port.

However, it is not guaranteed whether the execution of a BDF
model is completed in a finite time or whether it requires a
bounded memory [9]. In Fig. 9 (e), the tokens on the arc between
F2 and Z-j and those on the arc between F3 and Z-k are
accumulated because the execution ratios of F2 and F3 to F4 are
different depending on the control token produced by the if/else
actor. To solve this problem, it is necessary to insert additional
SWITCH actors both between F2 and Z-j and between F3 and Z-k.
Building a BDF model of a video codec application at fine
granularity will require many SWITCH actors, which is more
error prone.

D. Synchronous model

Synchronous model (SM) [10] used in Esterel [11] and Lustre
[12] is based on the perfect synchrony hypothesis assuming that
the reaction to each set of the inputs is considered to be
instantaneous. In the SM, a process is fired when it has at least
one event on its input ports. When a process is fired, it can test
absent events on its input ports and produce absent events on its
output ports.

The synchronous assumption simplifies system specification
and verification. However, difficulties arise especially for video
codec applications if the target architecture is a distributed
multi-core system, because it is very expensive to maintain a
global clock for testing and producing absent events over a
distributed system. The fully synchronous implementation based
on time-triggered architecture [13] must be conservative, forcing
the global clock to run as slow as the slowest computation and
communication process. Therefore, SM is not suitable for video
codec applications, which have large variations in computation
and communication.

E. Analysis: comparing with ACSM

The ACSM overcomes all the restriction of the above
mentioned models while providing the same scheduling facilities.

In data-driven models of KPN and SDF, the absent token is
not defined. Therefore they have some difficulties in expressing
an explicit if-then-else structure. In the BDF model the token
overflow problem comes from the definition of the absent token
without a global clock. However, the ACSM uses an abstract
clock for the well-defined absent token. In the ACSM, an event
on an arc is updated at every abstract clock tick, so there is no
token overflow problem.

Although the dataflow model has difficulties in representing
conditionals, it can express several valid schedules of a multi-rate
algorithm with only a model. In a SDF model as shown in Fig. 10
(a), a schedule that requires minimal buffers is
F0F0F1F2F2F0F1F2F2 and another schedule with loop structures is
(3F0)(2F1(2F2)). Contrary to the dataflow model, the ACSM can
express only one schedule with a model. Fig. 10 (b) shows an
ACSM example that expresses a schedule that is (3F0)(2F1(2F2)).
However, it is possible to find other schedules by loop
transformation techniques such as loop unrolling and loop split.

F0 F1 F2
2 3 2 1

Z-j

F0 F1 F2
2 3 2 1

Z-j

0..2

F0 M

0..1

F1

0..1

D M MD F2

Z-j

D

0..2

F0 M

0..1

F1

0..1

D M MD F2

Z-j

D

(a) (b)

Fig. 10. Multi-rate modeling with SDF (a) and ACSM (b).

In the SM, there is no restriction on producing and testing
absent events. It can cause a causality problem and requires a
global clock to solve the problem. However, the ACSM allows
only restricted absent events to express if-then-else structures. In
other words, it is sufficient for a distributed multi-core system to
replace absent events of unselected IAS outputs with present
events only if an if-then-else structure is implemented over
different processors.

V. Experiments

We performed several experiments to check the efficiency of

the ACSM compared to the dataflow model, assuming that target
architecture consists of a processor subsystem for image
processing and an external global memory for image storage, as
shown in Fig. 11, where a processor subsystem consists of a
Tensilica Xtensa processor [14] with a default configuration, a
local memory, and a DMA with a memory interface. We assumed
that image fetch processes are executed in the DMA module.

Global
Mem0 Proc0

Interconnection

Xtensa

local
mem

DMA/
Mem I/F

Xtensa

local
mem

DMA/
Mem I/F

In Out

Fig. 11. Evaluation architecture.

The target application is an H.264 baseline decoder and its input
bitstream is the Foreman sequence of QCIF format, which was
encoded with QP=28 and IntraPeriod=5 when all MC block sizes
were enabled.

Fig. 12 shows our experimental procedure. In the modeling
step, we made three Simulink models from H.264 decoder
reference C code as shown in Table I. In the Simulink model
equivalent to a SDF model, an if-then-else structure is expressed
by using a MUX block as shown in Fig. 9 (c) and the processing
block size is 4x4. In Simulink model equivalent to an ACSM, an
if-then-else structure is expressed by an if/else block and IASs
and the processing block size is 4x4. In the optimized ACSM, the
processing block sizes are either 4x4 or 8x8. For 8x8 block, an
additional IAS is necessary as shown in Fig. 8. We limited the
block size of the SDF model to 4x4 because the additional IAS
causes redundant computation as explained in IV-B.

Then, we used Real-Time Workshop (RTW) to generate SW
codes from the three different Simulink models. In the final step,
we used Xtensa gdb and gprof to measure the execution cycles
and the external memory access of the SW codes. We also added
the reference C code to the test sets.

H.264 decoder

C codes

Modeling

SW code
by RTW

Profile with
Xtensa ISS

Cycle and
Memory access

ACSM
(4x4 MC)

Opt. ACSM
(4x4, 8x8 MC)

Handed
code

Xtensa
Single proc.

SDF
(4x4 MC)

H.264 decoder

C codes

Modeling

SW code
by RTW

Profile with
Xtensa ISS

Cycle and
Memory access

ACSM
(4x4 MC)

Opt. ACSM
(4x4, 8x8 MC)

Handed
code

Xtensa
Single proc.

SDF
(4x4 MC)

Fig. 12. Experimental procedure.

TABLE I four test sets with different configurations
Name description

SDF SDF model as shown in Fig. 9 (c)
ACSM Proposed ACSM model as shown in Fig. 9 (a)
Optimized
ACSM

Proposed ACSM model with 8x8 block size as
shown in Fig. 8

Handed code Reference C code

Fig. 13 shows the execution time and the number of external
memory accesses for the four different configurations. According
to the experimental results, the ACSM reduces both the execution
time and the number of external memory accesses by 29 % and
22 % respectively compared to those of the SDF model.
Furthermore, the optimized ACSM reduces them by 32 % and
46 % respectively compared to those of the SDF model.

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

SDF ACSM Opt. ACSM Handed
code

Execution cycle

Etc
Rec
IT
VLD
Chrom DF
Luma DF
Chrom MC
Luma MC
Top control 0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

SDF ACSM Opt. ACSM Handed
code

External memory access

Write Chrom
Write Luma
Read Chrom
Read Luma

100

71.1 68.1

40.0

100

78.1

54.0 54.0

Fig. 13. Relative execution times and external memory accesses of different configurations.

According to the experimental results, it is necessary to
express conditionals such as if-then-else structures explicitly for
building a functional model of a video codec application. The
optimized ACSM code from RTW requires 41% more execution
time compared to the handed code because it includes many
redundant copy operations.

Even if a SDF model with embedded controls can remove
redundant computation, it cannot remove the external memory
access as explained in section IV. It also limits the design space
exploration due to increasing the granularity of blocks.

For the BDF model of the H.264 baseline decoder, 138
SWITCHes were required to resolve the token overflow problem
mentioned in section IV. The number of the SWITCHes in the
BDF model is larger than that of S-functions in the ACSM model,
which means that although the BDF supports conditionals, it is
not suitable in building a functional model for a video codec
application because the BDF functional models get too complex.

VI. Conlusions

In this paper, we explained a functional modeling method for
generating an efficient SW code from a functional model for
video codec applications. It is based on ACSM, which is an
extension of the clocked synchronous model by employing the
macroblock index as an abstract clock. The ACSM can express
conditionals easily by allowing absent events with the global
abstract clock. It can also express parallelism and pipeline easily
by partially ordered intra- and inter-dependencies. Therefore, the
ACSM is suitable for functional modeling of video codec
applications that require both parallelism and conditionals.

Experimental results with Simulink and RTW showed that the
SW code generated from an ACSM of H.264 decoder is
improved by up to 32% and 46 % compared to its SDF model in
terms of the number of execution cycle and the number of
external memory access respectively. We found that a BDF
model of H.264 decoder requires many additional SWITCHes to
express if-then-else structures. So the BDF model gets more
complex. Therefore, the ACSM is more effective in building
functional model for video codec applications because emerging
standards such as H.264 require complex data-dependent
operations.

For a H.264 baseline decoder, the SW code generated with the
ACSM by RTW requires longer execution time and larger buffer
memories compared to those of the handed code. We are in the
process of developing a more efficient SW generation tool.
Furthermore, we will extend this methodology for
multi-processor systems because the current version of RTW can
generate only a SW code for single-processor systems.

Acknowledgements

The authors are grateful to Xavier Guerin, Paul Amblard,
Frédéric Pétrot and Nacer-Eddine Zergainoh from TIMA
laboratory for their inputs on this paper. This work was supported
by ITSoC Project and Brain Korea 21 Program.

References

[1]“Advanced video coding for generic audiovisual services,” Int.
Telecommum. Union-Telecommum. (ITU-T) and Int. Standards
Org./Int. Electrotech. Comm. (ISO/IEC) JTC 1, Recommendation
H.264 and ISO/IEC 14496-10 (MPEG-4) AVC, 2003
[2]Axel Jantcsh, “Modeling Embedded Systems and SoCs –
Concurrency and Time in Models of Computation,” Morgan
Kaufmann, 2001.
[3]E. A. Lee and A. Sangiovanni-Vincentelli, “A Framework for
Comparing Models of Computation,” IEEE Trans. On CAD of
Integrated Circuits and Systems. pp 1217-1229, December 1998.
[4]K. Keutzer et al, “System-level design: Orthogonalization of
concerns and platform-based design,” IEEE Trans. On CAD of
Integrated Circuits and Systems.
[5]Simulink,http://www.mathworks.com/
[6]Real-Time Workshop, http://www.mathworks.com/
[7]G. Kahn and D.B. MacQueen, “Coroutines and Networks of
Parallel Processes,” In B. Gilchrist, editor, Information
Processing 77, Proceedings, pp 993-998, Toronto, Canada.
[8]Lee, E. A., Parks, T. M. (1995), “Dataflow process networks,”
Proceedings of the IEEE83(5), 773-801
[9]J.T. Buck, “Scheduling Dynamic Dataflow Graphs with
Bounded Memory using the Token Flow Model,” PhD thesis,
University of California, EECS Dept., Berkeley, CA, 1993.
Technical Memorandum UCB/ERL M93/69
[10] Benveniste, A. et al, “The synchronous languages 12 years
later,” Proc. of the IEEE , Volume: 91 Issue: 1 , Jan 2003
[11] Gerard Berry, “The Foundations of Esterel,” Proof,
Language and Interaction: Essays in Honour of Robin Milner, G.
Plotkin, C. Stirling and M. Tolfte, editors, MIT press, 1998
[12] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud. “The
synchronous dataflow programming language Lustre,”. Proc. of
the IEEE, vol. 79, nr. 9. September 1991.
[13] H. Kopetz, “The time-triggered architecture,” in Proc. First
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’98), Kyoto, Japan, 1998.
[14] Tensilica Xtensa V,
http://www.tensilica.com/html/xtensa_v.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

