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Abstract–Architectures with multiple programmable cores 
are becoming more attractive for video codec applications 
because they can provide highly concurrent computation and 
support multiple video standards and a shorter 
time-to-market. To find an efficient SW code for the multiple 
core architecture for a video codec application, it is very 
important to easily explore the design space by generating a 
SW code automatically from its functional model. 

We introduce Abstract Clock Synchronous Model (ACSM) 
for functional modeling of video codec applications. The 
ACSM can easily represent both parallelism and conditionals, 
which are common in video codec applications. By applying 
ACSM to an H.264 baseline decoder on single core 
architecture, we reduced the execution time and the number 
of external memory accesses by 32 % and 46 % respectively 
compared to traditional dataflow model. 

I. Introduction 

Current video codec applications require a higher performance 
architecture that can process more complex algorithms for higher 
resolution images. To find an architecture that satisfies this 
requirement with a limited resource, it is essential to use 
functional modeling that can exploit deep pipelines and 
parallelism and maximize re-use of the limited resource. 
Furthermore, it is important to use a programmable architecture 
that supports multiple video formats and newly emerging 
standards. To improve the design productivity, both SW and HW 
codes should be generated automatically if possible because the 
time-to-market is getting shorter. Therefore, automatic SW code 
generation from a functional model is one of the essential 
technologies in system design. In this paper we focus on a 
functional modeling method to generate an efficient SW code 
from the functional model for a video codec application.  

Four properties of the video codec applications should be 
addressed in functional modeling [1].  

1) Computation intensive operations, such as motion 
compensation, sub-pel interpolation, and DCT transform, which 
should be executed within timing constraints.  

2) Massive data transfer operations, e.g. for motion 
estimation and compensation. 

3) Data dependent operations according to various image 
modes and macroblock (MB) modes. 

4) Iterative execution for sub-macroblock, macroblock, and 
frame levels, which requires large memory buffers.  

To generate an efficient SW code for the video codec 
applications with these properties, functional model should 
support the following requirements.  

1) Parallelism and pipeline should be exploited using specific 
parallel architectures in order to perform computation-intensive 
operations within timing constraints. Therefore, a functional 
model should enable to represent intra- and inter-iteration 

dependencies explicitly to exploit parallelism and pipeline 
respectively. 

2) Communications should be expressed explicitly and the sizes 
of data transfers should be predictable in the functional model in 
order to efficiently use burst data transfers and data pre-fetches 
that are essential for the video applications. 

3) A functional model should support conditionals such as 
if-then-else structure in order to efficiently represent conditional 
computation and communication of video codec applications.  

4) A functional model should represent communication buffers 
explicitly in order to minimize a memory cost by allocating a 
minimal size of memories and reusing the buffers.  

In this paper, we propose Abstract Clock Synchronous Model 
(ACSM), which is an extension of the Clocked Synchronous 
Model for RTL modeling [2]. The ACSM employs a coarser 
clock to compose functional blocks, which will be mapped onto 
HW blocks or SW functions on a specific CPU core. By using the 
coarser clock, the ACSM can represent parallelism and 
conditionals of video codec applications while the existing 
data-driven models and event-driven models have difficulty to 
express conditionals and parallelism respectively. First we 
explain the basics of ACSM for video applications. Then we 
compare ACSM with previous functional modeling methods in 
detail. We will show its efficiency by comparing it with 
conventional dataflow methods on a single core architecture in 
terms of performance, and communication bandwidth. 

The rest of the paper is organized as follows. In Section II we 
explain ACSM, a proposed solution suitable for modeling video 
codec applications. In Section III ACSM is compared with other 
functional models in detail. In Section IV we present several 
experimental results to check the efficiency of ACSM, which is 
followed by the conclusions in Section V.

II. Abstract Clock Synchronous Model 

A. Assumptions 

Fig. 1 shows the overall steps of automatic SW code 
generation from functional model. Three key design steps are 1) 
building a functional model of a target application, 2) mapping of 
the functional model to a target architecture, and 3) generation 
SW code automatically from the mapping result. The mapping 
step is based on an evaluation function where the inputs are a 
functional model and a target architecture and the outputs are 
evaluation metrics such as performance, power and cost. 
Therefore, to generate efficient SW code from a functional model, 
the target architecture should be taken into consideration in 
building a functional model.  

In this paper we assume that a target architecture is composed 
of processor (and HW) subsystems for image processing, global 
memory subsystems for image store, and an interconnection for 
communication between subsystems, as shown in Fig. 2. A 
processor (or HW) subsystem is composed of a processor (or HW 
IP), a local memory, an interconnection interface, and a local bus.  
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Basically, the target architecture is a loosely coupled 
architecture, so that a processor (and HW) subsystem should 
copy necessary image data from its global memory subsystems to 
its local memory before processing it. 

We limit the target applications of ACSM to 
macroblock-based video codecs, such as, MPEG-2, H.263, 
MPEG-4, and H.264 [1]. These video codecs combine 
inter-picture prediction to exploit temporal redundancy with 
transform-based codec of the prediction errors to exploit spatial 
redundancy. Fig. 3 shows a block diagram of an H.264 decoder 
that receives an encoded video bit stream from a network or a 
storage device and produces a frame sequence. Each frame is 
reconstructed by iterative executions of macroblock-level 
functions such as entropy decoding, inverse zigzag scan, inverse 
quantization, inverse transform, motion compensation, and 
deblocking filter.  

A frame = WxH macroblocks
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Fig. 3. Target application example: H.264 decoder block diagram. 

In this paper, we focus on the functional modeling step for 
efficient SW code generation of video codec application. 

B. Abstract clock synchronous model 

The Clocked Synchronous model (CSM), which has been used 
in designing the hardware for clocked synchronous circuits, is 

based on the clock synchrony hypothesis [2]: There is a global 
clock signal controlling the start of each computation in the 
system, and communication takes no time, and computation takes 
one clock cycle. This assumption makes it possible to describe 
the functionality of a circuit deterministically independent of the 
detailed timing of the gates in the circuit by separating each 
combinational logic block from others with clocked registers. In 
other words, the CSM is used to exploit the orthogonalization 
between functionality and timing in the synchronous design 
methodology [4]. In this paper we extend the CSM to the ACSM 
by using an abstract clock of larger granularity that is suitable for 
system-level design.  
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Fig. 4. Examples of (a) clocked synchronous model, (b) abstract 
clock synchronous model and their implementations (c-d). 

Fig. 4 (a) shows an example of CSM for RTL modeling with a 
clock and Fig. 4 (b) shows an example of ACSM for functional 
modeling with an abstract clock. A CSM is composed of a 
network of combinational gates and delays. It is implemented by 
low level hardware as shown in Fig. 4 (c). For example, an 
addition and a delay in the CSM can be implemented by a 16bit 
carry lookahead adder and a register respectively. However, an 
ACSM is composed of a network of state-less functions and 
delays. It may be implemented by a combination of hardware and 
software as shown in Fig. 4 (d). For example, a function and a 
delay in the ACSM can be implemented by a SW code on RISC 
processor and an SRAM respectively. The major difference 
between the two models is the granularity of the clock and the 
components. Note that cyclic paths must contain at least one 
delay in both models. 

C. Tagged signal model of ACSM 

In order to describe ACSM and compare it with the existing 
functional modeling methods, we follow the tagged-signal model 
introduced in [3]. Given a set of values V and a set of tags T, an 
event e has a tag t and a value v, i.e. e = (t, v) ∈ T x V. A signal s 
is a set of events. The tags are used to model time, precedence 
relationships, and synchronization points. The values represent 
the operands and results of computation.  

In the ACSM, it is necessary to represent intra- and 
inter-iteration dependencies explicitly in order to exploit 
parallelism and pipeline as above mentioned. To do this, we use a 
set of tags T ∈ ω x ω, where ω is the set of nonnegative integers 
with the usual numerical order. The set of the first components of 
all events is totally ordered. The first component is used to model 
data precedence between operations across an abstract clock 



boundary, i.e. inter-iteration dependencies. The set of the second 
components of all events is partially ordered. The second 
component is used to model data precedence between functions 
within an abstract clock interval. The set of all event tags is 
partially ordered because of the second component.  

Let ei,j denote an event where the tag t is (i, j) and the value v
is ei,j. Given two events ei,j and en,m, ei,j < en,m if (i, j) < (n, m). Fig. 
5 shows an example of precedence relationships between events 
in an ACSM. F1 imposes a precedence constraint such that ei,j1 < 
ei,j3. Delay imposes a precedence constraint such that ei,j5 < ei+1,j2.
But there is no precedence relationship between ei,j3 and ei,j4, and 
ei,j1 and ei+1,j0. The partially ordered events give rise to parallel 
and pipelined execution of functions in an ACSM 
A data type D can be extended into a data type D⊥ by adding the 
special value ⊥ to model the absence of a value at a certain tag. 
Absent events are used to model the outputs of unselected 
operations in if-then-else structures in the ACSM. 
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Fig. 5. An example of ACSM with events. 

D.  Abstract clock for video codec application 

In the ACSM, it is important to select an abstract clock 
suitable for explicitly representing parallelism, communication, 
and communication buffers for efficient design space exploration. 
Video decoding (and encoding) processes are basically composed 
of four hierarchical iterations: sub-macroblock level, macroblock 
level, slice level, and image level. Each of these iteration indices 
can be a candidate for the abstract clock. Two iteration indices of 
slice and image levels are too coarse to represent parallelism, and 
communication explicitly between the essential functions of 
video codec applications such as motion estimation, motion 
compensation and inverse transform. Using the iteration index of 
4x4 sub-macroblock level requires representing irregular delays 
due to the data dependencies among 4x4 blocks. For example, for 
a QCIF image as shown in Fig. 6, the delay between block 5 and 
its upper block is 166 delay units, but that between block 13 and 
its upper block 7 is 6 delay units. Therefore, we use the 
macroblock index as an abstract clock in an ACSM because the 
granularity of the macroblocks is good enough to represent 
parallelism, communication, and communication buffer explicitly 
and the decoding order of macroblocks as shown in Fig. 6 (a) is 
regular so that we can represent easily the data dependency. 
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Fig. 6. Decoding orders of macroblock within an image (a), and 
4x4 blocks within a macroblock (b). 

E. Basic components and firing rules of ACSM 

We decided to use Simulink [5] for a video codec application 
because it provides simulation and modeling environment of 
discrete-time systems that are sufficient to build an ACSM. It 
also includes Real-Time Workshop (RTW) [6], which generates a 
C code automatically from a Simulink model. 

Fig. 7 shows basic components of ACSM that are expressed 
easily in Simulink.  

- Block (process): A block, as shown in Fig. 7 (a), maps n 
input events on m output events: (o1, …, om) = F0(i1, …, in). It 
corresponds to S-function or pre-defined block with inherent 
sample rate in Simulink. 

- Delay: A delay, as shown in Fig. 7 (b), represents that its 
output is delayed from its input by k abstract clock cycles. It 
corresponds to discrete delay in Simulink. 

- Arc (edge): An arc carries events from one output port of a 
block or a delay to one or more input ports of one or more blocks 
and/or delays as shown in Fig. 7 (c). It corresponds to connecting 
line in Simulink.

We also defined two kinds of subsystems that are composed of 
blocks, delays, arcs, and other subsystems.

- If-action subsystem (IAS): An IAS, as shown in Fig. 7 (d), 
represents an if-then-else structure. An IAS is enabled when its 
control input port, which is connected to an if/else block, has a 
present event, i.e. not absent. If an IAS is not enabled, its output 
ports have absent events. All output ports must be connected to a 
merge block and only one of them can have a present event at a 
time. It corresponds to “If-action subsystem” in Simulink.

- For-iterator subsystem (FIS): A FIS, as shown in Fig. 7 
(e), represents a for-loop structure. It is used to describe 
sequential or parallel repeated executions of blocks where the 
number of repetitions is known. It corresponds to “For-iterator 
subsystem” in Simulink. A FIS usually includes Demuxs and 
Muxs. A Demux divides an event into several (sub-)events. A Mux
integrates several (sub-)events into an event. 
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Fig. 7. Basic components in ACSM. 

A block consumes one event from each input port and produces 
one event to each output port. This action is called firing and 
takes place under certain conditions called firing rules. A block 
except merge blocks in Fig. 7 (d) is fired when all input events 
are present. A merge block is fired when one of input events are 
present. A block except if/else blocks in Fig. 7 (d) produces one 
present event to each output port when fired. A if/else block 
produces one present event to one of output ports when fired.  

F. An example of ACSM 

Fig. 8 shows a simplified ACSM in Simulink for an H.264 



baseline profile decoder. It includes two paths. A path consists of 
macroblock VLD (MB VLD), 8x8 sub-macroblock inverse 
quantization (8x8 IQ), and inverse quantization (8x8 IT) to 
compute a residual image from a video bit stream. The other path 
consists of MB VLD, spatial compensation (SC) or motion 
compensation (MC) from the current frame or previous frames. If 
four neighbor 4x4 sub-macroblocks, e.g. 0, 1, 2, 3 blocks in Fig. 
6(b), have the same motion vector, it is possible to fetch less 
image data from previous frames (8x8 IF in IAS2) and 
manipulate the image data more efficiently (8x8 MC in IAS2)
compared to 4x4 sub- macroblock based motion compensation 
(4x4 IF and 4x4 MC in IAS3) by the elimination of common 
computation and communication. The ACSM consists of 83 
S-functions, 286 arcs, 21 if/else blocks, 43 IASs, 5 FISs, and 24 
delay blocks.  
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Fig. 8. A simplified ACSM of H.264 decoder in Simulink.

IV. Comparison with previous modeling styles 

In order to obtain an efficient SW code from a functional 
model, it is important to select an appropriate functional 
modeling style according to the property of an application 
domain. In the following subsections, we will compare ACSM 
with the most popular previous modeling styles in respect of 
building functional models of video codec applications. The 
capabilities and the weakness of these models will be analyzed 
with regards to the requirements stated in section I. 
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A. Kahn Process networks  

In the Kahn process networks [7], concurrent processes 
communicate through one-way FIFO channels with unbounded 
capacity. This means that writes to the channel always succeed 
immediately, while reads block until there is sufficient data in the 
channel to satisfy them. In particular, a process cannot test an 
input channel for the availability of data and then branch 
conditionally.  

Fig. 9 (b) shows a KPN example corresponding to an ACSM 
model as shown in Fig. 9 (b). A process in a KPN model has a 
computation code mixed with a communication code. Therefore, 
The KPN doesn’t support explicit and predictable communication 
that is required to efficiently use burst data transfers and data 
pre-fetchs. It also requires context switching to deal with blocked 
processes. To reduce the overhead of context switching, it is 
necessary to increase the granularity of process. 

B. Synchronous Dataflow  

In the Synchronous Dataflow (SDF) model [8], a process 
(actor) is fired when it has sufficient tokens (events) on its input 
ports. When an actor executes, it consumes a positive fixed 
number of data tokens from each input port, and produces a 
positive fixed number of tokens to each output port. If a SDF 
model is consistent, it is possible to execute the SDF model in 
bounded memory without context switching. 

SDF cannot represent explicit conditional such as if-then-else 
structure, which is required for video codecs, because it doesn’t 
allow absent token. To express an if-then-else structure, 
redundant computation and communication may be required as 
shown in Fig. 9 (c). According to the result of “if/else” actor, 
either F2 or F3 does not need to be executed because just only one 
of the outputs is used. Similarly, either communication between 
F2 and Z-j or that between F3 and Z-k is redundant. 

Fig. 9 (d) shows an alternative to express an if-then-else 
structure with embedded controls in a SDF model, where blocks 
F2, F3, and an if-then-else structure are merged into a single block. 
It can remove unnecessary execution of F2 or F3, but redundant 
communication of F2 with Z-j or F3 with Z-k is still required. 
Furthermore, mapping F2 and F3 onto two different processors or 
HWs is not possible so that its design space is restricted. 
Therefore, it does not support explicit conditional well. 

C. Boolean Dataflow  

Boolean Dataflow (BDF) [9] is an extension of SDF to 
support conditionals. In the BDF model, an if-then-else structure 
is modeled with two actors, SWITCH and SELECT. The 
SWITCH actor reads one token from the control input port, and 
depending on whether the value of the control token is true or 
false, routes the input either to the output port marked T, or to the 
output marked F. It also produces an absent token to the other 
output port. 

However, it is not guaranteed whether the execution of a BDF 
model is completed in a finite time or whether it requires a 
bounded memory [9]. In Fig. 9 (e), the tokens on the arc between 
F2 and Z-j and those on the arc between F3 and Z-k are 
accumulated because the execution ratios of F2 and F3 to F4 are 
different depending on the control token produced by the if/else 
actor. To solve this problem, it is necessary to insert additional 
SWITCH actors both between F2 and Z-j and between F3 and Z-k.
Building a BDF model of a video codec application at fine 
granularity will require many SWITCH actors, which is more 
error prone. 



D. Synchronous model 

Synchronous model (SM) [10] used in Esterel [11] and Lustre 
[12] is based on the perfect synchrony hypothesis assuming that 
the reaction to each set of the inputs is considered to be 
instantaneous. In the SM, a process is fired when it has at least 
one event on its input ports. When a process is fired, it can test 
absent events on its input ports and produce absent events on its 
output ports.   

The synchronous assumption simplifies system specification 
and verification. However, difficulties arise especially for video 
codec applications if the target architecture is a distributed 
multi-core system, because it is very expensive to maintain a 
global clock for testing and producing absent events over a 
distributed system. The fully synchronous implementation based 
on time-triggered architecture [13] must be conservative, forcing 
the global clock to run as slow as the slowest computation and 
communication process. Therefore, SM is not suitable for video 
codec applications, which have large variations in computation 
and communication. 

E. Analysis: comparing with ACSM 

The ACSM overcomes all the restriction of the above 
mentioned models while providing the same scheduling facilities.  

In data-driven models of KPN and SDF, the absent token is 
not defined. Therefore they have some difficulties in expressing 
an explicit if-then-else structure. In the BDF model the token 
overflow problem comes from the definition of the absent token 
without a global clock. However, the ACSM uses an abstract 
clock for the well-defined absent token. In the ACSM, an event 
on an arc is updated at every abstract clock tick, so there is no 
token overflow problem. 

Although the dataflow model has difficulties in representing 
conditionals, it can express several valid schedules of a multi-rate 
algorithm with only a model. In a SDF model as shown in Fig. 10 
(a), a schedule that requires minimal buffers is 
F0F0F1F2F2F0F1F2F2 and another schedule with loop structures is 
(3F0)(2F1(2F2)). Contrary to the dataflow model, the ACSM can 
express only one schedule with a model. Fig. 10 (b) shows an 
ACSM example that expresses a schedule that is (3F0)(2F1(2F2)). 
However, it is possible to find other schedules by loop 
transformation techniques such as loop unrolling and loop split. 
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Fig. 10. Multi-rate modeling with SDF (a) and ACSM (b). 

In the SM, there is no restriction on producing and testing 
absent events. It can cause a causality problem and requires a 
global clock to solve the problem. However, the ACSM allows 
only restricted absent events to express if-then-else structures. In 
other words, it is sufficient for a distributed multi-core system to 
replace absent events of unselected IAS outputs with present 
events only if an if-then-else structure is implemented over 
different processors. 

V. Experiments 

We performed several experiments to check the efficiency of 

the ACSM compared to the dataflow model, assuming that target 
architecture consists of a processor subsystem for image 
processing and an external global memory for image storage, as 
shown in Fig. 11, where a processor subsystem consists of a 
Tensilica Xtensa processor [14] with a default configuration, a 
local memory, and a DMA with a memory interface. We assumed 
that image fetch processes are executed in the DMA module.  
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Fig. 11. Evaluation architecture. 

The target application is an H.264 baseline decoder and its input 
bitstream is the Foreman sequence of QCIF format, which was 
encoded with QP=28 and IntraPeriod=5 when all MC block sizes 
were enabled. 

Fig. 12 shows our experimental procedure. In the modeling 
step, we made three Simulink models from H.264 decoder 
reference C code as shown in Table I. In the Simulink model 
equivalent to a SDF model, an if-then-else structure is expressed 
by using a MUX block as shown in Fig. 9 (c) and the processing 
block size is 4x4. In Simulink model equivalent to an ACSM, an 
if-then-else structure is expressed by an if/else block and IASs 
and the processing block size is 4x4. In the optimized ACSM, the 
processing block sizes are either 4x4 or 8x8. For 8x8 block, an 
additional IAS is necessary as shown in Fig. 8. We limited the 
block size of the SDF model to 4x4 because the additional IAS 
causes redundant computation as explained in IV-B. 

Then, we used Real-Time Workshop (RTW) to generate SW 
codes from the three different Simulink models. In the final step, 
we used Xtensa gdb and gprof to measure the execution cycles 
and the external memory access of the SW codes. We also added 
the reference C code to the test sets. 
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Fig. 12. Experimental procedure. 

TABLE I four test sets with different configurations 
Name description 

SDF SDF model as shown in Fig. 9 (c) 
ACSM Proposed ACSM model as shown in Fig. 9 (a) 
Optimized 
ACSM 

Proposed ACSM model with 8x8 block size as 
shown in Fig. 8  

Handed code Reference C code 

Fig. 13 shows the execution time and the number of external 
memory accesses for the four different configurations. According 
to the experimental results, the ACSM reduces both the execution 
time and the number of external memory accesses by 29 % and 
22 % respectively compared to those of the SDF model. 
Furthermore, the optimized ACSM reduces them by 32 % and 
46 % respectively compared to those of the SDF model. 
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Fig. 13. Relative execution times and external memory accesses of different configurations. 

According to the experimental results, it is necessary to 
express conditionals such as if-then-else structures explicitly for 
building a functional model of a video codec application. The 
optimized ACSM code from RTW requires 41% more execution 
time compared to the handed code because it includes many 
redundant copy operations. 

Even if a SDF model with embedded controls can remove 
redundant computation, it cannot remove the external memory 
access as explained in section IV. It also limits the design space 
exploration due to increasing the granularity of blocks. 

For the BDF model of the H.264 baseline decoder, 138 
SWITCHes were required to resolve the token overflow problem 
mentioned in section IV. The number of the SWITCHes in the 
BDF model is larger than that of S-functions in the ACSM model, 
which means that although the BDF supports conditionals, it is 
not suitable in building a functional model for a video codec 
application because the BDF functional models get too complex. 

VI. Conlusions 

In this paper, we explained a functional modeling method for 
generating an efficient SW code from a functional model for 
video codec applications. It is based on ACSM, which is an 
extension of the clocked synchronous model by employing the 
macroblock index as an abstract clock. The ACSM can express 
conditionals easily by allowing absent events with the global 
abstract clock. It can also express parallelism and pipeline easily 
by partially ordered intra- and inter-dependencies. Therefore, the 
ACSM is suitable for functional modeling of video codec 
applications that require both parallelism and conditionals.  

Experimental results with Simulink and RTW showed that the 
SW code generated from an ACSM of H.264 decoder is 
improved by up to 32% and 46 % compared to its SDF model in 
terms of the number of execution cycle and the number of 
external memory access respectively. We found that a BDF 
model of H.264 decoder requires many additional SWITCHes to 
express if-then-else structures. So the BDF model gets more 
complex. Therefore, the ACSM is more effective in building 
functional model for video codec applications because emerging 
standards such as H.264 require complex data-dependent 
operations.  

For a H.264 baseline decoder, the SW code generated with the 
ACSM by RTW requires longer execution time and larger buffer 
memories compared to those of the handed code. We are in the 
process of developing a more efficient SW generation tool. 
Furthermore, we will extend this methodology for 
multi-processor systems because the current version of RTW can 
generate only a SW code for single-processor systems. 
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