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Abstract— An important problem in executing applications in
energy-sensitive embedded environments is to tune their behav-
ior based on dynamic variations in energy constraints. One op-
tion for achieving this is dynamic compilation — compiling code
fragments on the fly to adapt to changing energy demands. While
dynamic compilation can be very beneficial in many embedded
environments where multiple criteria need to be satisfied during
execution, it can also incur a significant performance overhead
since compilation takes place at runtime. The goal in this work
is to reduce this performance overhead of dynamic compilation
by overlapping it with application execution. Specifically, pro-
vided that we have available hardware resources to perform dy-
namic compilation concurrently with application execution, our
approach compiles the next code fragment to be executed while
we are executing the current code fragment. The experimental
results from our implementation indicate significant savings in
execution times. Our experimental results also indicate that the
proposed strategy performs consistently well under different pa-
rameters.

I. INTRODUCTION

Dynamic compilation and linking is an important technique
for optimizing applications while they are executing. Most of
the prior work in the area [1, 3, 4, 7] focused on using dynamic
compilation for implementing performance-oriented compiler
optimizations at runtime. For example, the value of a pro-
gram variable may not be known statically (that is, at com-
pile time), but once it is known at runtime it may enable sev-
eral optimizations (e.g., constant propagation). Similarly, a
code region turns out to be executed very frequently at runtime
and thus deserves a more sophisticated compilation at runtime
(anticipating frequent future executions). A recent study [11]
also demonstrates how dynamic compilation and linking can
be used for energy adaptation in battery-operated embedded
environments; that is, when energy constraints (e.g., battery
level) change, the application is recompiled (dynamically) to
generate a more energy-efficient version. For example, when
battery is low, some memory banks in the system may need
to be turned off (to save power), and being able to work with
fewer number of banks may demand recompilation of the ap-
plication code. In contrast, when battery power is high, the
application code can make use of all memory banks available
in the system – this may require another dynamic compilation.

One of the most important problems in an energy-sensitive
embedded platform that employs dynamic compilation is the
extra time and energy taken by the dynamic compilation pro-
cess itself. This is because this performance and energy over-

∗This work is supported in part by NSF Career Award #0093082 and by a
grant from GSRC.

head directly contributes to the execution energy and time (as
compilation occurs at runtime). While it may not be possi-
ble to hide the compilation energy, it may be possible to hide
some portion of the compilation overhead (time) by overlap-
ping it with the application execution. In other words, pro-
vided that we have available hardware resources to perform
dynamic compilation concurrently with application execution,
we can compile the next code fragment to be executed while
we are executing the current code fragment. The code frag-
ment in question can be a loop nest, a subroutine, or several
logically-related subroutines. Overlapping dynamic compila-
tion with application execution is termed as compilation paral-
lelization in this paper (since compilation occurs parallel with
application execution). It should be emphasized that, while not
quantified in this paper, reducing the time spent in dynamic
compilation can also be beneficial from a leakage energy con-
sumption viewpoint (as a side effect of reduction in execution
cycles).

In this paper, we propose a strategy to hide the time spent in
dynamic compilation. Our strategy is based on predicting the
next code fragment to be executed and pre-compiling that frag-
ment before it is actually needed. Krintz et al [8] propose an
optimization strategy to reduce the performance overhead due
to dynamic compilation. Their approach mainly targets Java
applications and involves maintaining a global priority queue
that determines the modules to be compiled ahead of time. The
efficiency of this scheme depends heavily on the strategy em-
ployed to fill the priority queue and also the time taken to fill
the queue. Our strategy makes use of a global history table
to predict the next code fragment to compile, and is found to
be 92.37% accurate in predicting the next code fragment that
will be executed. Another difference between the two studies
is that our target environment is a chip multiprocessor-based
energy-sensitive embedded system and our idea is applicable
to different programming environments. It should be observed
that an on-chip multiprocessor platform is particularly suitable
for parallelizing dynamic compilation since it has multiple pro-
cessor cores, one of which can perform compilation while the
others can execute the application. It is known that, in many
multiprocessor applications, it may not be possible to fully uti-
lize all the available processor cores. In such cases, using one
of the cores for compilation does not affect the application ex-
ecution in any significant way. We implemented the proposed
optimization using Dyninst [2], a post-compiler program ma-
nipulation tool, and performed experiments using several ap-
plications. Our experimental results indicate that it is possible
to hide a large percentage of the compilation time (32% on
the average) if one employs one processor for dynamic com-
pilation alone. In addition, our experimental results also show
that allocating more processors for dynamic compilation can
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Fig. 1. Different scenarios for dynamic compilation.

be beneficial until a threshold point is reached.
The remainder of this paper is organized as follows. Sec-

tion II explains our approach and discusses our implementa-
tion. Section III presents the execution model in detail and dis-
cusses history-based next module (function/nest) prediction.
Section IV introduces our benchmarks and gives experimen-
tal results. Section V concludes the paper with a summary.

II. OVERLAPPING COMPILATION WITH APPLICATION
EXECUTION

A. Approach

Our goal in this paper is to hide the time spent in dy-
namic compilation as much as possible. Fig. 1 helps visual-
ize why parallelizing compilation (i.e., overlapping compila-
tion with application execution) might be useful in practice.
In this figure, Cn denotes the dynamic compilation time for
module (function/subprogram or loop nest) n before it is ex-
ecuted. En denotes the execution time for module n. We
consider the worst case scenario where each module has to
be optimized and recompiled before it can be executed (this
may occur, for example, when constraints such as remaining
battery power are constantly changing). Fig. 1(a) illustrates
what happens when dynamic compilation is not parallelized.
Since in this case the compilation and execution are inter-
leaved over the lifetime of the application, the overall execu-
tion time of the application can be expressed as the sum of the
compilation times and execution times of each module, i.e.,
(C1 + E1 + C2 + E2 + · · ·+ Cn + En). It is to be noted that
this is the current state-of-the-art in dynamic compilation.

In comparison, Figures 1(b) and (c) illustrate the potential
benefits of overlapping compilation with application execu-
tion. In Fig. 1(b), it is assumed that we are able to hide the
entire time spent in dynamic compilation (except for the first
module of course). Under this assumption, the overall execu-
tion time of the application can be expressed as (C1 + E1 +
E2 + · · · + En). It should be noted however that, depending
on the actual values of Ci and Ei, this ideal scenario may not
be achieved all the time. Fig. 1(c) depicts a more realistic sce-
nario, where dynamic compilation takes place in parallel with
application execution, however, the compilation is not always
complete in time for execution. Consequently, the application
has to wait until the compilation of the module is complete. In
this case, the overall execution time of the application is given

Application

API

Dyninst
Code

Mutator

Code
Dependent

Machine

ptrace/procfs

Mutator

Runtime Library

Snippets

Application

Fig. 2. Abstractions used in the Dyninst API.

by (C1 + E1 + E2 + E3 + · · ·+ En + TotalWaitingT ime),
where TotalWaitingT ime is the total time that the applica-
tion has to wait for the compilation to complete. Under this
scenario, the application in question incurs some compilation
overhead but a significant saving can still be obtained when
compared to the case in Fig. 1(a).

One might argue at this point that instead of utilizing extra
resources for dynamic compilation, it may be a better idea to
employ them in normal application execution. As a concrete
example, instead of using one processor for application exe-
cution and another one for dynamic compilation, it may be a
better option to use both these processors for application ex-
ecution (and each can do dynamic compilation on a need ba-
sis). However, such an alternative may or may not be viable,
depending on the specific case at hand. In particular, some
embedded applications are not amenable to thread-level par-
allelization. As a result, they cannot take advantage of extra
processors available in the system. However, as will be demon-
strated in this paper, most such applications can still take ad-
vantage of extra resources if those resources are used for dy-
namic compilation.

B. Implementation Details

Our dynamic compilation infrastructure is implemented us-
ing the Dyninst software from the University of Maryland
[2]. Dyninst is a post-compiler program manipulation tool
which provides an Application Program Interface (API) called
DyninstAPI for program instrumentation. Using the Dynin-
stAPI library, it is possible to instrument and modify appli-
cation programs during execution (i.e., as they are running).
DyninstAPI is itself a C++ class library which can be included
and directly called from a C++ program. With this interface,
a program can create a new piece of code and insert it to an-
other program while the latter is executing. The program being
modified is able to continue execution and does not need to be
recompiled entirely. While, as far as the applicability of our ap-
proach is concerned, it is not very important whether dynamic
compilation is needed for performance or energy reasons, our
current target environment in an energy-sensitive SoC platform
where we have multiple cores and some of these cores can be
used for parallelizing dynamic compilation. That is, in our
environment, dynamic compilation is invoked as a result of
some change in energy constraints at runtime. However, our
approach is oriented towards reducing the performance impact
of dynamic compilation rather than its energy consumption.

The overall structure of the Dyninst API and its implemen-
tation are shown in Fig. 2 (from [2]). There are two processes,
called the mutator and the application (or mutatee). The left
side of the figure shows the code for the mutator process that
contains calls into the Dyninst API. It also contains the code
that implements the runtime compiler and the utility routines
to manipulate the application process (shown below the rect-
angle labeled API) as well as profiling/tracing tools. The right



half of the figure depicts the application process with the origi-
nal code of the program shown in the top part of the figure. The
bottom two parts of the application are the snippets that are in-
serted into the program, and the runtime library that supports
the Dyninst API. To perform our experiments, we installed
Dyninst on a Sun Solaris-based platform.

III. EXECUTION MODEL

A. Order of Events

Our execution model is depicted in Fig. 3. In this model, the
application source code is augmented with “sensitivity lists.”
Each sensitivity list is attached to a module (a loop nest, sub-
program, or function) and indicates the energy components
that the module in question is sensitive to. E-Optimizer
is a decision-making module which checks E-Script to de-
termine the compilation strategy to choose, given the new en-
ergy constraint (e.g., remaining battery power). E-Script
is a list that contains for each nest (or subprogram) the
compilation strategies that should be activated based on en-
ergy constraints. After determining the optimization strategy,
E-Optimizer asks E-Compiler whether there is already
a compiled module in the “Compiled Code Repository,” which
corresponds to the new energy constraint. If there is, then
E-Compiler supplies that module, which is subsequently
inserted by E-Optimizer in the code and the execution re-
sumes. If no such pre-compiled module exists in the reposi-
tory, E-Compiler generates such a module and forwards it
to E-Optimizer, which subsequently proceeds as explained
above. It should be noted that, in our implementation, the vari-
ation in energy constraints is checked only when a sensitivity
list check is being done (i.e., when a sensitivity list is reached
during execution). This dynamic recompilation/linking-based
execution environment has been implemented using Dyninst.
In this implementation, E-Optimizer is a separate supervi-
sory program that controls the code modifications to be per-
formed on the target application.

We want to reiterate that our focus in this paper is on hiding
as much compilation time as possible by overlapping it with
application execution. Therefore, how the codes are optimized
to adapt to changing energy constraints is beyond the scope of
this paper (i.e., the approach proposed here is orthogonal to
the set of compiler optimizations employed for reducing en-
ergy/execution cycles). It should be mentioned, however, that
most of our optimizations applied during dynamic compilation
target at memory banks, and increase/decrease the number of
active banks to adapt to the energy constraints imposed. Our
approach, however, can be made to work without any prob-
lem with any dynamic compilation framework and any set of
compiler optimizations.
E-Optimizer comprises of two threads: E-CtrlThr

(Controller Thread) and E-CompThr (Compilation Thread).
E-CtrlThr monitors and controls the stopping/ starting and
reconfiguration of the application. E-CompThr goes ahead of
E-CtrlThr, predicts the next function/subroutine/nest that is
energy sensitive, determines the appropriate compilation strat-
egy for the new energy constraint, and compiles the new mod-
ule and keeps it ready before the next sensitivity list for the en-
ergy sensitive region is reached. When the application reaches
the next sensitivity list, it is stopped: If the dynamic compi-
lation of the new module by E-CompThr is complete, it is
inserted into the application and the application continues its
execution. If the dynamic compilation is still in progress, the
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Fig. 3. Our execution model. The numbers attached to arrows indicate the
order of events. This dynamic compilation framework has been implemented
using Dyninst [2].

application waits until the compilation is complete before it
can insert the new module and continue. In this framework,
the only part that needs to be performed by the application pro-
grammer is to insert sensitivity lists at the appropriate places in
the code. Our current implementation allows sensitivity lists to
be added at the beginning of subprograms/functions and loops.

B. History-Based Next Module Prediction

The success of the proposed execution model hinges on the
prediction of the next energy sensitive code region (module)
to be executed in the application. On analyzing the func-
tion/subroutine/nest traces of several applications (that is, the
order in which functions/subroutines/nests are executed), we
observed regular patterns, which means that we can predict
the next function/subroutine/nest to be executed with a reason-
able accuracy. To benefit from this regularity, E-Optimizer
maintains a history table (see Fig. 3). Every time the applica-
tion program reaches an energy-sensitive region (annotated by
a sensitivity list), it logs the function/subroutine/nest in the his-
tory table.1 E-CompThr consults the history table before pre-
dicting the next energy sensitive region. Every time a sensitiv-
ity list is encountered, the compilation thread (E-CompThr)
is activated to start the prediction and compilation of the next
energy sensitive region. Savings in execution time are ob-
tained when a correct prediction is made by E-CompThr.
In the event of a misprediction, E-Optimizer invokes
E-Compiler and compilation is done before the execution
(incurring, of course, its performance overhead). Thus, the
overall savings in compilation overhead are determined by the
accuracy of the prediction and the history logged in the history

1For array based applications, we focus on nests; that is, each nest is po-
tentially an energy-sensitive module (code region). In contrast, for other appli-
cations, energy-sensitive modules are functions and subroutines. Unless stated
otherwise, in our discussion, each nest (or function/subroutine) is considered
as energy sensitive, and is augmented by a sensitivity list.



TABLE I
BENCHMARK

CHARACTERISTICS.

Benchmark Source/Type Size/Input File
btrix Spec95 721KB
tomcatv Spec95 836KB
vpenta Spec95 770KB
hier Motion Est. 310KB
full search Motion Est. 310KB
epic MediaBench test image.pgm
rasta MediaBench ex5 c1.wav
181.mcf Spec2000 inp.in

TABLE II
PREDICTION ACCURACIES.

Benchmark Prediction
Accuracy

btrix 99.95%
tomcatv 88.38%
vpenta 99.96%
hier 100.00%
full search 100.00%
epic 91.02%
rasta 72.13%
181.mcf 87.52%

table.
Our current prediction strategy makes use of the history ta-

ble as follows. If the current module to execute is m1, we
search the history table to find when was the last time m1 was
called (invoked), and what was the method invoked following
it. If this method (in the history list) is m2, we predict the next
method to be called (after m1) as m2, and start pre-compiling
it (if it needs to be recompiled). In other words, our approach
assumes that if the most recent execution of m1 has been fol-
lowed by an execution of m2, the current execution of m1 will
also be followed by m2. Table II gives the prediction accu-
racies for the benchmarks used in this study. The prediction
accuracies for array based codes are quite high due to the regu-
lar patterns in which loop nests are executed. That is, the loop
nests in general are executed one after another with little (or
no) control flow between them. For the other benchmarks, the
prediction accuracy is dependent on the number of modules
that are to be monitored and also on the regularity of their exe-
cution patterns. Overall, the prediction accuracies listed in Ta-
ble II are very encouraging and imply that our pre-compilation
based strategy can be successful in practice. However, we need
to point out that a more sophisticated predictor can potentially
generate even better predictions. In fact, we believe that it is
even possible to parameterize the dynamic compiler to use dif-
ferent strategies at runtime based on a static profile.

IV. EXPERIMENTS AND RESULTS

A. Time Contribution of Dynamic Compilation

To evaluate our dynamic compilation based environment,
we conducted experiments using eight benchmarks from dif-
ferent domains and benchmark suites. Table I gives impor-
tant characteristics of these benchmark codes. The main rea-
son for selecting these benchmarks is that we were able to run
them through the Dyninst environment. The primary aim of
our scheme is to hide the compilation time and thus reduce
the overall execution time of applications in comparison to the
default case, where dynamic compilation and execution are
interleaved. Table III gives the best and the worst case (per-
centage) compilation times for each of the benchmarks in our
suite when dynamic compilation and execution are fully inter-
leaved (i.e., when no compilation time is hidden). To evaluate
the worst case compilation time, each energy sensitive region
is optimized and recompiled every time it is called before it
can be executed. The compilation is based on the compila-
tion strategies captured in the E-Script. In contrast, in the
best case, each energy sensitive region is compiled only once
during the course of entire execution, i.e., the first time the
region is encountered. For every subsequent occurrence, the
pre-compiled binaries from the Compiled Code Repository are
used. Note that this best case represents the smallest amount of
runtime that can be taken by the dynamic compiler. From the

TABLE III
THE BEST-CASE AND WORST-CASE TIMES FROM THE COMPILATION

PERSPECTIVE (IN MILLISECONDS). THE VALUES WITHIN THE BRACKETS
GIVE THE PERCENTAGE CONTRIBUTION TO THE TOTAL (COMPILATION

PLUS EXECUTION) TIME.

Benchmark Compilation Time Compilation Time Execution Time
(Worst Case) (Best Case) (msec)

btrix 17651.69 [53.1%] 1810.51 [10.4%] 15599.96
tomcatv 22225.82 [80.3%] 1854.82 [25.4%] 5450.17
vpenta 20060.68 [36.5%] 1834.51 [5.0%] 34864.98
hier 3515.73 [36.7%] 1387.97 [18.7%] 6053.28
full search 2468.43 [70.6%] 249.01 [19.4%] 1029.84
epic 90476.59 [82.0%] 1547.30 [7.2%] 19878.16
rasta 85515.07 [86.4%] 3138.66 [18.9%] 13436.02
181.mcf 5283755.26 [85.8%] 1490.7 [0.2%] 873999.61

results given in Table III, one can see that the compilation time
constitutes more than 80% of the overall time in benchmarks
tomcatv, epic, rasta and 181.mcf when the worst case scenario
is considered. Even considering the best case scenario, it can
be observed that, on the average, 13% of the total time goes to
dynamic compilation. Consequently, an optimization strategy
that hides this overhead (time) can be very useful in practice.
In fact, the results in this table along with those in Table II
provide a strong motivation for our research.

B. Reductions in Overall Execution Times

We recorded the total execution times with our strategy for
various compilation probabilities (100%, 50%, and 25%) and
compared them with the results when compilation and exe-
cution are interleaved. A 100% compilation probability im-
plies that every module in the application has to be recom-
piled before it can be executed. On the other hand, a 50%
(25%) compilation probability implies that only 50% (25%)
of the modules in the application has to be recompiled be-
fore each time they need to be executed. Our experience
with different applications indicate that most applications have
compilation probabilities ranging from 25% to 80%. We per-
formed experiments with these three different probabilities to
cover a large spectrum. The experiments were executed on
a Sun multi-processor machine running Solaris. The appli-
cation process was bound to one of the processor (Processor
1) and the threads of E-Optimizer (i.e., E-CtrlThr and
E-CompThr) were both bound to another processor (Proces-
sor 2). On analyzing the results obtained (see columns 2, 3, and
4 in Tables IV, V, and VI), one can make several observations.
First, our approach reduces the time spent in dynamic compila-
tion significantly. Specifically, with compilation probabilities
of 100%, 50%, and 25%, the average reductions in the com-
pilation time (the second column of the tables) are 32.06%,
20.45%, and 28.06%, respectively. However, to make a fair
comparison, one needs to quantify the negative impact of our
approach as well, that is, the increase in the execution time due
to thread synchronization and contention. We can see from
the third column in Tables IV, V, and VI that in some cases
the increase in execution time is so much that it offsets all the
benefits coming from parallelizing dynamic compilation (con-
sider, for example, benchmarks such as rasta and 181.mcf with
compilation probabilities of 50% and 25%). When one consid-
ers the total execution times (compilation time plus execution
time) i.e., the fourth column in Tables IV, V, and VI, one sees
an average of 10.35% and 4.07% reductions in total times with
compilation probabilities 100% and 50%, respectively, and a
2.19% increase in the total time with a 25% compilation prob-
ability. Therefore, we can conclude that although we obtain



TABLE IV
PERCENTAGE IMPROVEMENTS DUE TO PARALLELIZING COMPILATION

(WITH A 100% COMPILATION PROBABILITY).

Benchmark 2 Processors 3 Processors
Compl% Excn% Total% Compl% Exec% Total%

btrix 23.11 -4.16 10.26 20.07 -0.24 10.50
tomcatv 30.80 -90.13 6.63 14.02 -5.32 10.15
vpenta 40.25 -2.38 13.17 38.69 -1.75 13.00
hier 63.75 -0.77 22.92 61.76 -0.68 22.25
full search 27.06 -3.96 17.94 22.98 -2.28 15.55
epic 13.72 -39.36 4.01 28.66 -7.35 22.07
rasta 28.32 -162.50 2.00 36.71 -11.85 30.01
181.mcf 29.49 -129.02 5.93 38.25 -7.04 31.51

TABLE V
PERCENTAGE IMPROVEMENTS DUE TO PARALLELIZING COMPILATION

(WITH A 50% COMPILATION PROBABILITY).

Benchmark 2 Processors 3 Processors
Compl% Excn% Total% Compl% Excn% Total%

btrix 22.28 -0.67 8.34 15.99 0.38 5.65
tomcatv 8.48 -26.21 -2.25 9.92 -3.77 5.07
vpenta 33.19 -1.44 6.51 48.27 -1.09 6.64
hier 43.78 0.01 12.33 82.62 0.02 12.74
full search 22.69 -2.72 12.17 33.17 -13.79 8.89
epic 11.63 -19.37 2.26 7.81 -4.51 3.69
rasta 12.50 -72.27 -6.42 16.03 -8.00 8.95
181.mcf 9.05 -28.50 -0.34 10.70 -9.65 4.84

some improvements, using only two processors does not bring
impressive benefits.

These results led us to perform another set of experiments,
where we used three processors. Specifically, the applica-
tion process, as before, was bound to one processor (Proces-
sor 1), the controller thread (E-CtrlThr) was bound to a
different processor (Processor 2), and the compilation thread
(E-CompThr) was bound to a third processor (Processor 3).
As can be seen from the columns 5, 6, and 7 of Tables IV, V,
and VI, the results obtained using three processors are much
better as compared to those obtained using two processors
only. Specifically, with a compilation probability of 100%,
the average reductions in the compilation time, execution time,
and total time are 32.64%, -4.56%, and 19.38%, respectively.
The corresponding values for compilation probabilities of 50%
and 25% are 28.06%, -5.05%, and 7.05% and 14.91%, -1.59%,
and 0.81%, respectively. These results indicate that our ap-
proach can make use of available processors effectively. It
should also be emphasized that some of our applications, e.g.,
epic, rasta, and 181.mcf, are not amenable to chip-scale paral-
lelism; so, we cannot use the available processors for reducing
their execution times. However, it is still possible to use our
approach to reduce their dynamic compilation times.

C. Impact of Compiling Critical Modules

Recall that in our experiments so far we considered all mod-
ules (functions/subroutines/ nests) as energy sensitive regions.
In our next set of experiments, we analyzed the impact of dy-
namically compiling only a set of critical modules (instead of
all modules). A critical module is the one that contributes
to the overall execution time significantly. The experiments
were performed assuming a 100% compilation probability. Ta-
ble VII shows, for vpenta, the effect of compiling critical mod-
ules (nests) when execution and compilation are fully inter-
leaved (i.e., when our scheme is not employed). The first col-
umn in this table lists the dynamically compiled critical nests
in the application, the second column gives the compilation
time, and the third column gives the overall time (compilation
plus execution). It is easy to see that there is an optimum set
of nests (Nest I + Nest II + Nest IV) such that, when com-

TABLE VI
PERCENTAGE IMPROVEMENTS DUE TO PARALLELIZING COMPILATION

(WITH A 25% COMPILATION PROBABILITY).

Benchmark 2 Processors 3 Processors
Compl% Excn% Total% Compl% Excn% Total%

btrix 11.28 -0.51 2.52 4.45 0.22 1.26
tomcatv 14.54 -13.10 1.83 -6.12 -2.11 -4.49
vpenta 37.32 -0.47 5.89 63.42 -0.27 6.31
hier 37.27 0.43 9.22 60.86 0.32 9.27
full search -40.03 -4.85 -17.72 -9.55 -0.85 -4.40
epic 14.95 -11.19 2.87 8.87 -4.79 2.16
rasta 1.56 -49.92 -17.68 6.01 -6.32 1.19
181.mcf -0.12 -10.11 -4.48 -8.59 1.08 -4.84

TABLE VII
VPENTA: IMPACT OF COMPILING ONLY CRITICAL LOOP NESTS.

Nests Compile(ms) Total(ms)
None 0 54375.86
Nest I 2874.97 55963.48
Nest I + Nest II 4824.32 58135.06
Nest I + Nest II + Nest IV 7319.83 46720.90
Nest I + Nest II + Nest IV + Next VIII 9692.83 59210.55
All Nests 20060.67 54989.12

piled, lead to minimum overall time. In other words, for the
minimum total time, it is important that only a specific set
of critical modules need to be (predicted correctly and) dy-
namically compiled. In fact, as can be observed from this
table, attempting to compile a larger set increases the total
time. Similar results are presented in Table VIII when our ap-
proach is employed. Compiling only these critical modules
(i.e., Nest I + Nest II + Nest IV) when execution and compila-
tion are interleaved results in an improvement of 14.07% (for
vpenta) in the total time. Overlapping execution and compila-
tion yields an additional 13.98% improvement in the total time
of the application, thereby producing a 28.05% overall perfor-
mance improvement. Similar results have been observed with
other benchmark codes as well, and those results are omitted
here due to lack of space. One can conclude from these results
that overlapping computation and compilation in addition with
compiling only the critical modules yields the best results. In
addition, we found that profiling can be of great help in de-
termining the modules to compile. For example, in btrix, the
seventh nest takes 95.2% of the time and is, therefore, a per-
fect candidate for compilation. Similarly, in 181.mcf, three
subroutines, namely, refresh potential, price out impl, and pri-
mal bea mpp take (together) 54.3% of the overall execution
time. And, consequently, compiling only these critical mod-
ules generated between 20% and 30% improvements for these
applications. As a result, a simple strategy for reducing the
runtime overhead due to dynamic compilation would be (i) to
profile the application to determine the critical modules and,
(ii) to pre-compile these modules using the approach discussed
in this paper.

D. Impact of Increasing the Number of Processors

In our experiments so far, we have used at most two pro-
cessors for compilation purposes (in addition to the one that
is executing the application itself). However, in some cases,
allocating more processors to dynamic compilation can bring
further reductions in overall execution time. Consider the ex-
ample scenario depicted in Fig. 4. In this scenario, three pro-
cessors are employed for performing dynamic compilation,
whereas one processor is executing the application. Obvi-
ously, one might be able to get further benefits from even a
larger number of processors depending on the application in
question. It should be noted, however, that an opposite ar-



TABLE VIII
VPENTA: ABSOLUTE TIMES AND PERCENTAGE IMPROVEMENTS [DUE TO

OVERLAPPED COMPUTATION AND COMPILATION OVER TABLE VII].

Nests Compile (msec) Total (msec)
Nest I 262.98 [90.85%] 52614.01 [5.99%]
Nest I + Nest II 472.14 [90.21%] 53585.28 [7.83%]
Nest I + Nest II
+ Nest IV 2652.98 [63.76%] 39124.29 [10.58%]
Nest I + Nest II
+ Nest IV + Next VIII 3169.78 [67.30%] 52648.76 [11.08%]
All Nests 11986.05[40.25%] 47747.07 [13.17%]

Processor 1 Processor 2 Processor 3 Processor 4

1

2

2

1

1

E

C

E

C

E

C

1

Fig. 4. An execution scenario where multiple processors are employed for
dynamic compilation.

gument may defend using available processors for executing
the application. As discussed earlier in the paper, such an ap-
proach may or may not be successful, depending on whether
the application is amenable to module-level (loop nest-level or
function/subroutine-level) parallelism. Specifically, if the ap-
plication does not exhibit inherent parallelism, increasing the
number of processors would not bring any benefits.

To study this tradeoff between parallelizing dynamic compi-
lation and parallelizing application execution, we performed a
set of experiments where we increased the number of proces-
sors and used them for compilation and execution. The results
obtained are presented in Fig. 5 with a compilation probability
of 50%. The top graph in Fig. 5 shows the results when the
number of processors allocated for dynamic compilation is in-
creased (and using only 1 processor for application execution).
The bottom graph, on the other hand, gives the results when
the number of processors allocated for application execution
is increased (keeping the number of processors allocated for
compilation at 2 except for the first bar where we have only 1
processor for compilation). We can make several observations
from these two graphs. First, in general, employing the avail-
able processors for dynamic compilation (as opposed to appli-
cation execution) generates better performance results. Specif-
ically, the average performance improvements when using 5
processors are 9.49% and 7.31%, respectively, when the extra
processors used for compilation and execution. Second, con-
sidering the top graph in Fig. 5, for each application, there is
an optimum number of processors beyond which increasing the
number of processors does not bring benefits. This is because
of two main reasons. First, in some cases, accurately deter-
mining the multiple modules to pre-compile is not easy (that
is, the prediction is difficult). Second, inter-thread commu-
nications can sometimes offset the benefits coming from em-
ploying multiple processors. Note that one can make a similar
observation from the bottom graph in Fig. 5 as well. However,
this time, the main reason for poor scalability is the inherent
difficulty in parallelizing the application in question.

Fig. 5. Top: Percentage performance improvements with increasing number
of processors employed for dynamic compilation. Bottom: Percentage
performance improvements with increasing number of processors employed
for application execution.

V. CONCLUDING REMARKS
The goal of this paper is to hide the time spent in dy-

namic compilation by overlapping it with application execu-
tion. We implemented a dynamic compilation/linking infras-
tructure that compiles/links program modules based on exter-
nal energy constraints. Our strategy hides most of the dynamic
compilation time by predicting the next module to be executed
and by pre-compiling it. Our experimental results obtained us-
ing eight applications are very promising.
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