
Abridged Addressing: A Low Power Memory Addressing Strategy

Preeti Ranjan Panda
Department of Computer Science and Engineering

Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, INDIA

Abstract— The memory subsystem is known to comprise a sig-
nificant fraction of the power dissipation in embedded systems.
The memory addressing strategy, which determines the sequence
of addresses appearing on the memory address bus as well as
the switching activity in the addressing logic, has a major im-
pact on the memory subsystem power dissipation. We present
a novel addressing strategy, Abridged Addressing, that helps re-
duce system power dissipation by substantially reducing both the
address bus switching as well the addressing logic power. The
strategy, which relies on minimizing register accesses in the ad-
dressing logic, helps overcome some of the limitations of existing
approaches: the address bus switching is low; there is very lit-
tle area, performance, and power overhead; and the addressing
hardware is simpler, making the technique suitable for both on-
chip and off-chip memory, as well as single-port and multi-port
memories.

I. INTRODUCTION

Memory accesses constitute an important target for power
optimizations since memory accounts for an increasing frac-
tion of the total area and power dissipation of embedded sys-
tems. Since dynamic power dissipation in CMOS circuits is a
function of the total switching capacitance, particular attention
has been paid to the memory address and data buses because
these are wide, and are typically long with high capacitance.
Lower switching on these buses leads to lower overall power
dissipation. Although it may not be possible to optimize well
for the data bus because the relevant data values are typically
not known in advance, the switching on the address is often
known statically and is controllable by the synthesis process.
In typical design descriptions, the access patterns of the arrays
– the loop induction variables and the array index expressions
are known and usually exhibit some regularity. This regular-
ity results in a strong correlation in the sequence of addresses
placed on the address bus, which can be exploited by a power
optimizing synthesis tool.

The idea of encoding the address bus with the objective of
minimizing switching has been extensively studied [1]. In Bus-
invert coding [2], an additional bit is appended to the bus to
indicate that the bus is inverted – this is invoked if too many
bits (more than half) are switching on the bus. In [3], the in-
struction address bus was encoded using Gray code. The T0
encoding scheme [4], where an extra bit encodes the informa-
tion that the following address is the successor of the previous
address, results in zero transitions in the best case – i.e., where
addresses are strictly sequential.

Recognizing that programs tend to spend a lot of time ac-
cessing arrays inside loops, [5] proposed an address encoding

technique called Working Zone Encoding (WZE). The tech-
nique involves the construction of encoding and decoding cir-
cuits that keep track of currently active memory zones. During
memory accesses, the zone is selected and an encoded off-
set is transmitted on the address bus, which is used by the
decoder to recover the actual address. More general correla-
tions on memory data buses have been studied, which rely on
having static access to data streams so that frequently occur-
ring patterns can be identified and assigned appropriate codes
[6, 7]. In [8], the authors present an encoding/decoding strat-
egy consisting of adaptive self-organizing lists to handle com-
plex interactions arising out of multiplexed address buses. In
[9], the authors first profile an application to determine which
regions of memory are most accessed. To reduce power dissi-
pation, these regions are assigned to smaller memory modules.
In [10], strategies including array interleaving were described
for arranging data in memory so that switching on the address
bus is minimized. However, this strategy does not generalize
well because interleaving requirements in different loops might
conflict. In this paper, we assume that the start addresses of ar-
rays have been determined, and the structure of the individual
arrays is not modified; interleaving could be combined with
our proposed strategy.

For data memory, the encoding strategies indicated above
work well for sequential addresses, but not for correlated ad-
dresses that are not necessarily sequential, although WZE and
[8] address this deficiency to some extent. In [11], the au-
thors present a customized data memory interface (CDMI) that
uses static information about the loop strides and the order of
memory accesses to generate addresses within the data mem-
ory subsystem, thereby minimizing communication across the
processor-memory address bus. Although proposed in a pro-
cessor context, a similar strategy can also be applied to syn-
thesized hardware. The technique requires a relatively power-
expensive decoding circuit in the memory subsystem, which
is justified in case of off-chip power-memory bus, because
power savings on the address bus dwarfs the decoding over-
head. However, in case of on-chip memory, the address bus
capacitances are relatively smaller, and the decoder hardware’s
power overhead becomes significant. We present a novel strat-
egy, Abridged Addressing, where we optimize register file ac-
cesses and simplify the addressing logic by harnessing mem-
ory address correlations. This not only reduces address bus
energy, but also significantly reduces power dissipation in the
addressing logic, thereby making the addressing mechanism
equally applicable to both the on-chip as well as off-chip mem-
ory interfaces.

II. MEMORY ADDRESSING

When designing optimizations targeting the data memory
interface, particular attention is paid to loops in the specifica-
tion program because most of the execution time is known to
be spent inside loops, irrespective of whether the target is soft-
ware or hardware; consequently, most memory accesses occur
during loop executions. Since typical loops in a large variety
of application domains (such as DSP, graphics, vision, image
processing, etc.) have regular loop strides and array index ex-
pressions that are affine (linear) in the loop induction variables,
it is possible to analyze the array access patterns statically and
synthesize power-efficient address generation, encoding, and
decoding circuits that minimize the overall power consump-
tion during memory accesses. Consider a loop of the form:

for (i = 0; i < n; i = i + 2)
x = a[i] + b[i+1];
...

Assume that the implementation target uses a dual-port
memory because of performance constraints. The addressing
logic now drives two memory address buses. A straightforward
implementation of the addressing logic section of the datapath
is shown in Figure 1. This architecture suffers from some se-
rious disadvantages when the memory is physically far apart
from the datapath. For example, when the memory is off-chip,
the power dissipation in the address buses is large due to the
transitions in the off-chip wires with large capacitances. Sev-
eral optimization strategies target this interface typically with
encoders on the datapath side, and decoders on the memory
side to minimize the transitions in the address bus. A simpli-
fied version of an example efficient implementation, based on
the CDMI proposal in [11], is shown in Figure 2. Because
of the regular memory access pattern in the loop, there is no
need to send the addresses explicitly on the address bus in the
steady state. Instead, the initial addresses are sent to registers
in the decoders only once, and the registers are updated after
every access so that subsequent memory addresses are gener-
ated in the decoder itself. A small counter-based FSM (which
is initialized before each loop begins) keeps track of the reg-
ister updates. The technique is very effective in minimizing
address bus traffic on the datapath-memory interface because
the datapath updates the address only once for every loop.

+
A1 Dual

Port
Memory

Addressing Logic

D2

+

R

Datapath

D1

A2

a

b+1

+MUX

i

2

Fig. 1. The datapath/memory interface

The above strategy yields significant power savings when
the datapath-memory interface consists of high capacitance
wires, especially for off-chip memories where the switching
capacitances are about three orders of magnitude higher than
typical on-chip wire capacitances. However, if the memory is
on-chip, then the power overheads of the decoding circuitry
may overwhelm the power savings due to reduced address bus
switching; the overall power savings depends on the physical
placement of the datapath and memory blocks. Since the ad-
dressing decisions are made very early in the design phase,
when the physical information is not known, it is important to
design the addressing logic in such a way that power overheads
are minimized.

Datapath Memory Subsystem

Dual
Port

Memory

R

+

MUX

2

R

+

MUX

2

Decoder

Address
Interface

a [i]

b [i+1]

A1

D2

D1

A2

Fig. 2. Minimizing address bus transitions

Figure 3 shows an alternate address generation mechanism,
Abridged Addressing, where the address for � � � � is generated
using a register as before, but the address for � � � � 	 � is gener-
ated from that of � � � � by just adding � � � � � 	 � where � and

� are the start addresses of � and � respectively. For simplicity
of discussion, we have used only word addresses in this paper.
Since � � � � � 	 � is a constant known during synthesis, the
addressing logic becomes simpler. In the previous approach
(Figure 2), we need to keep a register in the decoder for every
memory access, and if there are multiple ports, we may orga-
nize them into one register file for each port. However, reading
from and writing to these register files in each cycle is power-
inefficient. Accesses to the decoder’s register file results in ex-
tra power consumption during read/write of the individual reg-
isters as well as during the register file address decoding. The
alternative we propose in Figure 3 maintains only one address
register for a loop body, and derives the remaining addresses
from this register using simple arithmetic operations. Our ex-
periments show that replacing the expensive register file access
operations by simple additions cause a 23% reduction in power
dissipation for the above example.

III. ADDRESS DECODER CIRCUITS

The CDMI-based approach, although proposed in the
processor context in [11], can be extended in a straight-
forward way to synthesized hardware. Consider a gen-
eral � -level nested loop accessing an � -dimensional array

� � � � � � � ! � " " " � � $ � as follows:

for (� � ' (� * � � , . � * � � ' � � � 3 �)

Datapath Memory Subsystem

Dual
Port

Memory

R

+

MUX

2

Addressing Logic

Address
Interface

a [i]

A1

D2

D1

A2

+B-A+1

Fig. 3. Abridged Addressing: minimizing address bus transitions and
addressing logic

for (� � � � � � � � � 	 � � � � � � � � � �)
. . .
for (� � � � � � � � � 	 � � � � � � � � � �)

READ �
� �
. . .

� �

The difference in address locations between two successive
iterations of the innermost loop is:

� � � � � � � 	 � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � � � � � � �

A’ B’

+SEL

Registers

Offset
MUX

Ad

Bd

Address

Fig. 4. Address decoder for linear array indices

For linear indices, all the � � � ’s and � � ’s are constants, so
� � can be computed at compile time and set as an input to the
MUX shown in the generalized addressing circuit shown in
Figure 4. The MUX inputs � � , � � , etc., represent the address
offsets to the respective arrays in successive iterations of the

� � -loop. The values in the registers, � � , � � , etc., represent the
addresses for arrays A, B,...respectively from the previous iter-
ation. The address for the current access is determined by the
SEL signal from a small counter-based FSM selecting both the
appropriate register and the offset input to the adder. The regis-
ter file is initialized before the loop execution begins from the
address bus in the datapath interface, but in the steady state, the
bus from the datapath never changes and addresses to the mem-
ory are generated within the decoder itself. This is the result of
an application of a combination of the strength reduction and
induction variable elimination compiler optimizations.

IV. ABRIDGED ADDRESSING LOGIC STRUCTURE

The structure of the typical addressing logic in Abridged
Addressing is shown in Figure 5. � � � � , � � � � � , � � � � � � , and� � � � � � � � represent the address computations required; there
is one address computation output corresponding to every ar-
ray access in the loop body. There will be a final level of mul-
tiplexing between these independent computations depending
on the number of ports in the memory and on the assignment
of individual addresses to ports. As mentioned earlier, we
store only one value in a register and derive all the address
outputs from it. In this case, we choose to store � , the loop
induction variable, which is incremented by the loop stride ev-
ery iteration. A network of adders is required to generate all
the memory addresses, as shown. If the array indices are lin-
ear, the multiplicative coefficients are constants and there is
no need to instantiate expensive multipliers. Also, the shift
circuits shown in the figure do not correspond to any actual
hardware; shifting is realized though concatenation of zeros.
Such a structure results in considerably lower power dissipa-
tion than the CDMI-based strategy, which would consist of a
register file with four registers – each storing the updated mem-
ory address; the CDMI decoder performs reads and writes to
the register file during every memory access. In Abridged Ad-
dressing, the � register is updated only once per loop iteration.
Even though there may be more adders in Abridged Address-
ing, each adder is activated only once per loop iteration (and
not on every memory access), which may result in only slightly
worse power dissipation in adders than CDMI, where a sin-
gle adder is activated on every access. In the example of Fig-
ure 5 there are six adders activated once whereas in CDMI, we
would have one adder activated four times. However, there is a
very considerable power saving due to avoiding the expensive
register file accesses.

R

+

MUX

1

+

+

+

B [3i]

C [11i]

3i

D-C+1

+
A [i]A

i

+

B

<<1

<<3

11i +

C

D [11i+1]

Fig. 5. Addressing logic structure

Although we chose the loop induction variable � for storage
in Figure 5, there are other cases when this choice does not
necessarily result in the most efficient design. A simple exam-
ple is shown in Figure 6. To generate the � � � � � � and

� � � � � �
addresses in every loop iteration, we can just store � � � � � � in
the register and simply derive

� � � � � � from it by adding the
constant

� � � . If the loop stride was ’1’, then we add ’11’
to the current � � � � � � address to generate the value in the next
iteration.

R

+

MUX

11

+
D - A

A [11i]

D [11i]

Fig. 6. Addressing logic for a different example

V. EFFICIENT ADDRESSING CIRCUITS

We formulate and solve the problem of determining an effi-
cient addressing logic structure from a given set of array ref-
erences, each translating to a memory address output. The
overall strategy is similar in principle to that used in design-
ing multiplier-less filters with minimum resources (e.g., [12]),
but differs in several important steps.

We construct an adder network graph � � � � � � , with a set
of nodes � and edges � . Each node corresponds to an ar-
ray access, and there is an edge � �
 with edge weight � � � �
 �
if it is possible to derive the address corresponding to
 from
the address corresponding to � using � � � �
 � adders. An ex-
ample adder network graph is shown in Figure 7(a). The
edges � � � � � � � � � , � � � � � � � � � , � � � � � � � � 	
 � , etc.,
have weight 1 because it is possible to derive the target ad-
dress from the source address using just one adder. The edge

� � � � � � � � 	
 � , has weight 1 because we also need only
one adder to generate � � � 	
 � from � � � � (add the constant
’ � � � 	
 ’ to � � � �). The edge � � � � � � � � � � , has weight 3
because we need three additions – first subtract � to get � , then
add � 	 � � to get � � , finally add � to get � � � � � . Edges such
as � � � � � � � � � � , have a higher weight because the deriva-
tion requires more expensive circuitry – in the worst case, an
appropriate divider. The multiplication operation corresponds
to an appropriate number of adders, since the multiplicative
coefficients are all constants. The edge weights in the graph
are a measure of how many adders would be activated to get
from one memory address to another, and reflect the relative
power dissipation of the circuit compared to a simple adder.
The same metric can be used for modeling the area of the ad-
dressing logic, and with small modifications, the delay also.

All edges not shown

B[k] B[k+1]

A[k]

11

A[3k] B[3k]

1

1 1

1

1

3 3 1010

B[k] B[k+1]

A[k]

1

A[3k] B[3k]

1

1

3

(a) (b)

Fig. 7. (a) Adder network graph (b) Directed minimum spanning tree

From the adder network graph, we can derive the simplest

adder network covering all the nodes by finding the minimum
spanning tree in the (directed) graph. The minimum span-
ning tree is a subset of the edges of the graph that connects
all the nodes and minimizes the sum of the weights of the
edges selected. The standard minimum spanning tree algo-
rithms (which operate on undirected graphs) cannot be used
for this purpose because our adder network graph is directed.
This is because the circuit to generate � from
 may be more
complex than the reverse. For example, � � can be generated
from � by just one addition, but generating � from � � requires
more complex hardware. In other words, � � � �
 � � � �
 � � � in
general.

To obtain the minimum spanning tree of a directed graph, we
can use Chu-Liu’s algorithm [13], an efficient polynomial time
algorithm for computing the directed minimum spanning tree
(DMST). The algorithm works by first selecting, in an outer
loop, different nodes of the graph as the possible root, deleting
all incoming edges to it, and then choosing the lowest cost in-
coming edge to all the other nodes. If no cycle is formed, we
have the DMST. If there is a cycle, it is collapsed into a super-
node � and the incoming edge weight to each node � in the
cycle from nodes � outside the cycle is recomputed according
to the equation:

� � � � � � � � � � � � � � � � pred � � � � � � � min � � � � pred � � � � � � �

where pred(
) is the predecessor node of
 in the cycle. For
each super-node, we select the incoming edge with smallest
updated weight, which replaces the original incoming edge.
We repeat the procedure for the collapsed graph. The root of
the resulting tree corresponds to the element we wish to store
in the register of the addressing circuit. The DMST for the
adder network graph of Figure 7(a) is shown in Figure 7(b).

There may be cases when the addition of an auxiliary node
to the adder network graph results in a more efficient address-
ing logic structure (i.e., a lower cost DMST). In the example
graph shown in Figure 8(a), the cost of deriving each node
from the other is high. In such cases, it is beneficial to augment
the graph with the node � corresponding to the loop induction
variable, add the edges from this node to the others, and com-
pute the DMST, which may result in lower overall cost. The
addition of the new node results in the graph of Figure 8(b),
and the resulting DMST is shown in Figure 8(c), which has
lower overall cost than the DMST of the original graph. Note
that the addition of the loop variable � node automatically re-
sults in the implicit (zero cost) addition of nodes � � , � � , � � ,
etc., since no extra hardware is required to generate them. The
weights of edges from � to the other nodes takes this into ac-
count. There is no need to explicitly add these other nodes.

The overall strategy in Abridged Addressing is to find the
DMST for both the original graph � and the augmented graph

� � (with the loop variable node), and choose the solution with
the lower overall cost. The addressing logic structure is in-
ferred directly from the DMST.

A. Analysis

The key idea in Abridged Addressing is to minimize the
storage of redundant information in the addressing logic. For
example, the continuous updation of two address registers � � � �

(a)

(c)

B [11k] B [5k]

20

10

B [11k] B [5k]

k

20

10

23

B [11k] B [5k]

k

23

(b)

Fig. 8. (a) Example (b) Augmented graph (c) DMST of augmented graph

and � � � � within a loop is unnecessary because the same pat-
tern is repeated. Minimizing the storage helps reduce power-
expensive register file access operations. It is important to note
that the addressing logic is not an overhead – the computation
would performed in the datapath in any case. We have merely
transferred the address computation to the memory subsystem.
The Abridged Addressing strategy is independent of the num-
ber of ports in the memory. There is only one address bus in
the interface between the datapath and the memory subsystem.
There is a final level of multiplexing of the computed addresses
depending on the number of ports and the port assignment.

In the addressing logic, we have relied on the start addresses
of the arrays and loop strides being constants known at syn-
thesis time. If this is not the case, then the inputs to the
adders come from registers which are initialized by the datap-
ath through the single address bus. Note that although this in-
creases the number of registers in the addressing logic, it does
not affect the power dissipation adversely because these regis-
ters are not updated during the loop iterations. When there are
multiple loops, the analysis of each loop is performed indepen-
dently and sharing decisions of common parts of the address-
ing are taken later. For example, in Figure 5, if the strides of the
two loops are different (say 1 and 2), the input to the adder that
updates the register comes from a multiplexer whose inputs are
1 and 2, and whose select signal comes from the small FSM in
the decoder that also controls the final address output. The
power overhead of this FSM is small in comparison the typical
power dissipation in adders. Conditionals in loop bodies do
not require any additional support. The addresses of all mem-
ory accesses in the loop are computed, and the FSM selects the
final output depending on the current state of the datapath sub-
system, which is presented to the memory interface through the
single address bus (as in [11]). When we have array accesses
that are not part of loop bodies, then the address is sent over
the address bus and presented as it is to the memory. In this
case, there might be a small theoretical performance overhead
because Abridged Addressing presents only one address bus to
the datapath instead of two for a dual-port memory, but such
cases occur a relatively small number of times – most memory
accesses occur within loop bodies.

On investigating the possible performance overhead due to
the addressing structure, we found that: (1) the cascaded struc-
ture leads to a very minimal increase in delay over a single
adder. Note that the critical path delay of two cascaded adders

is only marginally more than that of a single adder – e.g., the
delay of two cascaded 32-bit ripple carry adders is that of one
33-bit adder; (2) more importantly, the critical path in a loop
body never passes through the addressing structure, since the
addresses are generated as soon as the loop index is updated,
independent of when they are needed. In our experiments, we
found that the addresses were generated in the first one or two
cycles of a loop, whereas the remaining computation (which
was on the critical path) took much longer.

One limitation of abridged addressing is that, if different
loop nests operate on the same array in very different ways,
then it might lead to different addressing circuits. Usually, this
can be accommodated by first generating the addressing cir-
cuit for the dominant loop nest, and then introducing minor
MUX additions to handle the others. A separate addressing
logic structure for each loop nest leads to area overhead, but
is nevertheless feasible because, as mentioned before, the ad-
dressing logic is seldom on the critical path. One limitation
that still remains is that, we currently consider all memory ac-
cesses in the inner loop, ignoring the presence of conditionals,
which leads to more computation than strictly necessary. Array
accesses occurring outside the innermost loop need not be cov-
ered by the abridged addressing structure as these are relatively
infrequent, and we can compute them in the datapath itself.
Multidimensional arrays, are treated as single dimensional ar-
rays, where the array index expression involving all but the in-
nermost loop index are hoisted out of the loop (and computed
in the datapath), and abridged addressing applies only to the
expression involving the inner loop index.

VI. EXPERIMENTS

We verified the addressing optimization strategy using sev-
eral examples from literature, a 0.18 � ASIC library with a
dual-port RAM as the data storage element, and the Synop-
sys synthesis tools. Behavioural synthesis with a 100 MHz
clock was first performed to determine the schedule of mem-
ory accesses and the memory port assignment. Following this,
the addressing logic was generated and synthesized. The syn-
thesized designs were simulated, and the resulting switching
activity file was fed into a power simulation framework (Syn-
opsys Prime Power) to generate the total power dissipation for
the application. SOR (Succesive Over Relaxation) and Com-
press are popular examples from numerical/scientific comput-
ing. MM and Dprod are the matrix multiplication and dot prod-
uct functions. Laplace and Lowpass (accentuating low fre-
quencies in an image) are frequently used in the image pro-
cessing domain. The examples are data-intensive and have ar-
rays indexed by linear expressions accessed in the inner loop
bodies.

In our first experiment, we compared the relative power dis-
sipation of the synthesized design examples. Here, the memory
is on-chip, and the address bus capacitances, while still sig-
nificant, are not orders of magnitude larger than typical nets.
The results are summarized in Figure 9. For each example,
we compare the power dissipation for three different imple-
mentation strategies: WZE, the CDMI method, and Abridged
Addressing. WZE is used because it is tuned for data memory
accesses and we found that it performs better than other sim-

pler techniques such as Gray code, T0, etc. for data memory.
We notice that the CDMI, in spite of eliminating address

bus switching activity during the inner loop array accesses to a
large extent, gives better results than WZE in only 3 out of the
6 examples. This is primarily because the decoder overhead is
significant compared to the address bus power saved. Abridged
Addressing results in average power savings of 40% over WZE
and 44% over CDMI. The difference is significant in examples
such as SOR with a large number of array accesses in the inner
loop because in such cases, CDMI maintains a register file with
many registers, thereby incurring a larger overhead due to the
register accesses. We found that the addressing logic occupied,
on an average, almost 65% less area than the CDMI decoder.
This shows that, although there may be some extra adders in
the addressing logic, the area saved due to reduced registers is
more significant. The details are omitted due to lack of space.
There was no performance overhead because of the reasons
described in Section A.

SOR Compress Dprod Lowpass Laplace MM
0

1

2

3

4

5

Po
w

er
 d

is
si

pa
tio

n
(x

 e
-3

 W
at

ts
) WZE

CDMI-based
Abridged

Fig. 9. Summary of experimental results

In our second experiment, we observed the variation of the
power dissipation due to changes in the address bus capaci-
tance for one of the examples (SOR). In the power simulation,
the bus capacitances were set to different values to simulate
longer wires. As the wire capacitance increases, we expect
that the decoder overhead in techniques such as CDMI will be
a relatively smaller fraction of the address bus power. This
variation is observed in the comparison of WZE and CDMI
curves in Figure 10. Abridged Addressing performs well in
comparison, because on one hand it uses the same strategy as
CDMI to reduce the address bus power, and on the other, it uses
a simpler addressing logic that results in lower overall power.
Lower capacitance values in Figure 10 correspond to on-chip
memory, and higher capacitances correspond to either off-chip
memory, or long on-chip address buses. Abridged Address-
ing performs well throughout the range because the technique
results in just a logical transfer of the addressing computation
from the datapath into the memory subsystem; there is very
little extra encoding and decoding involved. This makes the
technique suitable for both on-chip and off-chip memory.

VII. CONCLUSION

We presented Abridged Addressing, a strategy for generat-
ing efficient memory addressing circuits that minimize power
in both the address buses and the addressing logic. Instead

0.001 0.01 0.1 1 10

Address bus capacitance (pf)
0

5

10

15

Po
w

er
 D

is
si

pa
tio

n
(x

 e
-3

 W
at

ts
)

WZE
CDMI-based
Abridged

Fig. 10. Variation of power dissipation with address bus capacitance

of updating address registers during each array access, we
maintain only one address register throughout the loop exe-
cution and generate the other addresses through simple arith-
metic computations off this register, which minimizes power-
expensive register file accesses. Address bus switching is min-
imized by generating the addresses in the memory subsystem
itself. Experimental results indicate that the addressing tech-
nique is suitable for both the off-chip as well as on-chip mem-
ory because there is very little decoding overhead. Future work
in this direction includes handling multiple memory modules
in a design, and analyzing the impact of static power.

REFERENCES

[1] L. Benini and G. De Micheli, “System level power optimization:
Techniques and tools,” ACM TODAES, Apr. 2000.

[2] M. R. Stan and W. P. Burleson, “Bus-invert coding for low
power I/O,” IEEE TVLSI, Mar. 1995.

[3] C.-L. Su and A. M. Despain, “Cache design trade-offs for power
and performance optimization: a case study,” in ISLPD, 1995.

[4] L. Benini and G. de Micheli, Dynamic power management:
Design Techniques and CAD Tools, Kluwer Acad. Publ., 1998.

[5] E. Musoll et al., “Working-zone encoding for reducing the en-
ergy in microprocessor address buses,” IEEE TVLSI, Dec. 1998.

[6] S. Ramprasad et al., “A coding framework for low power ad-
dress and data buses,” IEEE TVLSI, July 1999.

[7] L. Benini et al., “Power optimization of core-based systems by
address bus encoding,” IEEE TVLSI, Dec. 1998.

[8] M. Mamidipaka, D. Hirschberg, and N. Dutt, “Low power ad-
dress encoding using self-organizing lists,” in ISLPED, Aug.
2001.

[9] L. Benini, A. Macii, and M. Poncino, “A recursive algorithm
for low-power memory partitioning,” in ISLPED, Aug. 2000.

[10] P. R. Panda and N. D. Dutt, “Low-power memory mapping
through reducing address bus activity,” IEEE TVLSI, Sept. 1999.

[11] P. Petrov and A. Orailoglu, “Low-power data memory commu-
nication for application-specifi c embedded processors,” in ISSS,
2002

[12] K. Muhammad and K. Roy, “A novel design methodology for
high performance and low power digital fi lters,” in ICCAD, Nov.
1999.

[13] E. Lawler, Combinatorial optimization: networks and matroids,
Saunders College Publishing, Cambridge, MA, 1976.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

