
An SPU Reference Model for Simulation, Random Test Generation and 
Verification 

Abstract – An instruction set level reference model was 
developed for the development of synergistic processing unit 
(SPU) , which is one of the key components of the cell processor 
[1][2]. This reference model was used for the simulators to 
define the instruction set architecture (ISA), for the random 
test case generator, for the reference in the verification 
environment and for the software development. Using the same 
reference model for multiple purposes made it easier to keep up 
with the architecture changes at the early stage of the 
microprocessor development. Also including the reference 
model in the simulation environment increased the robustness 
for the random test executions and made it possible to find 
bugs that are usually difficult to catch.  

I Introduction 

The Synergistic Processing Unit (SPU) is the first 
implementation of a new processor architecture designed to 
accelerate media and streaming workloads. The SPU 
instruction set architecture (ISA) was defined considering 
the physical implementation such as area, timing and power 
efficiency as well as the efficiency to run media and 
streaming applications. To achieve the target performance, 
ISA definition was frequently changed as the logic and 
physical design advanced.  

To define the ISA, it was very important to write workload 
codes using the candidate ISA and evaluate its performance. 
The first reference model was implemented for this purpose 
as a simulator along with the assembler program. As the 
project advanced, the ISA definition changes were 
implemented in the reference model first, and then the 
updated reference model was used by various applications. 

Since ISA changes continued even after verification started, 
various teams such as design team, performance analysis 
team and verification team were affected by these changes. 
However, since the SPU reference model could be included 
and used in those applications, only the reference model had 
to be modified and it was considered as the ‘golden’ ISA 
definition. Using the same reference model in various 
applications could reduce the mistakes when the applications 
needed to be updated because of the change, and it also 
became easier to keep up with the ISA changes. 

In this paper, the basic structure of the reference model is 
described and followed by the explanation of applications 
that use the reference model. Among those applications, the 
verification environment is described in detail in a separate 
chapter because the reference model played a very important 
role to build up an effective verification environment. 

II Instruction Set Reference Model 

The SPU reference model is a set of C programs that 
perform SPU instruction execution. The reference model is 
comprised of following components. 

All the architected memory/register resources such as a 
register file, a local storage and status registers. 
Instruction decoding. 
Instruction execution and updating architected 
memory/register resources as the result of the 
instruction execution. 

All the architected memory/register resources are defined in 
a C struct as ‘struct APU_t’ and this struct is usually 
memory allocated in each application program and used as 
the argument to the reference model. However, the random 
test case generator uses its own memory/register resource 
structure for some reasons, which will be described later. 

The major functions defined in the reference model are 
following two functions. 

void INTERPRETER_init(void); 
void INTERPRETER_exec(APU_t *apu, unsigned int inst); 

The first function is used for initialization of the reference 
model. The second one is used for instruction execution. The 
first argument of the second function is a pointer to the 
struct of architected memory/register resources APU_t, 
which represents the entity of the SPU. The second 
argument is the instruction encoded in a 32bit integer. When 
this function is invoked, the instruction of the second 
argument is decoded and a proper function that corresponds 
to the instruction is called in the reference model. The 
following C program is an example of the function that is 

Yukio Watanabe 

Toshiba Corporation 
Semiconductor Company 

580-1 Horikawa-Cho, Saiwai-Ku, 
Kawasaki 212-8520, Japan 

yukio.watanabe@toshiba.co.jp 

Balazs Sallay, Brad Michael, 
 Daniel Brokenshire, Gavin Meil,  

Hazim Shafi 

IBM
11501 Burnet Rd, 

Austin, TX 78758, U.S.A. 
{balazs, bradmich, brokensh, meil, hshafi} 

@us.ibm.com

Daisuke Hiraoka 

Sony Computer Entertainment Inc. 
2-6-1 Minami-Aoyama, Minato-ku, 

Tokyo 107-0062, Japan 
hiraoka@rd.scei.sony.co.jp 



called when ‘a’ instruction is decoded. 

/* add word: a rt, ra, rb */ 
void INTERPRETER_inst_a(APU_t *apu,  

unsigned int inst) 
{
RTW(0) = RAW(0) + RBW(0); 
RTW(1) = RAW(1) + RBW(1); 
RTW(2) = RAW(2) + RBW(2); 
RTW(3) = RAW(3) + RBW(3); 

}

RTW(n), RAW(n) and RBW(n) are macros which specify 
the register files whose numbers are determined by the 
portions of the instruction ‘unsigned int inst’. These macros 
specify the memory elements in the SPU memory/register 
struct ‘APU_t *apu’. 

As for the floating instruction implementations, an SPU 
specific floating-point model was written and used in the 
functions that represent the floating instructions. This is 
because the SPU introduced a new floating-point 
architecture that differed in some ways from the commonly 
used IEEE 754 floating-point standard, in order to enhance 
performance for media-oriented applications.  One method 
for calculating floating-point results in a C-language 
reference model is to use C's "float" and "double" data types. 
However, operations using such data types will be calculated 
using the floating-point hardware native to the machine 
executing the reference model, which may not match the 
SPU's architected behavior in certain cases.  

To avoid any dependency on the underlying machine's 
floating-point hardware, the floating-point model within the 
SPU reference model was written using only integer data 
types, using separate integer variables to store the sign, 
exponent, and significand parts that make up a floating-point 
value.  A 64-bit integer type is used to store the significand, 
to support the precision required by single- and 
double-precision floating-point instructions.  The 
floating-point reference model includes functions to 
normalize, align, add, multiply, multiply-and-add, and round, 
all using integer arithmetic; as well as functions to "pack" 
the final results into the 32- or 64-bit representation called 
for by the architecture.  The reference model detects and 
handles all exception cases such as overflow, underflow, 
divide by zero and loss of precision.  

Since there can be multiple SPUs in one system, the SPU 
memory struct might be allocated multiple times and each 
one is used to represent the resources of each SPU. As 
shown in Figure 1, when the reference model is used in an 
application, the application program allocates SPU 
architected memory/register resource struct as many as the 
number of the SPUs that the application program needs to 
handle. The application program can directly access the 
resources in each SPU, and can execute the instruction by 
passing one of the pointer of the SPU memory/register struct 
in INTERPRETER_exec() function.  

The definition of each instruction except for its function is 
written in a common definition file as a C macro. Following 
is an example of the definition of ‘a’ instruction.   

APUOP(M_A, RR, 0x0c0, "a", ASM_RR, 00112, FX2) 
/* Add% RT<-RA+RB */ 

APUOP is the name of the macro that defines each 
instruction. The first argument of the macro is an identifier 
of the instruction. The second argument is the instruction 
format. This is followed by the op-code, the mnemonic, the 
assembler format, the register file usage and the kind of the 
pipeline used to execute the instruction.  

The reference model itself does not use all the information in 
the macro. However, other applications such as the 
assembler, the pipeline simulator, the logic RTL and the 
verification environment refer the same common definition 
macro as well as the reference model, and each item in the 
macro is used by at least one application.  

For example, the 6th argument in the macro indicates which 
register is the source register and which register is the target 
register.  Each SPU instruction can take up to 4 registers as 
the arguments of the instruction depending on the instruction 
format. The four registers are represented as RA, RB, RC 
and RT. There are five digits in the 6th argument. From the 
most significant digit, the first one is always 0. The second 
digit corresponds to RC, and then the following digits 
correspond to RB, RA and RT, respectively. If the digit is 0, 
the register is not used by the instruction. If the digit is 1, 
that means the register is used as a source. If the digit is 2, 
the register is used as a target, and if the digit is 3, the 
register is used both as a source and a target. In case of ‘a’ 
instruction, two values of register RA and register RB are 
the source registers and their values are added and the result 
is put into the target register RT. So ‘00112’ is put into the 
6th argument of the macro. The RTL for register dependency 
checking logic uses this information. A script converts the 
macro description into the RTL description.  

Application ProgramApplication Program

SPU
R

eference
M

odel

SPU
Reference

M
odel

IN
TER

PRETER_exec()

SPU1 
Architected

Memory

SPU1 
Architected

MemorySPU0 
Architected

Memory

SPU0 
Architected

Memory

SPUn
Architected

Memory

SPUn
Architected

Memory

One of the 
Pointer of 

memory struct

Application ProgramApplication Program

SPU
R

eference
M

odel

SPU
Reference

M
odel

IN
TER

PRETER_exec()

SPU1 
Architected

Memory

SPU1 
Architected

MemorySPU0 
Architected

Memory

SPU0 
Architected

Memory

SPUn
Architected

Memory

SPUn
Architected

Memory

One of the 
Pointer of 

memory struct

Fig. 1. Basic usage of the SPU reference model in an 
application



III Usages of the Reference Model

The SPU reference model is used for various applications. In 
this section, some of them are introduced. 

A. Instruction Simulator

Since the SPU is a new architecture, it was very important to 
implement and use the instruction simulator to evaluate the 
new ISA. Actually, the initial reference model was 
developed for this purpose. Figure 2(a) shows the 
configuration of the instruction simulator. In this figure, 
assembler is also included. The assembler program uses the 
common definition file described in section II as well as the 
reference model, and only changing the common definition 
file is required for the instruction changes. In the instruction 
simulator, a COFF format file generated by the assembler is 
read and the information (memory contents and the program 
counter value) are written into the SPU architected 
memory/register struct. The simulator gets commands via 
command prompt or command files. Commands for the 
instruction simulator includes 

Memory/Register dump 
Breakpoint setting 
Running program 
Step execution 
Show statistics such as number of instructions executed 

The instruction simulator was mainly used to study the 
completeness of the instructions as a set and the correctness 
of the definition of each instruction. For example, at the 
beginning of the ISA study, the SPU ISA had byte/half 
word/word/double word-wise load/store instructions, but to 
realize a high frequency microprocessor, those instructions 
were divided into multiple instructions --- load quad word, 
generate control and shuffle byte instructions. Writing a code 
and running simulations with combining those instructions 
proved the completeness of the instruction set. Another 
example is that SPU has a series of right shift/rotate 
instructions that are represented as ‘rotate mask’ and ‘rotate 
mask algebraic’ instructions. The definitions are complicated 
and simulating those instructions found the bugs in the 
instruction definitions by running workload programs. 

Extended Programming Features 

In order to validate the SPU Instruction Set Architecture and 
implementation, real application workloads were developed. 
Since the targeted, media rich applications are visual in 
nature, verification of correct and efficient program 
execution required the development of several extended 
programming features.  These features, which include 
check-pointing, file I/O, and streaming I/O, where added as 
special simulator extensions to the architected instruction 
set. 

Check-pointing 

SPU
Reference

Model

SPU
Reference

Model

.asm

SPU
Assembler

SPU
Assembler

coff

User Commands
- program load
- memory dump
- execution, etc…

SPU 
Architected

Memory

SPU 
Architected

Memory

Inst. Issue
Model for pipeline

Loader

User I/F

IN
TER

P
R

ETER
_

exec()
IN

TER
P

R
ETER

_
exec()

P
oin

ter to th
e 

m
em

ory struct
P

ointer to th
e 

m
em

ory struct
SPU

Reference
Model

SPU
Reference

Model

.asm

SPU
Assembler

SPU
Assembler

coff

User Commands
- program load
- memory dump
- execution, etc…

SPU 
Architected

Memory

SPU 
Architected

Memory

Inst. Issue
Model for pipeline

Loader

User I/F

IN
TER

P
R

ETER
_

exec()
IN

TER
P

R
ETER

_
exec()

P
oin

ter to th
e 

m
em

ory struct
P

ointer to th
e 

m
em

ory struct

SPU
Reference

M
odel

SPU
Reference

M
odel.def

.tst

Reference
m

odel API
for G

enesys
Pro

R
eference

m
odel API

for G
enesys

Pro

G
enesys

Pro
Base Code

G
enesys

Pro
Base Code

SPU specific code
for Genesys Pro

SPU specific code
for Genesys Pro

SPU 
Architected

Memory

SPU 
Architected

Memory

INTERPRETER
_exec()

INTERPRETER
_exec()

Read/
modify
Read/
modify

TraceTrace

GPro API for 
Mem/Reg access

Instruction execution
Read/Write trace
Undo operation

GPro API for 
Mem/Reg access

Instruction execution
Read/Write trace
Undo operation

SPU
Reference

M
odel

SPU
Reference

M
odel.def

.tst

Reference
m

odel API
for G

enesys
Pro

R
eference

m
odel API

for G
enesys

Pro

G
enesys

Pro
Base Code

G
enesys

Pro
Base Code

SPU specific code
for Genesys Pro

SPU specific code
for Genesys Pro

SPU 
Architected

Memory

SPU 
Architected

Memory

INTERPRETER
_exec()

INTERPRETER
_exec()

Read/
modify
Read/
modify

TraceTrace

GPro API for 
Mem/Reg access

Instruction execution
Read/Write trace
Undo operation

GPro API for 
Mem/Reg access

Instruction execution
Read/Write trace
Undo operation

SPU
R
eference
M

odel

SPU
Reference

M
odel

.tst

R
eference

m
odel API

for G
enesys

Pro

Reference
m

odel A
PI

for G
enesys

ProTest bench in C+
+

Test bench in C+
+

Test bench in 
verification language

Test bench in 
verification language

SPU 
Architected

Memory

SPU 
Architected

Memory

Cycle base sim
ulator

Cycle base sim
ulator

SPU
 logic design

SPU
 logic design

INTERPRETER
_exec()

INTERPRETER
_exec()

Read/
modify
Read/
modify

Gpro APIGpro API

Interface to access 
the ref. model

- Inst execution
- Resource R/W

Interface to access 
the ref. model

- Inst execution
- Resource R/W

SPU
R
eference
M

odel

SPU
Reference

M
odel

.tst

R
eference

m
odel API

for G
enesys

Pro

Reference
m

odel A
PI

for G
enesys

ProTest bench in C+
+

Test bench in C+
+

Test bench in 
verification language

Test bench in 
verification language

SPU 
Architected

Memory

SPU 
Architected

Memory

Cycle base sim
ulator

Cycle base sim
ulator

SPU
 logic design

SPU
 logic design

INTERPRETER
_exec()

INTERPRETER
_exec()

Read/
modify
Read/
modify

Gpro APIGpro API

Interface to access 
the ref. model

- Inst execution
- Resource R/W

Interface to access 
the ref. model

- Inst execution
- Resource R/W

(a)

(b)

(c)

Fig. 2. Applications using the SPU reference model. 
(a)Instruction/Cycle-base simulator. (b) Random test case 
generator, (c) SPU verification environment.



For the purposes of computing cycle times for user specified 
code sections, software runtime check-pointing was 
provided by adding extended simulator operations for AND 
instructions in which all register fields are equivalent.  For 
example:  

and  r0, r0, r0 – clear the current 
instruction/cycle counts. 
and r30, r30, r30 – start counting instructions and 
cycles.  
and r31, r31, r31 – stop counting instructions and 
cycles. 
and r#, r#, r# (where # is a number 1-29) – output 
check-point # including the current instruction and 
cycles counts.  

These instructions can easily be added to C language 
programs using inline assembly.   

File I/O 
To support rudimentary debugging of SPE programs, the 
simulator was enhanced to support a full-function, file print 
(printf) subroutine. Since the SPU has architected Special 
Purpose Registers (SPRs) but its implementation contains no 
SPRs, the mtspr instruction simulation was extended such 
that the unused RB opcode field is used as an indicator of 
the extended function. The simulator’s printf function is 
serviced by fetching parameters in accordance with the 
SPU’s ABI (Application Binary Interface) standard. 

Streaming I/O 
To support the display of graphical workloads, the simulator 
was also extended to enable external socket communications. 
The mtspr instruction was again used to make Unix sockets 
requests so that graphical data can be streamed to an external 
display program. The streams (connection sockets) are 
identified by a filename and its stream direction (outgoing or 
incoming). The supported socket requests include opening, 
closing and selecting a socket connection, as well and 
sending and receiving data on the current (outgoing and 
incoming, respectively) socket connection.  

B. Pipeline Simulator

The pipeline simulator can count the actual cycle number 
when a SPU program is executed. This is used to evaluate 
the performance of the SPU micro architecture and to 
optimize the SPU application programs. The basic structure 
of the pipeline simulator is almost same as the instruction 
simulator case in Figure 2(a) except that it has an instruction 
fetch and issue model. This model takes into account the 
instruction fetch flow including local store access, 
instruction line buffers and other pipeline buffers, branch 
hint instructions and instruction issue controls considering 
the register dependencies and structural hazards and so on. 
There is a common pipeline definition file that describes the 
depth of each pipeline and the resources that each pipeline 
uses, which made it easier to evaluate various pipeline 

configurations. 

The same user interface as the instruction simulator is used 
in the pipeline simulator as well. In the actual simulator 
program, both the instruction simulator and pipeline 
simulator are consolidated in one program and the 
simulation mode (instruction or pipeline) can be switched by 
a simulator command. 

By modifying the common pipeline definition file, the 
impact of the pipeline depth change could be easily 
estimated for each workload program. This played an 
important role when the pipeline depth of the floating-point 
instruction was determined. Also the pipeline simulator was 
used to optimize workload programs. This includes the 
evaluation of the SPU C/C++ compiler optimization. By 
utilizing the pipeline simulator, one workload program that 
calculates the product of two large matrices was fully 
optimized and could achieve almost 0.5 cycles per 
instruction (CPI), which is the best case for the dual issue 
microprocessor. 

Since the reference model covered the entire instruction 
execution portion, by using the reference model, the pipeline 
simulator programmer did not have to work for the 
instruction changes at all and could concentrate on the 
instruction fetch/issue logic changes. 

C. Random Test Case Generator

In the SPU verification, random test cases are used to 
stimulate the logic function. To guarantee the quality of the 
verification, function coverage is used as the metric. It is 
important to generate high quality random test cases to hit 
all the function coverage items. To generate directed random 
test cases, Genesys Pro (GPro)[3], a tool developed by IBM, 
was applied to the SPU. GPro has a base core code that uses 
a specific application program interface (API) to 
communicate with various kinds of reference models. So 
Gpro becomes able to communicate with the SPU reference 
model by preparing the specific API functions that GPro 
uses for the SPU reference model. The API functions include  

Accessing the architected memory resources. 
Executing an instruction at the program counter and get 
the information what memory/register resources were 
read to execute the instruction and what 
memory/register resources were updated by executing 
the instruction. 
Setting undo points and undoing to handle 
mispredicted branches and recovery from test case 
generation failure. 

To record the resource access traces and manage the undoing 
automatically using the reference model, all the SPU 
memory and register resources were defined in the random 
test case generator without using the struct APU_t which 
was described in section II. A C++ class was defined to 



access those memory/register resources and the resource 
access trace generation and undoing management. To utilize 
the reference model, the macros used in each instruction 
implementation such as RTW(n), RAW(n) and RBW(n) 
described in section II in the ‘a’ instruction example were 
redefined to use the class to access the appropriate 
memory/register resources. By using the operator 
overloading of the class, read trace information is added 
automatically when the resource was evaluated in the right 
hand side of the ‘=’ operator, and the write trace and undo 
information are added automatically when the resource was 
placed in the left hand side of the ‘=’ operator and updated 
with the value of right hand side. Thus, by redefining the 
macros in the reference model to use the C++ class, it 
became possible to use the same reference model and add 
the resource access trace and undoing functions. 

Figure 2(b) shows the structure of the random test case 
generator. A definition file (.def file) is given to the random 
test case generator and a test case file (.tst file) is randomly 
generated with constraints written in the definition file. To 
generate the test case, GPro base code communicates with 
the SPU reference model. In this case, the API portion has 
the entity of the SPU memory/register resources. When 
GPro accesses the memory resources using the API, the 
content of the resources in the API is directly accessed. 
When GPro calls a function to execute an instruction 
specified by the program counter, the API portion picks up 
the instruction at the program counter in the SPU memory 
resources and invokes the function INTERPRETER_exec() 
with passing the instruction. The memory/register resources 
in the API are updated properly and the resource access 
information is generated and passed to the GPro base code 
and the information is used for the test case generation. 

D. Reference in the Verification Environment

Figure 2(c) shows the SPU verification environment 
structure. There are two separate test benches written in C++ 
language and other verification language. The reference 
model is used to obtain the expected results for the checkers 
in the test bench written in the verification language. The 
C++ test bench is used to provide the API to the other test 
bench to communicate with the reference model to get and 
put the values of memory/register resources and get the 
expected values by executing instructions in it. In this 
application, the same API used by GPro, the random test 
case generator is reused as the interface to the reference 
model. 

A test case file (.tst file) generated by GPro is given to the 
C++ test bench and the initial values in the test case are 
written into both SPU reference model memory/register 
resources and the logic design under the RTL simulator. 
When an instruction is executed in the SPU logic, it is 
observed by the monitor in the test bench written in the 
verification language and the test bench executes one 
instruction in the reference model and gets the expected 

results through the API. 

There are also drivers in the test bench which stimulate the 
SPU external interface buses. Monitors in the test bench 
observe the external interface buses. When there is a 
stimulus on the external interface buses which is considered 
to update the SPU memory/register resources, the resources 
in the reference model is updated with the value on the buses 
at a proper timing using the API. An example is a DMA 
write access. When a DMA write access happens, the 
content on the data bus is written into the SPU local storage 
with the address specified by the address bus. If a memory 
load instructions refers the address updated by the DMA 
transaction later, actual logic will use the updated value and 
the load instruction executed in the reference model also 
uses the same value. Thus, even if the driver issues random 
external bus stimulus, the reference model can generate 
accurate expected values. 

E. Cell System Simulator

The SPU reference model was integrated with the IBM full 
system simulator known as Mambo [4] at an early stage of 
the development program. Mambo is an execution-driven 
full system simulator that allows multiple system 
configurations to be simulated. For example, Mambo was 
adopted as the software bring-up environment during the 
development of the CELL architecture. It has been used for 
operating system development, programming model 
investigations, compiler development, porting of important 
applications and libraries, and performance tuning. During 
the early stages of the Cell project, Mambo was intended to 
be functionally accurate and as such did not include 
cycle-accurate models of the full system. As the 
development project matured, so did the Mambo model, 
which was enhanced to provide more cycle-accurate 
feedback about the interactions between the SPUs, system 
memory, and the PowerPC core. The availability of such a 
model was crucial for studying the performance of the 
architecture at an early stage and to allow the performance 
tuning of applications as the project progressed. 

IV. Reference model usage in the verification 
environment 

As briefly described in section III-D, the SPU simulation 
environment incorporates the reference model, which made 
it possible to generate the correct expected values on the fly 
even with the asynchronous random external stimuli. This 
feature is very important for the SPU verification 
environment because lots of corner cases can be covered by 
the combination of random instruction sequences and 
random external transactions. The important thing here is 
that the instruction sequences and external transactions can 
be generated completely independent. The reference model 
can keep the same state as the actual logic with the help of 
the test bench and can continue the verification generating 
the correct expect values. 



However, since the reference model is not a pipeline model, 
there are lots of things to be solved to integrate the reference 
model and make it work properly in the simulation 
environment. In this section, some of the items that need 
consideration are described. 

A. Timing to execute the instruction 

To integrate the reference model in the simulation 
environment, what had to be considered first was the timing 
when to execute the instruction in the reference model. Since 
the SPU is an in-order issue in-order completion processor, 
an instruction can be executed in the reference model to 
generate expected values whenever after an instruction is 
committed in the actual logic unless there are external 
transactions. However, since there are interactions between 
the instruction execution and external transactions they have 
to be handled properly to generate the correct expected 
values. 

There are two kinds of external transactions. One is a DMA 
transaction that reads or writes local store memory. The 
other is a channel access transaction which reads or writes 
channel registers. The verification test bench monitors the 
external transactions and checks if the transactions were 
properly executed. At the same time, the test bench updates 
the reference model memory/register resources at a proper 
timing so that the instruction execution can use the proper 
memory/register values. As shown in figure 3, the actual 
logic accesses the local store memory array at the ‘p’ stage 
of the pipeline which is 2 cycles after the load/store 
instruction committed at ‘n’ stage. In case of channel 
instructions, channel registers are accessed at ‘q’ stage, 
which is 3 cycles after the channel instruction committed. To 
cope with the pipeline stage differences to access the 
resources with the reference model which doesn’t have the 
concept of pipeline, a decision was made to make all the 
updates of the memory/register resources including external 
transactions and instruction executions by the test bench 
happen at ‘q’ stage. This made it possible to execute 
instructions in the reference model with asynchronous 
external transaction occurrences. However, since the timing 
to update the local memory array is different between the 
actual logic and the reference model, the checkers have to 
take care of this. For example a checker which checks if a 
store instruction updated the memory array properly has to 
get the actual logic value at ‘p’ stage, then after the store 
instruction is executed in ‘q’ stage in the reference model, 
the expected value is obtained from the reference model and 
it is compared against the actual value obtained at ‘p’ stage.  

B. Resource confliction case 

Channel instructions and external channel transactions can 
access the same channel registers exactly at the same timing. 

Since what will be written into or what will be read out from 
a particular channel register in such a conflict case depends 
on the hardware implementation and there is no regularity, 
all the rules are described in the test bench and when a 
resource conflict happens, the test bench arbitrates this to 
generate the correct expect values. For example, there are 
cases that both of an instruction execution and an external 
transaction try to write into the same channel resource. The 
instruction is always executed in the reference model at ‘q’ 
stage and the channel register in the reference model is 
updated and then the expected value for the channel 
instruction result is obtained from the reference model. 
When the channel instruction has a higher write priority than 
the external transaction, the test bench does not update the 
channel register in the reference model with the value 
supposed to be written by the external transaction, but still 
obtain the expected value for the external transaction from 
the reference model. On the other hand, when the external 
transaction has a higher write priority, the test bench updates 
the channel register in the reference model at the same ‘q’ 
stage but after the instruction execution with the value that 
the external transaction is supposed to write. Then the test 
bench obtains the expected value for the external transaction 
from the reference model, and also the test bench overwrites 
the expected value for the channel instruction that was 
obtained right after the instruction execution in the reference 
model. Thus, with the help of the test bench, reference 
model can keep the same channel register values as the 
actual logic and continue to provide the correct expected 
results. 

C. Self modifying code case 

In the actual logic, instructions are fetched from the local 
store memory and travel through the pipeline stages. What 
will happen if a ‘store’ instruction writes into an address of 
the instructions following the store instruction? Since the 
instructions had been fetched a while ago, the next 
instructions would be the instructions before modification. 
On the other hand, if the same store instruction was executed 
in the reference model, the next instruction executed in the 
reference model would be a modified instruction because 
there is no concept of pipeline in the reference model. 
Therefore, if a self-modifying code is executed, the 

Fig. 3. Pipeline diagram of the actual logic pipeline and the 
timing to access the reference model.

JJ k l m n o p q r

Instruction commit
Local store array access

Channel register access

Local store update by test bench
Channel register update by test bench
Instruction execution

Instruction
issue

Timing
of the logic

Timing of the
reference model
access

JJ k l m n o p q r

Instruction commit
Local store array access

Channel register access

Local store update by test bench
Channel register update by test bench
Instruction execution

Instruction
issue

JJ k l m n o p q r

Instruction commit
Local store array access

Channel register access

Local store update by test bench
Channel register update by test bench
Instruction execution

Instruction
issue

Timing
of the logic

Timing of the
reference model
access



reference model cannot continue executing the same 
sequence as the actual logic. To handle this case, test bench 
keeps information which memory addresses were written by 
either store instruction or DMA write transactions. Before 
the instruction is executed in the reference model, the test 
bench compares the instruction to be executed with the 
instruction committed by the logic. If they are different, it is 
usually reported as a test failure, but if the instruction 
address was modified recently enough to make a difference, 
the content of the memory of the instruction address in the 
reference model is saved and replaced by the instruction 
value that was committed in the actual logic, and the 
instruction is executed in the reference model. Then unless 
the executed instruction is not a store instruction that 
modifies itself, the saved instruction is restored into the 
reference model. Thus, with the help of the test bench, the 
reference model can keep up with the actual logic state even 
with the self modifying code case which instruction set 
reference model cannot handle properly only by itself. 

D. ECC error handling 

The SPU has an ECC facility that can correct 1-bit error and 
detect 2-bit errors in 128-bit data in the local store memory. 
Since the reference model doesn’t have the ECC information 
in it, the test bench has to support the reference model to 
handle the ECC. Basically, the ECC errors are injected at the 
beginning of the simulation or injected by the DMA 
transactions. The information which address has what kind 
of ECC errors is kept in the test bench. When a correctable 
error happens in the logic, the test bench doesn’t have to do 
anything against the reference model because the correctable 
error should be corrected in the actual logic and the 
corrected data, which should be the same value in the 
reference model, will be used. When the instruction that has 
an uncorrectable ECC error is executed in the actual logic, 
the test bench can detect it because the test bench has the 
information of the addresses that have ECC errors. In this 
case, the test bench saves the original instruction and 
overwrites the address of the instruction in the reference 
model with the value modified by the uncorrectable ECC 
error. Then, as in the case of self-modifying code, the 
modified instruction is executed in the reference model and 
the original instruction is restored unless the modified 
instruction is the store instruction that modifies the 
instruction itself.  

E. Others 

There are several other cases such as asynchronous interrupt 
handling, error handling, undefined instruction handling and 
so on that cannot be handled only by the instruction level 
reference model. However, all those cases were 
implemented in the SPU verification environment with the 
help of the test bench. So the SPU verification environment 
has a good robustness that any kinds of combinations of 
instruction sequence and external transaction can be treated 
properly and the model generates the correct expected values. 

If the reference model were implemented as the complete 
pipeline model, the reference model itself could cover all the 
cases. But it is usually very difficult to implement the 
complete pipeline model, and it also slows down the 
simulation speed. Using the instruction level reference 
model realized the verification environment with a good 
quality and performance. 

V. Summary and Conclusions 

In this paper, the structure and usage of the SPU instruction 
level reference model was described. The reference model 
played important roles for the development of the SPU, a 
novel high performance processor. The reference model was 
used for the purpose of defining the ISA, analyzing 
performance, verification environment development and 
software development. The same reference model could be 
used for all these purposes, which reduced the burden to 
keep up with the ISA changes for each application developer 
and significantly reduced the likelihood of mistakes in the 
implementation. As for the verification environment, with 
the help of the test bench, the instruction level reference 
model could cover pipeline related items and it realized an 
ability to continue the simulation and generate correct 
expected values with asynchronous external events. As a 
result, though the SPU is a very novel processor, only one 
bug was found in first silicon, which was a mistake of the 
specification of the asynchronous interrupt. And a demo 
program that utilizes the SPU was successfully run on first 
silicon with the expected good performance. 

Acknowledgements 

The authors would like to thank Seiichiro Saito, Hiroko Fujii 
and Nobuhiro Kondo of Toshiba Corporation for the 
development of the prototype of the SPU reference model, 
and Kanna Shimizu and Peter Hofstee of IBM for useful 
suggestions. 

References 

[1] Pham D. et al, “The Design and Implementation of a 
First-eneration CELL Processor,” 2005 IEEE International 
Solid-State Circuits Conference Digest of Technical Papers, 
pp. 184-185, Feb. 2005. 
[2] Flachs B. et al, “A streaming Processing Unit for a CELL 
Processor,” 2005 IEEE International Solid-State Circuits 
Conference Digest of Technical Papers, pp. 134-135, Feb. 
2005
[3] Allon A. et al, “Genesys-Pro: Innovations in Test 
Program Generation for Functional Processor Verification,” 
IEEE Design & Test of Computers 21(2): 84-93 (2004) 
[4] Patrick B. et al, "Mambo -- A Full System Simulator for 
the PowerPC Architecture,” ACM SIGMETRICS 
Performance Evaluation Review, 31(4): 8-12, Mar. 2004. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


